1
|
Cui D, Li S, Yin B, Li C, Zhang L, Li Z, Huang J. Rapid Rescue of Goose Astrovirus Genome via Red/ET Assembly. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:297-306. [PMID: 38582780 DOI: 10.1007/s12560-024-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
The host-specific infection of Avian Astrovirus (AAstVs) has posed significant challenges to the poultry industry, resulting in substantial economic losses. However, few reports exist on the functional consequences of genome diversity, cross-species infectivity and mechanisms governing virus replication of AAstVs, making it difficult to develop measures to control astrovirus transmission. Reverse genetics technique can be used to study the function of viruses at the molecular level, as well as investigating pathogenic mechanisms and guide vaccine development and disease treatment. Herein, the reverse genetics technique of goose astrovirus GAstV/JS2019 strain was developed based on use of a reconstructed vector including CMV promotor, hammerhead ribozyme (HamRz), hepatitis delta virus ribozyme (HdvRz), and SV40 tail, then the cloned viral genome fragments were connected using Red/ET recombineering. The recombinant rGAstV-JS2019 was readily rescued by transfected the infectious clone plasmid into LMH cells. Importantly, the rescued rGAstV/JS2019 exhibited similar growth kinetics comparable to those of the parental GAstV/JS2019 isolate in cultured cells. Our research results provide an alternative and more effective reverse genetic tool for a detailed understanding of viral replication, pathogenic mechanisms, and molecular mechanisms of evolution.
Collapse
Affiliation(s)
- Daqing Cui
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shujun Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
2
|
Semkum P, Thangthamniyom N, Chankeeree P, Keawborisuth C, Theerawatanasirikul S, Lekcharoensuk P. The Application of the Gibson Assembly Method in the Production of Two pKLS3 Vector-Derived Infectious Clones of Foot-and-Mouth Disease Virus. Vaccines (Basel) 2023; 11:1111. [PMID: 37376500 DOI: 10.3390/vaccines11061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of a full-length infectious clone, essential for molecular virological study and vaccine development, is quite a challenge for viruses with long genomes or possessing complex nucleotide sequence structures. Herein, we have constructed infectious clones of foot-and-mouth disease virus (FMDV) types O and A by joining each viral coding region with our pKLS3 vector in a single isothermal reaction using Gibson Assembly (GA). pKLS3 is a 4.3-kb FMDV minigenome. To achieve optimal conditions for the DNA joining, each FMDV coding sequence was divided into two overlapping fragments of approximately 3.8 and 3.2 kb, respectively. Both DNA fragments contain the introduced linker sequences for assembly with the linearized pKLS3 vector. FMDV infectious clones were produced upon directly transfecting the GA reaction into baby hamster kidney-21 (BHK-21) cells. After passing in BHK-21 cells, both rescued FMDVs (rO189 and rNP05) demonstrated growth kinetics and antigenicity similar to their parental viruses. Thus far, this is the first report on GA-derived, full-length infectious FMDV cDNA clones. This simple DNA assembly method and the FMDV minigenome would facilitate the construction of FMDV infectious clones and enable genetic manipulation for FMDV research and custom-made FMDV vaccine production.
Collapse
Affiliation(s)
- Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Challika Keawborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Keck H, Litz B, Hoffmann B, Sehl-Ewert J, Beer M, Eschbaumer M. Full-Length Genomic RNA of Foot-and-Mouth Disease Virus Is Infectious for Cattle by Injection. Viruses 2022; 14:1924. [PMID: 36146730 PMCID: PMC9503123 DOI: 10.3390/v14091924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Safe sample transport is of great importance for infectious diseases diagnostics. Various treatments and buffers are used to inactivate pathogens in diagnostic samples. At the same time, adequate sample preservation, particularly of nucleic acids, is essential to allow an accurate laboratory diagnosis. For viruses with single-stranded RNA genomes of positive polarity, such as foot-and-mouth disease virus (FMDV), however, naked full-length viral RNA can itself be infectious. In order to assess the risk of infection from inactivated FMDV samples, two animal experiments were performed. In the first trial, six cattle were injected with FMDV RNA (isolate A22/IRQ/24/64) into the tongue epithelium. All animals developed clinical disease within two days and FMDV was reisolated from serum and saliva samples. In the second trial, another group of six cattle was exposed to FMDV RNA by instilling it on the tongue and spraying it into the nose. The animals were observed for 10 days after exposure. All animals remained clinically unremarkable and virus isolation as well as FMDV genome detection in serum and saliva were negative. No transfection reagent was used for any of the animal inoculations. In conclusion, cattle can be infected by injection with naked FMDV RNA, but not by non-invasive exposure to the RNA. Inactivated FMDV samples that contain full-length viral RNA carry only a negligible risk of infecting animals.
Collapse
Affiliation(s)
- Hanna Keck
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Benedikt Litz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Julia Sehl-Ewert
- Laboratory for Pathology II, Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Lalzampuia H, Elango S, Biswal JK, Krishnaswamy N, Selvan RPT, Saravanan P, Mahadappa P, V Umapathi, Reddy GR, Bhanuprakash V, Sanyal A, Dechamma HJ. Infection and protection responses of deletion mutants of non-structural proteins of foot-and-mouth disease virus serotype Asia1 in guinea pigs. Appl Microbiol Biotechnol 2021; 106:273-286. [PMID: 34889988 DOI: 10.1007/s00253-021-11692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
The development of a negative marker vaccine against the foot-and-mouth disease virus (FMDV) will enhance the capabilities to differentiate vaccinated from infected animals and move forward in the progressive control pathway for the control of FMD. Here, we report the development of mutant FMDV of Asia1 with partial deletion of non-structural proteins 3A and 3B and characterization of their infectivity and protection response in the guinea pig model. The deleted FMDV Asia1/IND/63/1972 mutants, pAsiaΔ3A and pAsiaΔ3A3B1 were constructed from the full-length infectious clone pAsiaWT, the viable virus was rescued, and the genetic stability of the mutants was confirmed by 20 monolayer passages in BHK21 cells. The mutant Asia1 viruses showed comparable growth pattern and infectivity with that of AsiaWT in the cell culture. However, the AsiaΔ3A3B1 virus showed smaller plaque and lower virus titer with reduced infectivity in the suckling mice. In guinea pigs, the AsiaΔ3A3B1 virus failed to induce the disease, whereas the AsiaΔ3A virus induced typical secondary lesions of FMD. Vaccination with inactivated Asia1 mutant viruses induced neutralizing antibody response that was significantly lower than that of the parent virus on day 28 post-vaccination (dpv) in guinea pigs (P < 0.05). Furthermore, challenging the vaccinated guinea pigs with the homologous vaccine strain of FMDV Asia1 conferred complete protection. It is concluded that the mutant AsiaΔ3A3B1 virus has the potential to replace the wild-type virus for use as a negative marker vaccine after assessing the vaccine worth attributes in suspension cell and protective efficacy study in cattle.Key points• Deletion mutant viruses of FMDV Asia1, developed by PCR-mediated mutagenesis of NSP 3A and 3B1, were genetically stable.• The growth kinetics and antigenic relatedness of the mutant viruses were comparable with that of the wild-type virus.• Vaccination of guinea pigs with the deletion mutant viruses conferred complete protection upon challenge with the homologous virus.
Collapse
Affiliation(s)
| | - Subhadra Elango
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - Jitendra K Biswal
- ICAR-Directorate of Foot-and-Mouth Disease, Mukteswar, Nainital, 263138, India
| | - Narayanan Krishnaswamy
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - R P Tamil Selvan
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - P Saravanan
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - Priyanka Mahadappa
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - V Umapathi
- FMD Q&C and Q&A Laboratory, Bengaluru, India
| | - G R Reddy
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - V Bhanuprakash
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - Aniket Sanyal
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India
| | - H J Dechamma
- FMD Vaccine Production Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal Campus, Karnataka, Bengaluru, 560 024, India.
| |
Collapse
|
5
|
Semkum P, Kaewborisuth C, Thangthamniyom N, Theerawatanasirikul S, Lekcharoensuk C, Hansoongnern P, Ramasoota P, Lekcharoensuk P. A Novel Plasmid DNA-Based Foot and Mouth Disease Virus Minigenome for Intracytoplasmic mRNA Production. Viruses 2021; 13:1047. [PMID: 34205958 PMCID: PMC8229761 DOI: 10.3390/v13061047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Picornaviruses are non-enveloped, single-stranded RNA viruses that cause highly contagious diseases, such as polio and hand, foot-and-mouth disease (HFMD) in human, and foot-and-mouth disease (FMD) in animals. Reverse genetics and minigenome of picornaviruses mainly depend on in vitro transcription and RNA transfection; however, this approach is inefficient due to the rapid degradation of RNA template. Although DNA-based reverse genetics systems driven by mammalian RNA polymerase I and/or II promoters display the advantage of rescuing the engineered FMDV, the enzymatic functions are restricted in the nuclear compartment. To overcome these limitations, we successfully established a novel DNA-based vector, namely pKLS3, an FMDV minigenome containing the minimum cis-acting elements of FMDV essential for intracytoplasmic transcription and translation of a foreign gene. A combination of pKLS3 minigenome and the helper plasmids yielded the efficient production of uncapped-green florescent protein (GFP) mRNA visualized in the transfected cells. We have demonstrated the application of the pKLS3 for cell-based antiviral drug screening. Not only is the DNA-based FMDV minigenome system useful for the FMDV research and development but it could be implemented for generating other picornavirus minigenomes. Additionally, the prospective applications of this viral minigenome system as a vector for DNA and mRNA vaccines are also discussed.
Collapse
Affiliation(s)
- Ploypailin Semkum
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand;
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Chalermpol Lekcharoensuk
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Payuda Hansoongnern
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility In Vivo. J Virol 2020; 95:JVI.01569-20. [PMID: 33028719 DOI: 10.1128/jvi.01569-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The low fidelity of foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase allows FMDV to exhibit high genetic diversity. Previously, we showed that the genetic diversity of FMDV plays an important role in virulence in suckling mice. Here, we mutated the amino acid residue Phe257, located in the finger domain of FMDV polymerase and conserved across FMDV serotypes, to a cysteine (F257C) to study the relationship between viral genetic diversity, virulence, and transmissibility in natural hosts. The single amino acid substitution in FMDV polymerase resulted in a high-fidelity virus variant, rF257C, with growth kinetics indistinguishable from those of wild-type (WT) virus in cell culture, but it displayed smaller plaques and impaired fitness in direct competition assays. Furthermore, we found that rF257C was attenuated in vivo in both suckling mice and pigs (one of its natural hosts). Importantly, contact exposure experiments showed that the rF257C virus exhibited reduced transmissibility compared to that of wild-type FMDV in the porcine model. This study provides evidence that FMDV genetic diversity is important for viral virulence and transmissibility in susceptible animals. Given that type O FMDV exhibits the highest genetic diversity among all seven serotypes of FMDV, we propose that the lower polymerase fidelity of the type O FMDV could contribute to its dominance worldwide.IMPORTANCE Among the seven serotypes of FMDV, serotype O FMDV have the broadest distribution worldwide, which could be due to their high virulence and transmissibility induced by high genetic diversity. In this paper, we generated a single amino acid substitution FMDV variant with a high-fidelity polymerase associated with viral fitness, virulence, and transmissibility in a natural host. The results highlight that maintenance of viral population diversity is essential for interhost viral spread. This study provides evidence that higher genetic diversity of type O FMDV could increase both virulence and transmissibility, thus leading to their dominance in the global epidemic.
Collapse
|
7
|
A Temperature-Dependent Translation Defect Caused by Internal Ribosome Entry Site Mutation Attenuates Foot-and-Mouth Disease Virus: Implications for Rational Vaccine Design. J Virol 2020; 94:JVI.00990-20. [PMID: 32493820 DOI: 10.1128/jvi.00990-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Foot-and-mouth disease (FMD), which is caused by FMD virus (FMDV), remains a major plague among cloven-hoofed animals worldwide, and its outbreak often has disastrous socioeconomic consequences. A live-attenuated FMDV vaccine will greatly facilitate the global control and eradication of FMD, but a safe and effective attenuated FMDV vaccine has not yet been successfully developed. Here, we found that the internal ribosome entry site (IRES) element in the viral genome is a critical virulence determinant of FMDV, and a nucleotide substitution of cytosine (C) for guanine (G) at position 351 of the IRES endows FMDV with temperature-sensitive and attenuation (ts&att) phenotypes. Furthermore, we demonstrated that the C351G mutation of IRES causes a temperature-dependent translation defect by impairing its binding to cellular pyrimidine tract-binding protein (PTB), resulting in the ts&att phenotypes of FMDV. Natural hosts inoculated with viruses carrying the IRES C351G mutation showed no clinical signs, viremia, virus excretion, or viral transmission but still produced a potent neutralizing antibody response that provided complete protection. Importantly, the IRES C351G mutation is a universal determinant of the ts&att phenotypes of different FMDV strains, and the C351G mutant was incapable of reversion to virulence during in vitro and in vivo passages. Collectively, our findings suggested that manipulation of the IRES, especially its C351G mutation, may serve as a feasible strategy to develop live-attenuated FMDV vaccines.IMPORTANCE The World Organization for Animal Health has called for global control and eradication of foot-and-mouth disease (FMD), the most economically and socially devastating disease affecting animal husbandry worldwide. Live-attenuated vaccines are considered the most effective strategy for prevention, control, and eradication of infectious diseases due to their capacity to induce potent and long-lasting protective immunity. However, efforts to develop FMD virus (FMDV) live-attenuated vaccines have achieved only limited success. Here, by structure-function study of the FMDV internal ribosome entry site (IRES), we find that the C351 mutation of the IRES confers FMDV with an ideal temperature-sensitive attenuation phenotype by decreasing its interaction with cellular pyrimidine tract-binding protein (PTB) to cause IRES-mediated temperature-dependent translation defects. The temperature-sensitive attenuated strains generated by manipulation of the IRES address the challenges of FMDV attenuation differences among various livestock species and immunogenicity maintenance encountered previously, and this strategy can be applied to other viruses with an IRES to rationally design and develop live-attenuated vaccines.
Collapse
|
8
|
de León P, Bustos MJ, Torres E, Cañas-Arranz R, Sobrino F, Carrascosa AL. Inhibition of Porcine Viruses by Different Cell-Targeted Antiviral Drugs. Front Microbiol 2019; 10:1853. [PMID: 31474954 PMCID: PMC6702965 DOI: 10.3389/fmicb.2019.01853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Antiviral compounds targeting cellular metabolism instead of virus components have become an interesting issue for preventing and controlling the spread of virus infection, either as sole treatment or as a complement of vaccination. Some of these compounds are involved in the control of lipid metabolism and/or membrane rearrangements. Here, we describe the effect of three of these cell-targeting antivirals: lauryl gallate (LG), valproic acid (VPA), and cerulenin (CRL) in the multiplication of viruses causing important porcine diseases. The results confirm the antiviral action in cultured cells of LG against African swine fever virus (ASFV), foot and mouth disease virus (FMDV), vesicular stomatitis virus (VSV), and swine vesicular disease virus (SVDV), as well as the inhibitory effect of VPA and CRL on ASFV infection. Other gallate esters have been also assayed for their inhibition of FMDV growth. The combined action of these antivirals has been also tested in ASFV infections, with some synergistic effects when LG and VPA were co-administered. Regarding the mode of action of the antivirals, experiments on the effect of the time of its addition in infected cell cultures indicated that the inhibition by VPA and CRL occurred at early times after ASFV infection, while LG inhibited a late step in FMDV infection. In all the cases, the presence of the antiviral reduced or abolished the induction of virus-specific proteins. Interestingly, LG also reduced mortality and FMDV load in a mouse model. The possible use of cell-targeted antivirals against porcine diseases is discussed.
Collapse
Affiliation(s)
- Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - María José Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel L Carrascosa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Li C, Wang H, Yuan T, Woodman A, Yang D, Zhou G, Cameron CE, Yu L. Foot-and-mouth disease virus type O specific mutations determine RNA-dependent RNA polymerase fidelity and virus attenuation. Virology 2018; 518:87-94. [PMID: 29455065 DOI: 10.1016/j.virol.2018.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that the FMDV Asia1/YS/CHA/05 high-fidelity mutagen-resistant variants are attenuated (Zeng et al., 2014). Here, we introduced the same single or multiple-amino-acid substitutions responsible for increased 3Dpol fidelity of type Asia1 FMDV into the type O FMDV O/YS/CHA/05 infectious clone. The rescued viruses O-DA and O-DAMM are lower replication fidelity mutants and showed an attenuated phenotype. These results demonstrated that the same amino acid substitution of 3Dpol in different serotypes of FMDV strains had different effects on viral fidelity. In addition, nucleoside analogues were used to select high-fidelity mutagen-resistant type O FMDV variants. The rescued mutagen-resistant type O FMDV high-fidelity variants exhibited significantly attenuated fitness and a reduced virulence phenotype. These results have important implications for understanding the molecular mechanism of FMDV evolution and pathogenicity, especially in developing a safer modified live-attenuated vaccine against FMDV.
Collapse
Affiliation(s)
- Chen Li
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Tiangang Yuan
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Andrew Woodman
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Craig E Cameron
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, PR China.
| |
Collapse
|
10
|
Motamedi-Sedeh F, Soleimanjahi H, Jalilian AR, Mahravani H, Shafaee K, Sotoodeh M, Taherkarami H, Jairani F. Development of Protective Immunity against Inactivated Iranian Isolate of Foot-and-Mouth Disease Virus Type O/IRN/2007 Using Gamma Ray-Irradiated Vaccine on BALB/c Mice and Guinea Pigs. Intervirology 2015. [PMID: 26202581 DOI: 10.1159/000433538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. METHODS In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. RESULTS The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. CONCLUSION GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.
Collapse
|
11
|
Lian K, Yang F, Zhu Z, Cao W, Jin Y, Li D, Zhang K, Guo J, Zheng H, Liu X. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid. Virus Res 2015; 208:73-81. [PMID: 26091821 DOI: 10.1016/j.virusres.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 11/15/2022]
Abstract
We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system.
Collapse
Affiliation(s)
- Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated. Arch Virol 2014; 159:2641-50. [PMID: 24888311 DOI: 10.1007/s00705-014-2126-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/17/2014] [Indexed: 02/05/2023]
Abstract
Previous studies have shown that RNA viruses can be attenuated by either increased or decreased viral polymerase replication fidelity. Although foot-and-mouth disease virus (FMDV) high-fidelity RNA-dependent RNA polymerase (RdRp) variants with an attenuated phenotype have been isolated using mutagens, no FMDV mutant with a low-fidelity polymerase has been documented to date. Here, we describe the generation of several FMDV RdRp mutants using site-directed mutagenesis via a reverse genetic system. Mutation frequency assays confirmed that five rescued FMDV RdRp mutant populations had lower replication fidelity than the wild-type virus population, which allowed us to assess the effects of the change in replication fidelity on the virus phenotype. These low-fidelity FMDV RdRp mutants showed increased sensitivity to ribavirin or 5-fluorouracil (5-FU) treatment without a loss of growth capacity in cell cultures. In addition, decreased fitness and attenuated virulence were observed for the RdRp mutants with lower fidelity. Importantly, based on a quantitative analysis for fidelity and virulence, we concluded that lower replication fidelity is associated with a more attenuated virus phenotype. These results further contribute to our understanding of the replication fidelity of polymerases of RNA viruses and its relationship to virulence attenuation.
Collapse
|
13
|
Ribavirin-resistant variants of foot-and-mouth disease virus: the effect of restricted quasispecies diversity on viral virulence. J Virol 2014; 88:4008-20. [PMID: 24453363 DOI: 10.1128/jvi.03594-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Mutagenic nucleoside analogues can be used to isolate RNA virus high-fidelity RNA-dependent RNA polymerase (RdRp) variants, the majority of which are attenuated in vivo. However, attenuated foot-and-mouth disease virus (FMDV) high-fidelity RdRp variants have not been isolated, and the correlations between RdRp fidelity and virulence remain unclear. Here, the mutagen ribavirin was used to select a ribavirin-resistant population of FMDV, and 4 amino acid substitutions (D5N, A38V, M194I, and M296V) were identified in the RdRp-coding region of the population. Through single or combined mutagenesis using a reverse genetics system, we generated direct experimental evidence that the rescued D5N, A38V, and DAMM mutants but not the M194I and M296V mutants are high-fidelity RdRp variants. Mutagen resistance assays revealed that the higher replication fidelity was associated with higher-level resistance to ribavirin. In addition, significantly attenuated fitness and virulence phenotypes were observed for the D5N, A38V, and DAMM mutants. Based on a systematic quantitative analysis of fidelity and virulence, we concluded that higher replication fidelity is associated with a more attenuated virus. These data suggest that the resulting restricted quasispecies diversity compromises the adaptability and virulence of an RNA virus population. The modulation of replication fidelity to attenuate virulence may represent a general strategy for the rational design of new types of live, attenuated vaccine strains. IMPORTANCE The ribavirin-isolated poliovirus (PV) RdRp G64S variant, the polymerases of which were of high replication fidelity, was attenuated in vivo. It has been proposed (M. Vignuzzi, E. Wendt, and R. Andino, Nat. Med. 14:154-161, http://dx.doi.org/10.1038/nm1726) that modulation of replication fidelity is a promising approach for engineering attenuated virus vaccines. The subsequently mutagen-isolated RdRp variants also expressed the high-fidelity polymerase, but not all of them were attenuated. Few studies have shown the exact correlation between fidelity and virulence. The present study investigates the effect of restricted quasispecies diversity on viral virulence via several attenuated FMDV high-fidelity RdRp variants. Our findings may aid in the rational design of a new type of vaccine strain.
Collapse
|
14
|
Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. Arch Virol 2013; 159:657-67. [DOI: 10.1007/s00705-013-1872-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
15
|
Gao T, Tong Y, Cao M, Li X, Pang X. Evaluation of the inactivation of human Coxsackievirus by thermophilic and mesophilic anaerobic digestion using integrated cell culture and reverse transcription real-time quantitative PCR. WATER RESEARCH 2013; 47:4259-4264. [PMID: 23764576 DOI: 10.1016/j.watres.2013.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
The virucidal effects of anaerobic digestion were evaluated using human Coxsackievirus as a model for the Enterovirus family. Coxsackievirus was inactivated completely by thermophilic anaerobic digestion (TAD). By 4 h no living and infectious virus remained and no detectable viral RNA was present after 2 days in TAD (7.0 log reduction). Compared to TAD, 2.6 log reduction of viral RNA was achieved by 14 days in mesophilic anaerobic digestion (MAD) (p < 0.0001). Although cytopathogenic effect was not observed in the cultured cells, low levels of intracellular viral RNA were detected after one day of MAD treatment indicating that Coxsackievirus had infected the cells but could not replicate. The combination of thermal and biochemical effects in TAD plays a critical role for viral disinfection. The results of this study indicate that selection of the right configuration of anaerobic digestion for treatment of biowaste may reduce the risk of viral contamination to the environment and water source.
Collapse
Affiliation(s)
- Tiejun Gao
- Himark bioGas Inc., AFDP 6004-118 Street, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
16
|
Zeng J, Wang H, Xie X, Yang D, Zhou G, Yu L. An increased replication fidelity mutant of foot-and-mouth disease virus retains fitness in vitro and virulence in vivo. Antiviral Res 2013; 100:1-7. [PMID: 23880348 DOI: 10.1016/j.antiviral.2013.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023]
Abstract
In a screen for RNA mutagen-resistant foot-and-mouth disease virus (FMDV) strains, we isolated an FMDV mutant with RNA-dependent RNA polymerase (RdRp) R84H substitution. This mutant, selected under the mutagenic pressure of 5-fluorouracil (5-FU), is resistant not only to 5-FU but also to other two RNA mutagens, 5-azacytidine and ribavirin, suggesting that the RdRp R84H mutant is a high fidelity variant. Subsequently, the increased fidelity of this mutant was verified through analysis of mutation frequency, which revealed a 1.4-fold enhancement in RdRp fidelity compared with the wild-type virus. Further studies indicated that the R84H mutant exhibited slightly increased fitness in vitro, and its virulence was not reduced in suckling mice. These results indicated that an increase in RdRp fidelity does not always correlate with reduced virus fitness and virus attenuation. Thus, this isolated R84H mutant provides a new platform to examine the evolutionary dynamics of fidelity-changing RNA viruses, such as mutagen resistance, fitness and virulence.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Vázquez-Calvo Á, Caridi F, Rodriguez-Pulido M, Borrego B, Sáiz M, Sobrino F, Martín-Acebes MA. Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo. J Gen Virol 2012; 93:2382-2386. [DOI: 10.1099/vir.0.045419-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of cellular Rab GTPases that govern traffic between different endosome populations was analysed on foot-and-mouth disease virus (FMDV) infection. Changes of viral receptor specificity did not alter Rab5 requirement for infection. However, a correlation between uncoating pH and requirement of Rab5 for infection was observed. A mutant FMDV with less acidic uncoating pH threshold was less sensitive to inhibition of Rab5, whereas another mutant with more acidic requirements was more sensitive to inhibition of Rab5. On the contrary, opposed correlations between uncoating pH and dependence of Rab function were observed upon expression of dominant-negative forms of Rab7 or 11. Modulation of uncoating pH also reduced FMDV virulence in suckling mice. These results are consistent with FMDV uncoating inside early endosomes and indicate that displacements from optimum pH for uncoating reduce viral fitness in vivo.
Collapse
Affiliation(s)
- Ángela Vázquez-Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (UAM/CSIC), Cantoblanco, Madrid, Spain
| | - Flavia Caridi
- Centro de Biología Molecular ‘Severo Ochoa’ (UAM/CSIC), Cantoblanco, Madrid, Spain
| | | | - Belén Borrego
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular ‘Severo Ochoa’ (UAM/CSIC), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’ (UAM/CSIC), Cantoblanco, Madrid, Spain
| | | |
Collapse
|
18
|
Mutations that hamper dimerization of foot-and-mouth disease virus 3A protein are detrimental for infectivity. J Virol 2012; 86:11013-23. [PMID: 22787230 DOI: 10.1128/jvi.00580-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization.
Collapse
|
19
|
Experimental infection of the honeybee (Apis mellifera L.) with the chronic bee paralysis virus (CBPV): infectivity of naked CBPV RNAs. Virus Res 2012; 167:173-8. [PMID: 22583665 DOI: 10.1016/j.virusres.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022]
Abstract
Chronic paralysis is an infectious and contagious disease of the honeybee (Apis mellifera L.) and is caused by the chronic bee paralysis virus (CBPV). This disease leads to death in adult bees and is therefore a serious threat for colony health. CBPV is a positive single-stranded RNA virus and its genome is composed of two RNA segments, RNA 1 and RNA 2, 3674 nt and 2305 nt, respectively. Although CBPV shares some characteristics with viruses classified into families Nodaviridae and Tombusviridae, it has not been assigned to any viral taxa yet. The characterisation of CBPV proteins and their functions are needed to better understand the mechanisms of CBPV infection. However, since honeybee cell lines are not yet available, experimental infection of adult bees is the only method currently available to propagate the virus. With the objective of studying CBPV proteins using the viral genome, we used experimental infection in adult bees to evaluate the infectivity of naked CBPV RNAs by direct inoculation. Our results demonstrated that an injection of naked RNAs, ranging from 10(9) to 10(10) CBPV copies, caused chronic paralysis. Bees inoculated with naked RNA showed chronic paralysis signs 5 days after inoculation. Moreover, injected RNAs replicated and generated viral particles. We therefore provide an in vivo experimental model that will be useful tool for further studies by using a reverse genetics system.
Collapse
|
20
|
Borca MV, Pacheco JM, Holinka LG, Carrillo C, Hartwig E, Garriga D, Kramer E, Rodriguez L, Piccone ME. Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology 2011; 422:37-45. [PMID: 22036313 DOI: 10.1016/j.virol.2011.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/12/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
FMDV O1 subtype undergoes antigenic variation under diverse growth conditions. Of particular interest is the amino acid variation observed at position 56 within the structural protein VP3. Selective pressures influence whether histidine (H) or arginine (R) is present at this position, ultimately influencing in vitro plaque morphology and in vivo pathogenesis in cattle. Using reverse genetics techniques, we have constructed FMDV type O1 Campos variants differing only at VP3 position 56, possessing either an H or R (O1Ca-VP3-56H and O1Ca-VP3-56R, respectively), and characterized their in vitro phenotype and virulence in the natural host. Both viruses showed similar growth kinetics in vitro. Conversely, they had distinct temperature-sensitivity (ts) and displayed significantly different pathogenic profiles in cattle and swine. O1Ca-VP3-56H was thermo stable and induced typical clinical signs of FMD, whereas O1Ca-VP3-56R presented a ts phenotype and was nonpathogenic unless VP3 position 56 reverted in vivo to either H or cysteine (C).
Collapse
Affiliation(s)
- Manuel V Borca
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York 11944-0848, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Res 2011; 92:500-4. [PMID: 22020303 DOI: 10.1016/j.antiviral.2011.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
We have recently described the ability of in vitro-transcribed RNAs, mimicking structural domains in the 5' and 3' non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome, to trigger the innate immune response in porcine cultured cells and mice. In this work, the antiviral effect exerted in vivo by these small synthetic non-infectious RNA molecules was analyzed extensively. The susceptibility of transfected newborn Swiss mice to FMDV challenge was tested using a wide range of viral doses. The level of protection depended on the specific RNA inoculated and was dose-dependent. The RNA giving the best protection was the internal ribosome entry site (IRES), followed by the transcripts corresponding to the S fragment. The time course of resistance to FMDV of the RNA-transfected mice was studied. Our results show the efficacy of these RNAs to prevent viral infection as well as to contain ongoing FMDV infection in certain time intervals. Protection proved to be independent of the serotype of FMDV used for challenge. These results support the potential use of the FMDV NCR transcripts as both prophylactic and therapeutic molecules for new FMDV control strategies.
Collapse
|
22
|
A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol 2010; 84:2902-12. [PMID: 20053737 DOI: 10.1128/jvi.02311-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acid-dependent disassembly of foot-and-mouth disease virus (FMDV) is required for viral RNA release from endosomes to initiate replication. Although the FMDV capsid disassembles at acid pH, mutants escaping inhibition by NH(4)Cl of endosomal acidification were found to constitute about 10% of the viruses recovered from BHK-21 cells infected with FMDV C-S8c1. For three of these mutants, the degree of NH(4)Cl resistance correlated with the sensitivity of the virion to acid-induced inactivation of its infectivity. Capsid sequencing revealed the presence in each of these mutants of a different amino acid substitution (VP3 A123T, VP3 A118V, and VP2 D106G) that affected a highly conserved residue among FMDVs located close to the capsid interpentameric interfaces. These residues may be involved in the modulation of the acid-induced dissociation of the FMDV capsid. The substitution VP3 A118V present in mutant c2 was sufficient to confer full resistance to NH(4)Cl and concanamycin A (a V-ATPase inhibitor that blocks endosomal acidification) as well as to increase the acid sensitivity of the virion to an extent similar to that exhibited by mutant c2 relative to the sensitivity of the parental virus C-S8c1. In addition, the increased propensity to dissociation into pentameric subunits of virions bearing substitution VP3 A118V indicates that this replacement also facilitates the dissociation of the FMDV capsid.
Collapse
|
23
|
RNA immunization can protect mice against foot-and-mouth disease virus. Antiviral Res 2009; 85:556-8. [PMID: 20005905 DOI: 10.1016/j.antiviral.2009.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/20/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
In previous work we have reported the immunization of swine using in vitro-transcribed foot-and-mouth disease virus (FMDV) RNA. With the aim of testing whether RNA-induced immunization can mediate protection against viral infection, a group of Swiss adult mice was inoculated with FMDV infectious transcripts. In most inoculated animals viral RNA was detected in serum at 48-72h postinoculation. A group of the RNA-inoculated mice (11 out of 19) developed significant titers of neutralizing antibodies against FMDV. Among those animals that were successfully challenged with infectious virus (15 out of 19), three out of the eight animals immunized upon RNA inoculation were protected, as infectious virus could not be isolated from sera but specific anti-FMDV antibodies could be readily detected. These results suggest the potential of the inoculation of genetically engineered FMDV RNA for virulence and protection assays in the murine model and allow to explore the suitability of RNA-based FMDV vaccination in natural host animals.
Collapse
|
24
|
Chang Y, Zheng H, Shang Y, Jin Y, Wang G, Shen X, Liu X. Recovery of infectious foot-and-mouth disease virus from full-length genomic cDNA clones using an RNA polymerase I system. Acta Biochim Biophys Sin (Shanghai) 2009; 41:998-1007. [PMID: 20011974 DOI: 10.1093/abbs/gmp093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prototypic foot-and-mouth disease virus (FMDV) was shown more than a century ago to be the first filterable agent capable of causing FMD, and it has served as an important model for studying basic principles of Aphthovirus molecular biology. However, the complex structure and antigenic diversity of FMDV have posed a major obstacle to the attempts at manipulating the infectious virus by reverse genetic techniques. Here, we report the recovery of infectious FMDV from cDNAs based on an efficient in vivo RNA polymerase I (polI) transcription system. Intracellular transcription of the full-length viral genome from polI-based vectors resulted in efficient formation of infectious virus displaying a genetic marker. Compared with wild-type virus, an abundance of genomic mRNA and elevated expression levels of viral antigens were indicative of the hyperfunction throughout the life-cycle of this cDNA-derived virus at transcription, replication, and translation levels. The technology described here could be an extremely valuable molecular biology tool for studying FMDV complex infectious characteristics. It is an operating platform for studying FMDV functional genomics, molecular mechanism of pathogenicity and variation, and lays a solid foundation for the development of viral chimeras toward the prospect of a genetically engineered vaccine.
Collapse
Affiliation(s)
- Yanyan Chang
- Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou 730046, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Huang X, Xia B, Zheng C. Development and validation of a duplex quantitative real-time RT-PCR assay for simultaneous detection and quantitation of foot-and-mouth disease viral positive-stranded RNAs and negative-stranded RNAs. J Virol Methods 2009; 161:161-7. [PMID: 19539655 DOI: 10.1016/j.jviromet.2009.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
A simplified, cost-effective, two-step duplex quantitative real-time RT-PCR assay was shown to detect and quantify foot-and-mouth disease virus positive-stranded RNAs and negative-stranded RNAs simultaneously for improved investigation of the state of virus infection and replication. The primers and Taqman probes were selected from the coding regions of 2B gene and 3D gene respectively, which have the least variations among serotypes. Cells infected acutely, tissue samples and single cell samples were used for evaluation of the assay. At the early stages of virus infection in vitro, the replication level reached a peak at 9h.p.i. and the negative strands were detectable until 3h.p.i. The kinetics of ratios of positive strands to negative strands (+RNA/-RNA) in vivo in the liver, kidney and spleen were similar, which demonstrated that the replication dynamics were similar in the three organs. 55 single cell samples out of 187 were positive by both positive strands qPCR and negative strands qPCR, the ratios (+RNA/-RNA) ranged from 15.6 to 1463.4 which showed considerable difference among single cell samples, indicating that active viral replication differs greatly in single cells. A duplex quantitative real-time RT-PCR was validated as effective and reliable.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | |
Collapse
|
26
|
Bai X, Li P, Cao Y, Li D, Lu Z, Guo J, Sun D, Zheng H, Sun P, Liu X, Luo J, Liu Z. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. ACTA ACUST UNITED AC 2009; 52:155-62. [PMID: 19277527 DOI: 10.1007/s11427-009-0007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10(-7.5)). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10(-6)), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA transcripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.
Collapse
Affiliation(s)
- XingWen Bai
- Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zheng H, Tian H, Jin Y, Wu J, Shang Y, Yin S, Liu X, Xie Q. Development of a hamster kidney cell line expressing stably T7 RNA polymerase using retroviral gene transfer technology for efficient rescue of infectious foot-and-mouth disease virus. J Virol Methods 2009; 156:129-37. [DOI: 10.1016/j.jviromet.2008.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 11/30/2022]
|
28
|
Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3' noncoding region can elicit immunity in swine. J Virol 2009; 83:3475-85. [PMID: 19211755 DOI: 10.1128/jvi.01836-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed foot-and-mouth disease virus (FMDV) mutants bearing independent deletions of the two stem-loop structures predicted in the 3' noncoding region of viral RNA, SL1 and SL2, respectively. Deletion of SL2 was lethal for viral infectivity in cultured cells, while deletion of SL1 resulted in viruses with slower growth kinetics and downregulated replication associated with impaired negative-strand RNA synthesis. With the aim of exploring the potential of an RNA-based vaccine against foot-and-mouth disease using attenuated viral genomes, full-length chimeric O1K/C-S8 RNAs were first inoculated into pigs. Our results show that FMDV viral transcripts could generate infectious virus and induce disease in swine. In contrast, RNAs carrying the DeltaSL1 mutation on an FMDV O1K genome were innocuous for pigs but elicited a specific immune response including both humoral and cellular responses. A single inoculation with 500 microg of RNA was able to induce a neutralizing antibody response. This response could be further boosted by a second RNA injection. The presence of the DeltaSL1 mutation was confirmed in viruses isolated from serum samples of RNA-inoculated pigs or after transfection and five passages in cell culture. These findings suggest that deletion of SL1 might contribute to FMDV attenuation in swine and support the potential of RNA technology for the design of new FMDV vaccines.
Collapse
|
29
|
Cao Y, Lu Z, Sun J, Bai X, Sun P, Bao H, Chen Y, Guo J, Li D, Liu X, Liu Z. Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs. Vet Microbiol 2008; 137:10-7. [PMID: 19167843 PMCID: PMC7117335 DOI: 10.1016/j.vetmic.2008.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022]
Abstract
The assembly of foot-and-mouth disease virus (FMDV) requires the cleavage of the P12A polyprotein into individual structural proteins by protease 3C. In this study, we constructed a recombinant baculovirus that simultaneously expressed the genes for the P12A and 3C proteins of Asia I FMDV from individual promoters. The capsid proteins expressed in High Five™ insect cells were processed by viral 3C protease, as shown by Western blotting, and were antigenic, as revealed by their reactivity in an indirect sandwich-ELISA, and by immunofluorescent assay. The empty capsid-like particles were similar to authentic 75S empty capsids from FMDV in terms of their shape, size and sedimentation velocity, as demonstrated by sucrose gradient centrifugation. Both empty capsid-like particles and some small-sized particles (about 10 nm in diameter) were also observed using immunoelectron microscopy. Furthermore, the empty capsid-like particles or intermediates induced high levels of FMDV-specific antibodies in guinea pigs following immunization, and neutralizing antibodies were induced in the second week after vaccination. These recombinant, non-infectious, FMDV empty capsids are potentially useful for the development of new diagnostic techniques and vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zaixin Liu
- Corresponding author. Tel.: +86 931 8342587; fax: +86 931 8342052.
| |
Collapse
|
30
|
Gutiérrez-Rivas M, Pulido MR, Baranowski E, Sobrino F, Sáiz M. Tolerance to mutations in the foot-and-mouth disease virus integrin-binding RGD region is different in cultured cells and in vivo and depends on the capsid sequence context. J Gen Virol 2008; 89:2531-2539. [PMID: 18796722 DOI: 10.1099/vir.0.2008/003194-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Engineered RNAs carrying substitutions in the integrin receptor-binding Arg-Gly-Asp (RGD) region of foot-and-mouth disease virus (FMDV) were constructed (aa 141-147 of VP1 capsid protein) and their infectivity was assayed in cultured cells and suckling mice. The effect of these changes was studied in the capsid proteins of two FMDVs, C-S8c1, which enters cells through integrins, and 213hs(-), a derivative highly adapted to cell culture whose ability to infect cells using the glycosaminoglycan heparan sulfate (HS) as receptor, acquired by multiple passage on BHK-21 cells, has been abolished. The capsid sequence context determined infectivity in cultured cells and directed the selection of additional replacements in structural proteins. Interestingly, a viral population derived from a C-S8c1/L144A mutant, carrying only three substitutions in the capsid, was able to expand tropism to wild-type (wt) and mutant (mt) glycosaminoglycan-deficient CHO cells. In contrast, the 213hs(-) capsid tolerated all substitutions analysed with no additional mutations, and the viruses recovered maintained the ability of the 213hs(-) parental virus to infect wt and mt CHO cells. Viruses derived from C-S8c1 with atypical RGD regions were virulent and transmissible for mice with no other changes in the capsid. Substitution of Asp143 for Ala in the C-S8c1 capsid eliminated infectivity in cultured cells and mice. Co-inoculation with a neutralizing monoclonal antibody directed against the type C FMDV RGD region abolished infectivity of C-S8c1 virus on suckling mice, suggesting that FMDV can infect mice using integrins. Sequence requirements imposed for viral entry in vitro and in vivo are discussed.
Collapse
Affiliation(s)
- Mónica Gutiérrez-Rivas
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Miguel Rodríguez Pulido
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Eric Baranowski
- Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France.,INRA, UMR 1225, F-31076 Toulouse, France
| | - Francisco Sobrino
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Margarita Sáiz
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Rosas MF, Vieira YA, Postigo R, Martín-Acebes MA, Armas-Portela R, Martínez-Salas E, Sobrino F. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus. Virology 2008; 380:34-45. [PMID: 18694581 DOI: 10.1016/j.virol.2008.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/19/2022]
Abstract
The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing either 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.
Collapse
Affiliation(s)
- María F Rosas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Dendritic cell internalization of foot-and-mouth disease virus: influence of heparan sulfate binding on virus uptake and induction of the immune response. J Virol 2008; 82:6379-94. [PMID: 18448534 DOI: 10.1128/jvi.00021-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DC), which are essential for inducing and regulating immune defenses and responses, represent the critical target for vaccines against pathogens such as foot-and-mouth disease virus (FMDV). Although it is clear that FMDV enters epithelial cells via integrins, little is known about FMDV interaction with DC. Accordingly, DC internalization of FMDV antigen was analyzed by comparing vaccine virus dominated by heparan sulfate (HS)-binding variants with FMDV lacking HS-binding capacity. The internalization was most efficient with the HS-binding virus, employing diverse endocytic pathways. Moreover, internalization relied primarily on HS binding. Uptake of non-HS-binding virus by DC was considerably less efficient, so much so that it was often difficult to detect virus interacting with the DC. The HS-binding FMDV replicated in DC, albeit transiently, which was demonstrable by its sensitivity to cycloheximide treatment and the short duration of infectious virus production. There was no evidence that the non-HS-binding virus replicated in the DC. These observations on virus replication may be explained by the activities of viral RNA in the DC. When DC were transfected with infectious RNA, only 1% of the translated viral proteins were detected. Nevertheless, the transfected cells, and DC which had internalized live virus, did present antigen to lymphocytes, inducing an FMDV-specific immunoglobulin G response. These results demonstrate that DC internalization of FMDV is most efficient for vaccine virus with HS-binding capacity, but HS binding is not an exclusive requirement. Both non-HS-binding virus and infectious RNA interacting with DC induce specific immune responses, albeit less efficiently than HS-binding virus.
Collapse
|
33
|
Pan L, Zhang Y, Wang Y, Wang B, Wang W, Fang Y, Jiang S, Lv J, Wang W, Sun Y, Xie Q. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 2008; 121:83-90. [PMID: 18006078 DOI: 10.1016/j.vetimm.2007.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/25/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.
Collapse
Affiliation(s)
- Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Xujiaping 11, Lanzhou, Gansu 730046, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gu C, Zheng C, Shi L, Zhang Q, Li Y, Lu B, Xiong Y, Qu S, Shao J, Chang H. Plus- and minus-stranded foot-and-mouth disease virus RNA quantified simultaneously using a novel real-time RT-PCR. Virus Genes 2007; 34:289-98. [PMID: 16927127 DOI: 10.1007/s11262-006-0019-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Even though tagged RT-PCR and rTth RT-PCR have been developed to improve strand-specific detection of RNA virus, these assays are not quantitative. In this study, a novel real-time RT-PCR assay, which combines the benefits of both the tagged and rTth RT-PCR has been developed to quantify the strand-specific RNA of foot-and-mouth disease virus (FMDV). The tagged-primers plus a TaqMan probe located within the highly conserved viral 3D region were used. The in vitro synthesized minus-and plus-stranded RNA templates were used as a dual control along with the copy number of viral RNA molecules, which is more reliable than reported RT-PCR employing a DNA-based standard. This assay was used to quantify FMDV RNA from 10(9) to 10(1) copies with a maximum sensitivity of between ten and five copies and was shown to be highly reproducible with low intra-and inter-assay variation. Coefficients of variation (CV) values were 0.70-1.39% and 0.98-2.1%, respectively. Importantly, the method was applied to simultaneously quantify both plus-stranded and minus-stranded FMDV RNA using tagged-RT and tagged-FP primer during a high-temperature reverse transcription. Highly sensitive and strand-specific real-time RT-PCR assay has been established. We tested the ratio of viral plus-stranded to minus-stranded RNA in acutely infected and persistently infected BHK-21 cells, for which the values ranged from 22/1 to 143/1 and from 287/1 to 334/1, respectively, suggesting different replication patterns of plus-and minus-stranded RNA in acutely infected and persistently infected cells. This value ranged from 83/1 to 93/1 in enriched FMDV virions, indicating that FMDV encapsidation is highly specific for plus-stranded RNAs. In addition, the method was applied to surveille the FMDV replication at animal level.
Collapse
Affiliation(s)
- Chaojiang Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Núñez JI, Molina N, Baranowski E, Domingo E, Clark S, Burman A, Berryman S, Jackson T, Sobrino F. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host. J Virol 2007; 81:8497-506. [PMID: 17522230 PMCID: PMC1951369 DOI: 10.1128/jvi.00340-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.
Collapse
Affiliation(s)
- José I Núñez
- Centro de Biología Molecular Severo Ochoa, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Key KF, DiCristina J, Gillespie J, Guenette DK, Meng XJ. Direct inoculation of RNA transcripts from an infectious cDNA clone of porcine reproductive and respiratory syndrome virus (PRRSV) into the lymph nodes and tonsils of pigs initiates PRRSV infection in vivo. Arch Virol 2007; 152:1383-7. [PMID: 17361326 DOI: 10.1007/s00705-007-0955-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/07/2007] [Indexed: 11/30/2022]
Abstract
The recent construction of PRRSV infectious cDNA clones affords the opportunity for structural and functional studies of PRRSV genes. However, the inherent instability of the PRRSV genome, the requirement of cell culture propagation, and poor virus recovery have limited the usefulness of the PRRSV reverse genetics system for in vivo studies. Here, we report a unique strategy of infecting pigs by bypassing the traditional in vitro cell culture step required for in vivo studies. We demonstrate that inoculation of RNA transcripts of a PRRSV infectious cDNA clone directly into the lymph nodes and tonsils of pigs produces active PRRSV infection. The information from this study will have significant implications for the study of the molecular mechanism of PRRSV pathogenesis using the reverse genetics system.
Collapse
Affiliation(s)
- K F Key
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0342, USA
| | | | | | | | | |
Collapse
|
37
|
Liu G, Zhang Y, Ni Z, Yun T, Sheng Z, Liang H, Hua J, Li S, Du Q, Chen J. Recovery of infectious rabbit hemorrhagic disease virus from rabbits after direct inoculation with in vitro-transcribed RNA. J Virol 2006; 80:6597-602. [PMID: 16775346 PMCID: PMC1488931 DOI: 10.1128/jvi.02078-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first full-length infectious clone of strain JX/CHA/97 of rabbit hemorrhagic disease virus (RHDV). The transcripts from the full-length cDNA clones were infectious when they were directly injected into rabbits. The sequence of the virus recovered from the rabbits was identical to that of the injected RNA transcripts. The cDNA clone was engineered to contain one silent nucleotide change to create an EcoRV site (A to T at nucleotide 2908). The genetic marker was retained in the recovered progeny virus. The transfection of RNA transcripts into RK-13 cells resulted in the synthesis of viral antigens, indicating that the cDNA clones were replication competent. This stable infectious molecular clone should be an important tool for developing a better understanding of the molecular biology and pathogenesis of RHDV.
Collapse
Affiliation(s)
- Guangqing Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oliveira ED, Jiménez-Clavero MA, Núñez JI, Sobrino F, Andreu D. Analysis of the immune response against mixotope peptide libraries from a main antigenic site of foot-and-mouth disease virus. Vaccine 2005; 23:2647-57. [PMID: 15780448 DOI: 10.1016/j.vaccine.2004.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 10/22/2004] [Indexed: 11/25/2022]
Abstract
The design of vaccines for RNA viral diseases is complicated by the high genetic variability of the viruses, which favors the selection of escape mutants. A case in point is foot-and-mouth disease virus (FMDV), for which only limited protection has been observed in vaccination with single peptides. We have explored the potential of immunogens of higher sequence diversity, covering a broad range of field or culture-induced mutations at the immunodominant site A of FMDV, serotype C. Four mixotope-type peptide libraries, containing ca. 3 x 10(3) or ca. 3 x 10(5) peptides each, in either linear or cyclic form, and combining most significant mutations found or induced at site A have been synthesized and used to immunize guinea-pigs. Substantial levels of serum conversion have been observed for all four mixotope libraries, as well as for single peptides, linear or cyclic, corresponding to the consensus site A sequence. The specificity and neutralizing ability of the anti-mixotope and -peptide antibodies have been evaluated by direct ELISA and by plaque reduction and micro-neutralization assays, respectively. Challenge experiments with an infectious, guinea-pig-adapted FMDV strain, have shown higher protection rates in animals immunized with the cyclic versions, either in single sequence or in combinatorial mixotope form.
Collapse
Affiliation(s)
- Eliandre de Oliveira
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|