1
|
Tang K, Cheng L, Zhang C, Zhang Y, Zheng X, Zhang Y, Zhuang R, Jin B, Zhang F, Ma Y. Novel Identified HLA-A*0201-Restricted Hantaan Virus Glycoprotein Cytotoxic T-Cell Epitopes Could Effectively Induce Protective Responses in HLA-A2.1/K b Transgenic Mice May Associate with the Severity of Hemorrhagic Fever with Renal Syndrome. Front Immunol 2017; 8:1797. [PMID: 29312318 PMCID: PMC5732971 DOI: 10.3389/fimmu.2017.01797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Hantaan virus (HTNV) infections can cause severe hemorrhagic fever with renal syndrome (HFRS) in humans, which is associated with high fatality rates. Cytotoxic T cell (CTL) responses contribute to virus elimination; however, to date, HLA class I allele-restricted HTNV glycoprotein (GP) epitopes recognized by CTLs have not been reported, limiting our understanding of CTL responses against HTNV infection in humans. In this study, 34 HTNV GP nine-mer epitopes that may bind to HLA-A*0201 molecules were predicted using the BIMAS and SYFPEITHI database. Seven of the epitopes were demonstrated to bind to HLA-A*0201 molecules with high affinity via the T2 cell binding assay and were successfully used to synthesize peptide/HLA-A*0201 tetramers. The results of tetramer staining showed that the frequencies of each epitope-specific CTL were higher in patients with milder HFRS, which indicated that the epitopes may induce protective CTL responses after HTNV infection. IFN-γ-enzyme-linked immunospot analysis further confirmed the immunoreactivity of epitopes by eliciting epitope-specific IFN-γ-producing CTL responses. In an HTNV challenge trial, significant inhibition of HTNV replication characterized by lower levels of antigens and RNA loads was observed in major target organs (liver, spleen, and kidneys) of HLA-A2.1/Kb transgenic mice pre-vaccinated with nonapeptides VV9 (aa8–aa16, VMASLVWPV), SL9 (aa996–aa1004, SLTECPTFL) and LL9 (aa358–aa366, LIWTGMIDL). Importantly, LL9 exhibited the best ability to induce protective CTL responses and showed a prominent effect on the kidneys, potentially preventing kidney injury after HTNV infection. Taken together, our results highlight that HTNV GP-derived HLA-A*0201-restricted epitopes could elicit protective CTL responses against the virus, and that epitope LL9 functions as an immunodominant protective epitope that may advance the design of safe and effective CTL-based HTNV peptide vaccines for humans.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi'an, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Link EK, Brandmüller C, Suezer Y, Ameres S, Volz A, Moosmann A, Sutter G, Lehmann MH. A synthetic human cytomegalovirus pp65-IE1 fusion antigen efficiently induces and expands virus specific T cells. Vaccine 2017; 35:5131-5139. [PMID: 28818566 DOI: 10.1016/j.vaccine.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.
Collapse
Affiliation(s)
- Ellen K Link
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Christine Brandmüller
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Yasemin Suezer
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; German Center for Infection Research (DZIF), Germany
| | - Stefanie Ameres
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Andreas Moosmann
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
3
|
|
4
|
Boucherma R, Kridane-Miledi H, Bouziat R, Rasmussen M, Gatard T, Langa-Vives F, Lemercier B, Lim A, Bérard M, Benmohamed L, Buus S, Rooke R, Lemonnier FA. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:583-93. [PMID: 23776170 DOI: 10.4049/jimmunol.1300483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated a panel of transgenic mice expressing HLA-A*01:03, -A*24:02, -B*08:01, -B*27:05, -B*35:01, -B*44:02, or -C*07:01 as chimeric monochain molecules (i.e., appropriate HLA α1α2 H chain domains fused with a mouse α3 domain and covalently linked to human β2-microglobulin). Whereas surface expression of several transgenes was markedly reduced in recipient mice that coexpressed endogenous H-2 class I molecules, substantial surface expression of all human transgenes was observed in mice lacking H-2 class I molecules. In these HLA monochain transgenic/H-2 class I null mice, we observed a quantitative and qualitative restoration of the peripheral CD8(+) T cell repertoire, which exhibited a TCR diversity comparable with C57BL/6 WT mice. Potent epitope-specific, HLA-restricted, IFN-γ-producing CD8(+) T cell responses were generated against known reference T cell epitopes after either peptide or DNA immunization. HLA-wise, these new transgenic strains encompass a large proportion of individuals from all major human races and ethnicities. In combination with the previously created HLA-A*02:01 and -B*07:02 transgenic mice, the novel HLA transgenic mice described in this report should be a versatile preclinical animal model that will speed up the identification and optimization of HLA-restricted CD8(+) T cell epitopes of potential interest in various autoimmune human diseases and in preclinical evaluation of T cell-based vaccines.
Collapse
Affiliation(s)
- Rachid Boucherma
- INSERM U1016, Institut Cochin, Equipe Immunologie du Diabète, Hôpital Saint-Vincent-de-Paul, 75674 Paris, Cedex 14, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection. J Virol 2013; 87:5229-38. [PMID: 23449799 DOI: 10.1128/jvi.03484-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins IE1-pp72 and IE2-pp86. Using a set of viral mutants, we addressed the role of pp71 in MHC class I presentation of IE1-pp72-derived peptides. We show that the amount of "incoming" pp71 positively correlates with IE1-pp72 protein levels and with the presentation of IE1-derived peptides. This indicates that the amount of the IE1 protein, induced by pp71, rather than a putative immunoevasive function of the tegument protein, determines MHC class I antigen presentation of IE1-derived peptides. This process proved to be independent of the presence of pp65, which had been reported to interfere with IE1 presentation. It may thus be beneficial for the success of HCMV replication to limit the level of pp71 delivered from infecting particles in order to avoid critical levels of MHC class I presentation of IE protein-derived peptides.
Collapse
|
6
|
Adoptive transfer of Mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors. PLoS One 2012; 7:e41240. [PMID: 22911764 PMCID: PMC3401129 DOI: 10.1371/journal.pone.0041240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Adoptive T cell therapy has proven to be beneficial in a number of tumor systems by targeting the relevant tumor antigen. The tumor antigen targeted in our model is Mammaglobin-A, expressed by approximately 80% of human breast tumors. Here we evaluated the use of adoptively transferred Mammaglobin-A specific CD8 T cells in combination with low dose irradiation to induce breast tumor rejection and prevent relapse. We show Mammaglobin-A specific CD8 T cells generated by DNA vaccination with all epitopes (Mammaglobin-A2.1, A2.2, A2.4 and A2.6) and full-length DNA in vivo resulted in heterogeneous T cell populations consisting of both effector and central memory CD8 T cell subsets. Adoptive transfer of spleen cells from all Mammaglobin-A2 immunized mice into tumor-bearing SCID/beige mice induced tumor regression but this anti-tumor response was not sustained long-term. Additionally, we demonstrate that only the adoptive transfer of Mammaglobin-A2 specific CD8 T cells in combination with a single low dose of irradiation prevents tumors from recurring. More importantly we show that this single dose of irradiation results in the down regulation of the macrophage scavenger receptor 1 on dendritic cells within the tumor and reduces lipid uptake by tumor resident dendritic cells potentially enabling the dendritic cells to present tumor antigen more efficiently and aid in tumor clearance. These data reveal the potential for adoptive transfer combined with a single low dose of total body irradiation as a suitable therapy for the treatment of established breast tumors and the prevention of tumor recurrence.
Collapse
|
7
|
Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant. Vaccine 2010; 28:6191-8. [PMID: 20655401 DOI: 10.1016/j.vaccine.2010.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/25/2010] [Accepted: 07/07/2010] [Indexed: 11/23/2022]
Abstract
Control of human cytomegalovirus (HCMV) infection correlates with the reconstitution of antiviral T lymphocytes in haematopoietic stem cell transplant recipients. A vaccine to foster this reconstitution and to ameliorate the severe consequences of HCMV reactivation is yet unavailable. This work focused on providing a rationale for the amendment of the yields and the antigenic composition of a vaccine, based on subviral dense bodies (DB) of HCMV. Modified DB were generated that contained the HLA-A2 presented IE1 model peptide TMYGGISLL, integrated at different positions in the major DB protein pp65. Insertion at position W175 of pp65 allowed efficient formation of recDB in the cytoplasm of infected cells and resulted in considerable yields of these particles. Even in the absence of adjuvant, these particles proved to be highly immunogenic with respect to CD8 and CD4 T cell and neutralizing antibody responses.
Collapse
|
8
|
Immune evasion proteins gpUS2 and gpUS11 of human cytomegalovirus incompletely protect infected cells from CD8 T cell recognition. Virology 2009; 391:5-19. [PMID: 19570562 DOI: 10.1016/j.virol.2009.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 05/06/2009] [Accepted: 06/01/2009] [Indexed: 11/24/2022]
Abstract
Human cytomegalovirus (HCMV) encodes four glycoproteins, termed gpUS2, gpUS3, gpUS6 and gpUS11 that interfere with MHC class I biosynthesis and antigen presentation. Despite gpUS2-11 expression, however, HCMV infection is efficiently controlled by cytolytic CD8 T lymphocytes (CTL). To address the role of gpUS2 and gpUS11 in antigen presentation during viral infection, HCMV mutants were generated that expressed either gpUS2 or gpUS11 alone without coexpression of the three other proteins. Fibroblasts infected with these viruses showed reduced HLA-A2 and HLA-B7 surface expression. Surprisingly, however, CTL directed against the tegument protein pp65 and the regulatory IE1 protein still recognized and lysed mutant virus infected fibroblasts. Yet, suppression of IE1 derived peptide presentation by gpUS2 or gpUS11 was far more pronounced. The results show that gpUS2 and gpUS11 alone only incompletely protect HCMV infected fibroblasts from CTL recognition and underline the importance of studying infected cells to elucidate HCMV immune evasion.
Collapse
|
9
|
Krishnan A, Wang Z, Srivastava T, Rawal R, Manchanda P, Diamond DJ, La Rosa C. A novel approach to evaluate the immunogenicity of viral antigens of clinical importance in HLA transgenic murine models. Immunol Lett 2008; 120:108-16. [PMID: 18706443 DOI: 10.1016/j.imlet.2008.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/12/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022]
Abstract
Transgenic (Tg) mice expressing HLA class I alleles and lacking murine MHC class I represent a useful model for the pre-clinical evaluation of human vaccines, which focus on induction of CD8(+) T-cell responses. We have developed a platform to be used in Tg mice for exploring the immunogenicity of T-cell targets, whose immunologic epitopes have yet to be defined. To test the attributes of the evaluation system in the context of an important human pathogen, we have explored multiple antigens from cytomegalovirus (CMV). A panel of recombinant modified vaccinia Ankara (MVA) vectors, expressing various CMV proteins (CMV-MVA) was used to immunize HLA-A*0201, B*0702 and A*1101 Tg mice. Immune splenocytes were in vitro stimulated (IVS) either using syngeneic lipo-polysaccharide activated lymphoblasts or Tg HLA-I matched human EBV-transformed B-lymphoblastoid cells (LCL), both loaded with peptide libraries, encompassing the CMV protein under investigation. IVS performed with peptide library loaded lymphoblasts failed to provide a reliable stimulation. In contrast, the usage of LCL as antigen presenting cells (APC) of CMV peptide libraries resulted in a consistent and specific amplification of the Tg T-cell response in animals immunized with CMV-MVAs. The LCL IVS method reliably allowed defining the immunogenicity and immunodominant CD8(+) T-cell regions of uncharacterized CMV antigens. The combination of CMV-MVA vectors, unbiased pools of CMV-specific peptide libraries presented by Tg HLA-I matched LCL constitutes a valid tool for the pre-clinical evaluation of model candidate vaccines. This convenient method could find application to investigate the immunogenicity profile of cancer antigens or proteins from infectious human pathogens.
Collapse
Affiliation(s)
- Aparna Krishnan
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Besold K, Plachter B. Recombinant viruses as tools to study human cytomegalovirus immune modulation. Med Microbiol Immunol 2008; 197:215-222. [PMID: 18301917 DOI: 10.1007/s00430-008-0083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Indexed: 10/22/2022]
Abstract
Infections with cytomegaloviruses are characterized by an intricate balance between the expression of immunomodulatory viral proteins and antiviral immune defence. For human cytomegalovirus (HCMV), several proteins have been described that interfere with the recognition of infected cells by CD8 T lymphocytes. Although the modes of action of these proteins have been elucidated on the molecular level, thus rendering them useful models to understand MHC class I peptide loading and transport, their role during viral infection has remained enigmatic. We exemplify here, how HCMV mutants can help to understand the importance of individual immunomodulatory proteins in the context of viral infection.
Collapse
Affiliation(s)
- Katrin Besold
- Institut für Virologie, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | |
Collapse
|
11
|
Mersseman V, Böhm V, Holtappels R, Deegen P, Wolfrum U, Plachter B, Reyda S. Refinement of strategies for the development of a human cytomegalovirus dense body vaccine. Med Microbiol Immunol 2008; 197:97-107. [PMID: 18320219 DOI: 10.1007/s00430-008-0085-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Indexed: 10/22/2022]
Abstract
Development of a vaccine against human cytomegalovirus (HCMV) infection has been identified as a high priority goal in biomedical research, yet no vaccine has been licensed until now. Recombinant subviral dense bodies (recDB) are a promising basis for the establishment of such a vaccine. In this article, strategies for the generation of recDB, based on recombination-mediated genetic engineering of the 230 kb HCMV DNA genome in E. coli are outlined. Analysis of viral mutants that were constructed in this process provided the proof-of-principle that heterologous antigens can be packaged into recDB and that these particles prime CD8 T cell responses against the recombinant antigen upon their application to HLA-A2 transgenic mice.
Collapse
Affiliation(s)
- Véronique Mersseman
- Institute for Virology, Johannes Gutenberg-Universität, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Mersseman V, Besold K, Reddehase MJ, Wolfrum U, Strand D, Plachter B, Reyda S. Exogenous introduction of an immunodominant peptide from the non-structural IE1 protein of human cytomegalovirus into the MHC class I presentation pathway by recombinant dense bodies. J Gen Virol 2008; 89:369-379. [PMID: 18198367 DOI: 10.1099/vir.0.83380-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exogenous introduction of particle-associated proteins of human cytomegalovirus (HCMV) into the major histocompatibility complex (MHC) class I presentation pathway by subviral dense bodies (DB) is an effective way to sensitize cells against CD8 T-cell (CTL) recognition and killing. Consequently, these particles have been proposed as a platform for vaccine development. We have developed a strategy to refine the antigenic composition of DB. For proof of principle, an HCMV recombinant (RV-VM3) was generated that encoded the immunodominant CTL determinant IE1TMY from the IE1 protein in fusion with the major constituent of DB, the tegument protein pp65. To generate RV-VM3, a bacterial artificial chromosome containing the HCMV genome was modified by applying positive/negative selection based on the expression of the bacterial galactokinase in conjunction with lambda Red-mediated homologous recombination. This method allowed the efficient and seamless insertion of the DNA sequence encoding IE1TMY in frame into the pp65 open reading frame (UL83) of the viral genome. RV-VM3 expressed its fusion protein to high levels. The fusion protein was packaged into DB and into virions. Its delivery into fibroblasts by these viral particles led to the loading of the MHC class I presentation pathway with IE1TMY and to efficient killing by specific CTLs. This demonstrated that a heterologous peptide, not naturally present in HCMV particles, can be processed from a recombinant, DB-derived protein to be subsequently presented by MHC class I. The results presented here provide a rationale for the optimization of a vaccine based on recombinant DB.
Collapse
Affiliation(s)
| | - Katrin Besold
- Institute for Virology, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Uwe Wolfrum
- Institute for Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Dennis Strand
- First Department of Internal Medicine, Johannes Gutenberg-Universität, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Sabine Reyda
- Institute for Virology, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
13
|
Dander E, Pira GL, Biagi E, Perseghin P, Renoldi G, Gaipa G, Introna M, Marin V, Manca F, Biondi A, D'Amico G. Characterization of migratory activity and cytokine profile of helper and cytotoxic CMV-specific T-cell lines expanded by a selective peptide library. Exp Hematol 2008; 36:473-85. [DOI: 10.1016/j.exphem.2007.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/04/2007] [Accepted: 12/12/2007] [Indexed: 12/01/2022]
|
14
|
Blancou P, Mallone R, Martinuzzi E, Sévère S, Pogu S, Novelli G, Bruno G, Charbonnel B, Dolz M, Chaillous L, van Endert P, Bach JM. Immunization of HLA Class I Transgenic Mice Identifies Autoantigenic Epitopes Eliciting Dominant Responses in Type 1 Diabetes Patients. THE JOURNAL OF IMMUNOLOGY 2007; 178:7458-66. [PMID: 17513797 DOI: 10.4049/jimmunol.178.11.7458] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic beta cells. CD8(+) T cells have recently been assigned a major role in beta cell injury. Consequently, the identification of autoreactive CD8(+) T cells in humans remains essential for development of therapeutic strategies and of assays to identify aggressive cells. However, this identification is laborious and limited by quantities of human blood samples available. We propose a rapid and reliable method to identify autoantigen-derived epitopes recognized by human CD8(+) T lymphocytes in T1D patients. Human histocompatibility leukocyte Ags-A*0201 (HLA-A*0201) transgenic mice were immunized with plasmids encoding the T1D-associated autoantigens: 65 kDa glutamic acid decarboxylase (GAD) or insulinoma-associated protein 2 (IA-2). Candidate epitopes for T1D were selected from peptide libraries by testing the CD8(+) reactivity of vaccinated mice. All of the nine-candidate epitopes (five for GAD and four for IA-2) identified by our experimental approach were specifically recognized by CD8(+) T cells from newly diagnosed T1D patients (n = 19) but not from CD8(+) T cells of healthy controls (n = 20). Among these, GAD(114-123), GAD(536-545) and IA-2(805-813) were recognized by 53%, 25%, and 42% of T1D patients, respectively.
Collapse
Affiliation(s)
- Philippe Blancou
- Immuno-Endocrinology Unité Mixte de Recherche 707, Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire de Nantes/Université, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Besold K, Frankenberg N, Pepperl-Klindworth S, Kuball J, Theobald M, Hahn G, Plachter B. Processing and MHC class I presentation of human cytomegalovirus pp65-derived peptides persist despite gpUS2–11-mediated immune evasion. J Gen Virol 2007; 88:1429-1439. [PMID: 17412970 DOI: 10.1099/vir.0.82686-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune control of human cytomegalovirus (HCMV) infection can be mediated by CD8+cytolytic T lymphocytes (CTL). Adoptive transfer of antiviral CTL confers protection against HCMV reactivation and disease. The tegument protein pp65 and the immediate-early 1 protein (IE1) are recognized to be major CTL targets, even though during productive infection the viral immunoevasion proteins gpUS2–11 act to suppress major histocompatibility complex (MHC) class I-restricted antigen presentation. Thus it was not clear how infected cells could be labelled with antigenic peptides in the face of immunoevasion. We show here that the immunodominant peptide pp65NLVwas presented by MHC class I in cells infected with a gpUS2–11-competent virus. Presentation of pp65NLVwas still detectable at 96 h post-infection, although at low levels. Partial suppression of pp65NLVpresentation was dependent on the ability of the infecting strain to express gpUS2–11. MHC class I-restricted antigen presentation in HCMV-infected cells (encoding gpUS2–11) exhibited specificity for pp65-derived peptides, as infected fibroblasts did not present the IE1-derived nonapeptide IE1TMY. Remarkably, infected cells could restore pp65NLVpeptide presentation after acid removal of MHC class I despite gpUS2–11 expression. This recovery was shown to be dependent on proteasome functionality. In contrast to IE1, pp65 peptides are loaded on MHC class I molecules to be transported to the cell surface at early and late times after infection in the face of gpUS2–11-mediated immunoevasion. pp65 is therefore the first example of an HCMV protein only incompletely subjected to gpUS2–11-mediated immunoevasion.
Collapse
Affiliation(s)
- Katrin Besold
- Institute of Virology, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | - Jürgen Kuball
- Department of Hematology and Oncology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Oncology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Gabriele Hahn
- Max von Pettenkofer Institut, Department of Virology, Ludwig-Maximilians-Universität München, Germany
| | - Bodo Plachter
- Institute of Virology, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
16
|
Slezak SL, Bettinotti M, Selleri S, Adams S, Marincola FM, Stroncek DF. CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. J Transl Med 2007; 5:17. [PMID: 17391521 PMCID: PMC1851947 DOI: 10.1186/1479-5876-5-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/28/2007] [Indexed: 11/30/2022] Open
Abstract
Background Adoptive immune and vaccine therapies have been used to prevent cytomegalovirus (CMV) disease in recipients of hematopoietic progenitor cell transplants, but the nature of T cell responses to CMV have not been completely characterized. Methods Peptide pools and individual peptides derived from the immune-dominant CMV proteins pp65 and IE-1 and antigen-specific, cytokine flow cytometry were used to characterize the prevalence and frequency of CD4+ and CD8+ memory T cells in 20 healthy CMV-seropositive subjects. Results CD8+ T cell responses to pp65 were detected in 35% of subjects and to IE-1 in 40% of subjects. CD4+ T cell responses to pp65 were detected in 50% of subjects, but none were detected to IE-1. Several new IE-1 HLA class I epitopes were identified, including 4 restricted to HLA-C antigens. One region of IE-1 spanning amino acids 300 to 327 was rich in class I epitopes. The HLA class I restrictions of IE-1 peptides were more promiscuous than those of pp65 peptides. Conclusion Since naturally occurring CD4+ and CD8+ T cell responses to pp65 were detectable in many subjects, but only CD8+ T cell responses to IE-1 were detected, pp65 may be better than IE-1 for use in vaccine and adoptive immune therapies.
Collapse
Affiliation(s)
- Stefanie L Slezak
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Bettinotti
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| | - Silvia Selleri
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon Adams
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| | - Francesco M Marincola
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Abstract
Classical major histocompatibility complex (MHC) class I antigens are trimeric molecules found on the surface of nucleated cells in all jawed vertebrates. MHC I are recognised by two families of receptors: clonotypic T cell receptors expressed on the surface of CD8+ cytotoxic T lymphocytes (CTLs), and monomorphic receptors expressed by both natural killer cells and CTLs. The production of MHC I molecules within the cells is a sequential process performed with the help of interacting proteins: proteases, chaperones, transporters and so on. Although largely homologous in their structure, organisation and function, the human and mouse MHC I antigen processing and presentation machineries show fine differences. Transgenesis and 'knockout' or 'knock-in' technologies permit the addition of relevant human genes or the replacement of mouse genes by their human orthologues in order to produce immunologically humanised mice. Such experimental animals are especially relevant for the comparative evaluation of immunotherapies and for the characterisation of MHC I peptide epitopes. This review presents the similarities and differences between mouse and human MHC I antigen processing machinery, and describes the development and utilisation of improving mouse models of human cytotoxic T cell immunity.
Collapse
Affiliation(s)
- Steve Pascolo
- Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Schleiss MR, Heineman TC. Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 2006; 4:381-406. [PMID: 16026251 DOI: 10.1586/14760584.4.3.381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although infection with human cytomegalovirus (CMV) is ubiquitous and generally asymptomatic in most individuals, certain patient populations are at high risk for CMV-associated disease. These include HIV-infected individuals with AIDS, transplant patients, and newborn infants with congenital CMV infection. Immunity to CMV infection, both in the transplant setting and among women of childbearing age, plays a vital role in the control of CMV-induced injury and disease. Although immunity induced by CMV infection is not completely protective against reinfection, there is nevertheless a sound basis on which to believe that vaccination could help control CMV disease in high-risk patient populations. Evidence from several animal models of CMV infection indicates that a variety of vaccine strategies are capable of inducing immune responses sufficient to protect against CMV-associated illness following viral challenge. Vaccination has also proven effective in improving pregnancy outcomes following CMV challenge of pregnant guinea pigs, providing a 'proof-of-principle' relevant to human clinical trials of CMV vaccines. Although there are no licensed vaccines currently available for human CMV, progress toward this goal has been made, as evidenced by ongoing clinical trial testing of a number of immunization strategies. CMV vaccines currently in various stages of preclinical and clinical testing include: protein subunit vaccines; DNA vaccines; vectored vaccines using viral vectors, such as attenuated pox- and alphaviruses; peptide vaccines; and live attenuated vaccines. This review summarizes some of the obstacles that must be overcome in development of a CMV vaccine, and provides an overview of the current state of preclinical and clinical trial evaluation of vaccines for this important public health problem.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota School of Medicine, 420 Delaware Street SE, MMC 296, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
19
|
Gallez-Hawkins G, Thao L, Lacey SF, Martinez J, Li X, Franck AE, Lomeli NA, Longmate J, Diamond DJ, Spielberger R, Forman SJ, Zaia JA. Cytomegalovirus immune reconstitution occurs in recipients of allogeneic hematopoietic cell transplants irrespective of detectable cytomegalovirus infection. Biol Blood Marrow Transplant 2006; 11:890-902. [PMID: 16275592 DOI: 10.1016/j.bbmt.2005.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 07/13/2005] [Indexed: 11/23/2022]
Abstract
The question of when immune reconstitution of cytomegalovirus (CMV)-specific CD8 T cells occurs after hematopoietic cell transplantation and, more specifically, to which CMV targets this immunity is likely to be directed remains poorly understood. The dependence of immune reconstitution on CMV reactivation is even less clear. To better understand these events, 44 CMV-seropositive HLA-A*0201 subjects were followed up at approximately days 40, 90, 120, 150, 180, and 360 after hematopoietic cell transplantation for CMV immunity as measured by 2 types of assays: (1) an HLA-A*0201 tetramer-binding assay for both CMV pp65 (pp65) and immediate-early 1 (IE-1) or (2) intracellular cytokine interferon gamma responses induced by pp65 or IE-1-derived peptides. To verify the reliability of IE-1-specific assays relative to the pp65-based assays, a pilot study first compared the development of IE-1-specific immunity in a subgroup by using multiple HLA-A*0201-restricted peptides, and then these recipients were followed up for 1 year for immunologic function and for CMV infection. The IE-1-specific response occurred to each of the 3 HLA-A*0201-restricted peptides studied (IE-1-256, -297, and -316), and there was no predominant IE peptide response. However, the immunodominant HLA-A*0201-restricted pp65 peptide was recognized significantly more frequently than these IE-1 peptides. When this was compared with the occurrence of CMV infection, the overall immune reactivity, as measured by the mean or median number of CD8+ T cells reactive to either pp65 or IE-1 peptides by intracellular cytokine or tetramer binding assay, was not significantly different in those with and without CMV infection. For patients who demonstrated reconstituted immunity to CMV at 1 year, all were reconstituted by 6 months, and the timing of the first observed immune reactivity to either of the pp65 or the IE peptides was not different in those with and without detectable CMV infection.
Collapse
Affiliation(s)
- Ghislaine Gallez-Hawkins
- Division of Virology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paston SJ, Dodi IA, Madrigal JA. Progress made towards the development of a CMV peptide vaccine. Hum Immunol 2005; 65:544-9. [PMID: 15172455 DOI: 10.1016/j.humimm.2004.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/15/2004] [Accepted: 02/03/2004] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus disease still remains a major cause of morbidity and mortality in hematopoietic stem cell transplantation recipients. The cell-mediated immune response is essential in the maintenance of latency and the resolution of primary infections. The identification of immunodominant cytomegalovirus antigens has enabled researchers to determine the best candidate antigens to be included in a cytomegalovirus vaccine. Such a vaccine would have to stimulate both a cell-mediated and humoral immune response. Recent advances have enabled the rapid identification of minimal cytotoxic epitopes required to trigger such responses. Epitope mapping to date has mainly focused on the pp65 antigen but other antigens such as IE1 are starting to be mapped. A human leukocyte antigen allele hierarchy is starting to emerge that is dependent on the alleles present in an individual; this is relevant when considering what peptides should be included in a vaccine. This review looks at the current methods available for epitope mapping and the progress that has been made to date.
Collapse
Affiliation(s)
- S J Paston
- The Anthony Nolan Research Institute, Royal Free and University College Medical School, London, United Kingdom
| | | | | |
Collapse
|
21
|
Gallez-Hawkins G, Li X, Franck AE, Thao L, Lacey SF, Diamond DJ, Zaia JA. DNA and low titer, helper-free, recombinant AAV prime-boost vaccination for cytomegalovirus induces an immune response to CMV-pp65 and CMV-IE1 in transgenic HLA A*0201 mice. Vaccine 2005; 23:819-26. [PMID: 15542207 DOI: 10.1016/j.vaccine.2004.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/06/2004] [Accepted: 06/28/2004] [Indexed: 11/28/2022]
Abstract
A prime-boost immunization regimen allowed the use of low titer, helper-free rAAV-pp65mII and rAAV-IE1 virus to elicit specific humoral and cellular responses to two important cytomegalovirus (CMV) antigens: the immediate-early 1 (IE-1) and pp65 proteins. Simultaneous immunization of both CMV proteins, using DNA vaccine priming followed by rAAV boost, induced antibody (Ab) response, CD8 lymphocytes with cytotoxic function, and detectible binding of the cognate peptide epitopes for human HLA A*0201 restriction using tetramer technology.
Collapse
|
22
|
Rohrlich PS, Cardinaud S, Lulè J, Montero-Julian FA, Prodhomme V, Firat H, Davignon JL, Perret E, Monseaux S, Necker A, Michelson S, Lemonnier FA, Charneau P, Davrinche C. Use of a lentiviral vector encoding a HCMV-Chimeric IE1-pp65 protein for epitope identification in HLA-Transgenic mice and for ex vivo stimulation and expansion of CD8+ cytotoxic T cells from human peripheral blood cells. Hum Immunol 2004; 65:514-22. [PMID: 15172452 DOI: 10.1016/j.humimm.2004.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/15/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
H2-deleted, HLA-A2, or HLA-B7 transgenic mice were used to identify new human cytomegalovirus (HCMV)-derived major histocompatibility complex class I-restricted epitopes. Three different approaches for mice immunization were compared for their ability to induce a cytotoxic CD8(+) T cell (CTL) response: (1). inoculation of infectious HCMV, (2). injection of immunogenic synthetic peptides, and (3). infection with a newly designed HIV-derived central DNA flap positive lentiviral vector encoding the chimeric IE1-pp65 protein (Trip-IE1-pp65). Targets pulsed with either known immunogenic peptides or computer predicted ones were used to characterize CTL. Most of the mice immunized with the pp65 (495-NLVPMVATV-503) immunodominant peptide responded after one injection whereas only two of six mice responded to two successive inoculations with HCMV. Infection of mice with Trip-IE1-pp65 induced activation and expansion of CTL directed against peptides from both pp65 and IE1 and allowed identification of new epitopes. We further demonstrated the high capacity of monocyte-macrophage cells transduced with Trip-IE1-pp65 to activate and expand CTL directed against pp65 from peripheral blood mononuclear cells of HCMV-seropositive donors. Altogether these results suggest that Trip-IE1-pp65 is a powerful construct both to characterize new epitopes in combination with human leukocyte antigen-transgenic mice immunization and to provide an alternative to the use of known infectious and noninfectious approaches to expand effector T cells for adoptive immunotherapy.
Collapse
|
23
|
Wang Z, La Rosa C, Mekhoubad S, Lacey SF, Villacres MC, Markel S, Longmate J, Ellenhorn JDI, Siliciano RF, Buck C, Britt WJ, Diamond DJ. Attenuated poxviruses generate clinically relevant frequencies of CMV-specific T cells. Blood 2004; 104:847-56. [PMID: 15090456 DOI: 10.1182/blood-2003-10-3469] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapeutic approaches to limit cytomegalovirus (CMV) morbidity and mortality after hematopoietic stem cell transplants (HSCTs) are currently under investigation as alternatives to antiviral drugs. In this context, we have inserted full-length and ubiquitin-modified CMV phosphoprotein 65 (pp65), phosphoprotein 150 (pp150), and immediate early protein 1 (IE1) immunodominant antigens into the virulent Western Reserve strain of vaccinia virus (VV) and the highly attenuated strain, modified vaccinia Ankara (MVA). Recombinant (r) VV or rMVA stimulated vigorous expansion of CMV-specific CD8+ T cells in CMV-positive donor peripheral blood mononuclear cells (PBMCs), which showed minimal alloreactivity and high levels of HLA tetramer binding, cytokine production, and cytotoxicity. Ubiquitinated antigens had a profound effect when expressed in VV. Single antigen rMVA expressing pp65 or IE1, either ubiquitin-modified or native, stimulated both cytotoxic T lymphocyte (CTL) populations to be expanded up to 500-fold in a 60-mL blood draw from the same donor. This result demonstrates the clinical feasibility of simultaneously amplifying multiple CMV-CTL populations. Transgenic HLA A2.1 (HHD II) mice, immunized with the same rMVA as used with human PBMCs, produced a robust cytotoxic response to both CMV pp65 and IE1. The specificity of the vigorous immunologic response to rMVA, both in vitro and in vivo, makes them candidates for clinical evaluation in the context of adoptive immunotherapy for hematopoietic stem cell transplant (HSCT) recipients or donor vaccination.
Collapse
Affiliation(s)
- Zhongde Wang
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope,City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|