1
|
Granier C, Toesca J, Mialon C, Ritter M, Freitas N, Boson B, Pécheur EI, Cosset FL, Denolly S. Low-density hepatitis C virus infectious particles are protected from oxidation by secreted cellular proteins. mBio 2023; 14:e0154923. [PMID: 37671888 PMCID: PMC10653866 DOI: 10.1128/mbio.01549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Assessments of viral stability on surfaces or in body fluids under different environmental conditions and/or temperatures are often performed, as they are key to understanding the routes and parameters of viral transmission and to providing clues on the epidemiology of infections. However, for most viruses, the mechanisms of inactivation vs stability of viral particles remain poorly defined. Although they are structurally diverse, with different compositions, sizes, and shapes, enveloped viruses are generally less stable than non-enveloped viruses, pointing out the role of envelopes themselves in virus lability. In this report, we investigated the properties of hepatitis C virus (HCV) particles with regards to their stability. We found that, compared to alternative enveloped viruses such as Dengue virus (DENV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis delta virus (HDV), and Crimean-Congo hemorrhagic fever virus (CCHFV) that infect the liver, HCV particles are intrinsically labile. We determined the mechanisms that drastically alter their specific infectivity through oxidation of their lipids, and we highlighted that they are protected from lipid oxidation by secreted cellular proteins, which can protect their membrane fusion capacity and overall infectivity.
Collapse
Affiliation(s)
- Christelle Granier
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Johan Toesca
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Chloé Mialon
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Eve-Isabelle Pécheur
- Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CNRS 5286, Inserm U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Solène Denolly
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
3
|
Characterization of linear epitope specificity of antibodies potentially contributing to spontaneous clearance of hepatitis C virus. PLoS One 2021; 16:e0256816. [PMID: 34449828 PMCID: PMC8396737 DOI: 10.1371/journal.pone.0256816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. Methods We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412–423, 523–532 and 432–443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. Conclusions These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432–443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.
Collapse
|
4
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
5
|
Kalemera MD, Capella-Pujol J, Chumbe A, Underwood A, Bull RA, Schinkel J, Sliepen K, Grove J. Optimized cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. J Gen Virol 2021; 102. [PMID: 33147126 PMCID: PMC8116788 DOI: 10.1099/jgv.0.001512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Collapse
Affiliation(s)
- Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| |
Collapse
|
6
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Cao L, Yu B, Kong D, Cong Q, Yu T, Chen Z, Hu Z, Chang H, Zhong J, Baker D, He Y. Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathog 2019; 15:e1007759. [PMID: 31116791 PMCID: PMC6530877 DOI: 10.1371/journal.ppat.1007759] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae. HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as major epitopes for neutralizing antibodies. However, unlike other known flaviviruses, it has been challenging to study HCV envelope proteins E1E2 in the past decades as the in vitro expressed E1E2 heterodimers are usually of poor quality, making the structural and functional characterization difficult. Here we express the ectodomains of HCV E1E2 heterodimer with either an Fc-tag or a de novo designed heterodimeric tag and are able to isolate soluble E1E2 heterodimer suitable for functional and structural studies. Then we characterize the E1E2 heterodimer by electron microscopy and model the structure by the coevolution based modeling strategy with Rosetta, revealing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the known HCV receptors, neutralizing antibodies as well as the inhibition of HCV infection, confirming the functionality of the E1E2 heterodimer and the binding profiles of E1E2 with the cellular receptors. Therefore, the expressed E1E2 heterodimer would be a valuable target for both viral studies and vaccination against HCV. Hepatitis C virus (HCV) is an enveloped virus that infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV has two envelope proteins, E1 and E2, which form heterodimers on viral surface and are critical for HCV cell entry. However, current studies of HCV E1E2 are often limited by the poor quality of the in vitro expressed E1E2 heterodimers. Here we express the ectodomains of HCV E1E2 with different tags, and are able to isolate soluble E1E2 ectodomains suitable for structural and functional studies. Then we generate the 3D reconstruction of E1E2 heterodimer by electron microscopy and also model the E1E2 structure by the coevolution based strategy with Rosetta, showing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the HCV cellular receptors, neutralizing antibodies as well as the inhibition of HCV infection. These results suggest that the expressed E1E2 heterodimer would be a promising target for both viral studies and vaccination against HCV.
Collapse
Affiliation(s)
- Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Dandan Kong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qian Cong
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Tao Yu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Haishuang Chang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
8
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods Mol Biol 2019; 1911:33-45. [PMID: 30593616 DOI: 10.1007/978-1-4939-8976-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.
Collapse
|
10
|
Yost SA, Wang Y, Marcotrigiano J. Hepatitis C Virus Envelope Glycoproteins: A Balancing Act of Order and Disorder. Front Immunol 2018; 9:1917. [PMID: 30197646 PMCID: PMC6117417 DOI: 10.3389/fimmu.2018.01917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis C virus infection often leads to liver cirrhosis and primary liver cancer. In 2015, an estimated 71 million people were living with chronic HCV. Although infection rates have decreased in many parts of the world over the last several decades, incidence of HCV infection doubled between 2010 and 2014 in the United States mainly due to increases in intravenous drug use. The approval of direct acting antiviral treatments is a necessary component in the elimination of HCV, but inherent barriers to treatment (e.g., cost, lack of access to healthcare, adherence to treatment, resistance, etc.) prevent dramatic improvements in infection rates. An effective HCV vaccine would significantly slow the spread of the disease. Difficulties in the development of an HCV culture model system and expression of properly folded- and natively modified-HCV envelope glycoproteins E1 and E2 have hindered vaccine development efforts. The recent structural and biophysical studies of these proteins have demonstrated that the binding sites for the cellular receptor CD-81 and neutralizing antibodies are highly flexible in nature, which complicate vaccine design. Furthermore, the interactions between E1 and E2 throughout HCV infection is poorly understood, and structural flexibility may play a role in shielding antigenic epitopes during infection. Here we discuss the structural complexities of HCV E1 and E2.
Collapse
Affiliation(s)
- Samantha A Yost
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Yuanyuan Wang
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Marcotrigiano
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front Immunol 2018; 9:910. [PMID: 29755477 PMCID: PMC5934428 DOI: 10.3389/fimmu.2018.00910] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential role in virus entry and assembly. Furthermore, due to their exposure at the surface of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 heterodimer corresponds to glycans. Despite the high sequence variability of E1 and E2, N-glycosylation sites of these proteins are generally conserved among the seven major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding and modulate different functions of the envelope glycoproteins. Indeed, site-directed mutagenesis studies have shown that specific glycans are needed for virion assembly and infectivity. They can notably affect envelope protein entry functions by modulating their affinity for HCV receptors and their fusion activity. Importantly, glycans have also been shown to play a key role in immune evasion by masking antigenic sites targeted by neutralizing antibodies. It is well known that the high mutational rate of HCV polymerase facilitates the appearance of neutralization resistant mutants, and occurrence of mutations leading to glycan shifting is one of the mechanisms used by this virus to escape host humoral immune response. As a consequence of the importance of the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an increase in E1E2 immunogenicity and can induce a more potent antibody response against HCV.
Collapse
Affiliation(s)
- Muriel Lavie
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean Dubuisson
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| |
Collapse
|
12
|
Fletcher NF, Clark AR, Balfe P, McKeating JA. TNF superfamily members promote hepatitis C virus entry via an NF-κB and myosin light chain kinase dependent pathway. J Gen Virol 2017; 98:405-412. [PMID: 27983476 PMCID: PMC5797950 DOI: 10.1099/jgv.0.000689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preventing virally induced liver disease begins with an understanding of the host factors that define susceptibility to infection. Hepatitis C virus (HCV) is a global health issue, with an estimated 170 million infected individuals at risk of developing liver disease including fibrosis and hepatocellular carcinoma. The liver is the major reservoir supporting HCV replication and this hepatocellular tropism is defined by HCV engagement of cellular entry receptors. Hepatocytes are polarized in vivo and this barrier function limits HCV entry. We previously reported that activated macrophages promote HCV entry into polarized hepatocytes via a TNF-α-dependent process; however, the underlying mechanism was not defined. In this study, we show that several TNF superfamily members, including TNF-α, TNF-β, TWEAK and LIGHT, promote HCV entry via NF-κB-mediated activation of myosin light chain kinase (MLCK) and disruption of tight junctions. These observations support a model where HCV hijacks an inflammatory immune response to stimulate infection and uncovers a role for NF-κB-MLCK signalling in maintaining hepatocellular tight junctions.
Collapse
Affiliation(s)
- N F Fletcher
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - P Balfe
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J A McKeating
- Present address: Nuffield Department of Medicine, University of Oxford, UK.,Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Chiang CF, Flint M, Lin JMS, Spiropoulou CF. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS One 2016; 11:e0164768. [PMID: 27780263 PMCID: PMC5079659 DOI: 10.1371/journal.pone.0164768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/30/2016] [Indexed: 12/04/2022] Open
Abstract
Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jin-Mann S. Lin
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265-2279. [PMID: 27384448 PMCID: PMC5042129 DOI: 10.1099/jgv.0.000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.
Collapse
Affiliation(s)
- Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas King
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Correspondence Alexander W. Tarr
| |
Collapse
|
15
|
Ferns RB, Tarr AW, Hue S, Urbanowicz RA, McClure CP, Gilson R, Ball JK, Nastouli E, Garson JA, Pillay D. Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals. Virology 2016; 492:213-24. [PMID: 26971243 DOI: 10.1016/j.virol.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization.
Collapse
Affiliation(s)
- R Bridget Ferns
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom.
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Stephane Hue
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Richard A Urbanowicz
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - C Patrick McClure
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Richard Gilson
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Jonathan K Ball
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Eleni Nastouli
- Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom
| | - Jeremy A Garson
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Deenan Pillay
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu, Natal, South Africa
| |
Collapse
|
16
|
Lombana L, Ortega-Atienza S, Gómez-Gutiérrez J, Yélamos B, Peterson DL, Gavilanes F. The deletion of residues 268-292 of E1 impairs the ability of HCV envelope proteins to induce pore formation. Virus Res 2016; 217:63-70. [PMID: 26945847 DOI: 10.1016/j.virusres.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/25/2022]
Abstract
We have obtained a chimeric protein containing the ectodomains of hepatitis C virus (HCV) envelope proteins but lacking the region 268-292 of E1. All its structural properties are coincident with those of the corresponding full length chimera. The deleted and entire chimeras were compared in terms of their membrane destabilizing properties. No differences were found in their ability to induce vesicle aggregation and lipid mixing but the deleted chimera showed a reduced capacity to promote leakage. The role of the deletion was also studied by obtaining HCV pseudoparticles (HCVpp). Both E1 and E2, and also the E1 deleted mutant, were incorporated into HCVpp to a similar level. However, HCVpp containing the E1 deleted protein are almost unable to infect Huh7 cells. These results point to the involvement of the region 268-292 in the formation of pores in the membrane necessary for the complete fusion of the membranes.
Collapse
Affiliation(s)
- Laura Lombana
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Ortega-Atienza
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julián Gómez-Gutiérrez
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Yélamos
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Francisco Gavilanes
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. J Virol 2015; 89:10333-46. [PMID: 26246575 DOI: 10.1128/jvi.00991-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.
Collapse
|
18
|
Mohr EL, McMullan LK, Lo MK, Spengler JR, Bergeron É, Albariño CG, Shrivastava-Ranjan P, Chiang CF, Nichol ST, Spiropoulou CF, Flint M. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. Antiviral Res 2015; 120:40-7. [PMID: 25986249 DOI: 10.1016/j.antiviral.2015.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
Host cell kinases are important for the replication of a number of hemorrhagic fever viruses. We tested a panel of kinase inhibitors for their ability to block the replication of multiple hemorrhagic fever viruses. OSU-03012 inhibited the replication of Lassa, Ebola, Marburg and Nipah viruses, whereas BIBX 1382 dihydrochloride inhibited Lassa, Ebola and Marburg viruses. BIBX 1382 blocked both Lassa and Ebola virus glycoprotein-dependent cell entry. These compounds may be used as tools to understand conserved virus-host interactions, and implicate host cell kinases that may be targets for broad spectrum therapeutic intervention.
Collapse
Affiliation(s)
- Emma L Mohr
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA; Emory University Department of Pediatrics, Emory-Children's Center, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA.
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30333, USA
| |
Collapse
|
19
|
Khan AG, Miller MT, Marcotrigiano J. HCV glycoprotein structures: what to expect from the unexpected. Curr Opin Virol 2015; 12:53-8. [PMID: 25790756 DOI: 10.1016/j.coviro.2015.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Hepatitis C virus (HCV) is continuing to spread worldwide, adding three million new infections each year. Currently approved therapies are highly effective; however, access to them is limited due to the high cost of treatment. Therefore, a cost effective vaccine and alternative antivirals remain essential. HCV envelope glycoproteins, E1 and E2, heterodimerize on the virion surface and are the major determinant for virus pathogenicity and host immune response. Recent structural insights into amino-terminal domain of E1 and core of E2 have revealed unexpected folds not present in glycoproteins from related viruses. Here we discuss these structural findings with respect to their role in HCV entry and impact on potential vaccine design and new antivirals.
Collapse
Affiliation(s)
- Abdul Ghafoor Khan
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
The mechanism of HCV entry into host cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:63-107. [PMID: 25595801 DOI: 10.1016/bs.pmbts.2014.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus classified within the Flaviviridae family and is a major cause of liver disease worldwide. HCV life cycle and propagation are tightly linked to several aspects of lipid metabolism. HCV propagation depends on and also shapes several aspects of lipid metabolism such as cholesterol uptake and efflux through different lipoprotein receptors during its entry into cells, lipid metabolism modulating HCV genome replication, lipid droplets acting as a platform for recruitment of viral components, and very low density lipoprotein assembly pathway resulting in incorporation of neutral lipids and apolipoproteins into viral particles. During the first steps of infection, HCV enters hepatocytes through a multistep and slow process. The initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I, a major receptor of high-density lipoprotein, the CD81 tetraspanin, and the tight junction proteins Claudin-1 and Occludin. This tight concert of receptor interactions ultimately leads to uptake and cellular internalization of HCV through a process of clathrin-dependent endocytosis. Over the years, the identification of the HCV entry receptors and cofactors has led to a better understanding of HCV entry and of the narrow tropism of HCV for the liver. Yet, the role of the two HCV envelope glycoproteins, E1 and E2, remains ill-defined, particularly concerning their involvement in the membrane fusion process. Here, we review the current knowledge and advances addressing the mechanism of HCV cell entry within hepatocytes and we highlight the challenges that remain to be addressed.
Collapse
|
21
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
22
|
Unexpected structural features of the hepatitis C virus envelope protein 2 ectodomain. J Virol 2014; 88:10280-8. [PMID: 24991010 DOI: 10.1128/jvi.00874-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV), a member of the family Flaviviridae, is a leading cause of chronic liver disease and cancer. Recent advances in HCV therapeutics have resulted in improved cure rates, but an HCV vaccine is not available and is urgently needed to control the global pandemic. Vaccine development has been hampered by the lack of high-resolution structural information for the two HCV envelope glycoproteins, E1 and E2. Recently, Kong and coworkers (Science 342:1090-1094, 2013, doi:10.1126/science.1243876) and Khan and coworkers (Nature 509[7500]:381-384, 2014, doi:10.1038/nature13117) independently determined the structure of the HCV E2 ectodomain core with some unexpected and informative results. The HCV E2 ectodomain core features a globular architecture with antiparallel β-sheets forming a central β sandwich. The residues comprising the epitopes of several neutralizing and nonneutralizing human monoclonal antibodies were also determined, which is an essential step toward obtaining a fine map of the human humoral response to HCV. Also clarified were the regions of E2 that directly bind CD81, an important HCV cellular receptor. While it has been widely assumed that HCV E2 is a class II viral fusion protein (VFP), the newly determined structure suggests that the HCV E2 ectodomain shares structural and functional similarities only with domain III of class II VFPs. The new structural determinations suggest that the HCV glycoproteins use a different mechanism than that used by class II fusion proteins for cell fusion.
Collapse
|
23
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
24
|
Tello D, Rodríguez-Rodríguez M, Ortega S, Lombana L, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Fusogenic properties of the ectodomains of hepatitis C virus envelope proteins. FEBS J 2014; 281:2558-69. [DOI: 10.1111/febs.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Tello
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Mar Rodríguez-Rodríguez
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Sara Ortega
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Laura Lombana
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Belén Yélamos
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| | - Darrell L. Peterson
- Department of Biochemistry and Molecular Biology; Medical College of Virginia; Virginia Commonwealth University; Richmond VA USA
| | - Francisco Gavilanes
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias Químicas; Universidad Complutense; Madrid Spain
| |
Collapse
|
25
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
26
|
Ma CJ, Ren JP, Li GY, Wu XY, Brockstedt DG, Lauer P, Moorman JP, Yao ZQ. Enhanced virus-specific CD8+ T cell responses by Listeria monocytogenes-infected dendritic cells in the context of Tim-3 blockade. PLoS One 2014; 9:e87821. [PMID: 24498204 PMCID: PMC3909257 DOI: 10.1371/journal.pone.0087821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/31/2013] [Indexed: 12/15/2022] Open
Abstract
In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactA/ΔinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection.
Collapse
Affiliation(s)
- Cheng J. Ma
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jun P. Ren
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Guang Y. Li
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Xiao Y. Wu
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | | | - Peter Lauer
- Aduro BioTech, Inc. Berkeley, California, United States of America
| | - Jonathan P. Moorman
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhi Q. Yao
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
27
|
Esteban-Riesco L, Depaulis F, Moreau A, Bacq Y, Dubois F, Goudeau A, Gaudy-Graffin C. Rapid and sustained autologous neutralizing response leading to early spontaneous recovery after HCV infection. Virology 2013; 444:90-9. [PMID: 23890816 DOI: 10.1016/j.virol.2013.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 01/12/2023]
Abstract
After HCV infection, the association between the humoral response and viral sequence evolution remains unclear. We investigated the mechanisms leading to early HCV clearance and spontaneous recovery in two patients. The early evolution of the HCV envelope glycoproteins, and the infectivity spectrum of variants were explored using retroviral pseudoparticles bearing HCV envelopes. Ability of the autologous neutralizing response to control these variants was analyzed. For the first case, the maximum neutralizing activity was for serum collected between two and three months post ALT peak, this activity was still detectable after 30 months. For the second case, autologous neutralizing activity against the variant isolated at the ALT peak was detected in every serum collected between 4 days and 13 months after. The neutralizing response was sustained beyond the time at which the virus was cleared. This raise interesting questions about the role of such antibodies in case of re-exposure.
Collapse
|
28
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5'-m(7)G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation.
Collapse
|
30
|
Identification of hepatitis C virus inhibitors targeting different aspects of infection using a cell-based assay. Antimicrob Agents Chemother 2012; 56:6109-20. [PMID: 22948883 DOI: 10.1128/aac.01413-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With 2 to 3% of the worldwide population chronically infected, hepatitis C virus (HCV) infection continues to be a major health care burden. Unfortunately, current interferon-based treatment options are not effective in all patients and are associated with significant side effects. Consequently, there is an ongoing need to identify and develop new anti-HCV therapies. Toward this goal, we previously developed a cell-based HCV infection assay for antiviral compound screening based on a low-multiplicity-of-infection approach that uniquely allows for the identification of antiviral compounds that target cell culture-derived HCV (HCVcc) at any step of the viral infection cycle. Using this assay, here we report the screening of the NCI Diversity Set II library, containing 1,974 synthesized chemical compounds, and the identification of compounds with specific anti-HCV activity. In combination with toxicity counterscreening, we identified 30 hits from the compound library, 13 of which showed reproducible and dose-dependent inhibition of HCV with mean therapeutic indices (50% cytotoxic concentration [CC(50)]/50% effective concentration [EC(50)]) of greater than 6. Using HCV pseudotype and replicon systems of multiple HCV genotypes, as well as infectious HCVcc-based assembly and secretion analysis, we determined that different compounds within this group of candidate inhibitors target different steps of viral infection. The compounds identified not only will serve as biological probes to study and further dissect the biology of viral infection but also should facilitate the development of new anti-HCV therapeutic treatments.
Collapse
|
31
|
Montero A, Gastaminza P, Law M, Cheng G, Chisari FV, Ghadiri MR. Self-assembling peptide nanotubes with antiviral activity against hepatitis C virus. CHEMISTRY & BIOLOGY 2011; 18:1453-62. [PMID: 22118679 PMCID: PMC3225806 DOI: 10.1016/j.chembiol.2011.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 01/12/2023]
Abstract
Hepatitis C virus (HCV) infects chronically 3% of the world population and the current therapy against this pathogen is only partially effective. With the aim of developing novel antiviral strategies against HCV, we screened a D,L-α-peptide library using an unbiased methodology based on a cell culture infection system for HCV. We found a family of highly active amphiphilic eight-residue cyclic D,L-α-peptides that specifically blocked entry of all tested HCV genotypes into target cells at a postbinding step without affecting infection by other enveloped RNA viruses. Structure-activity relationship studies indicate that antiviral activity was dependent on cyclic D,L-α-peptide self-assembly processes and that, although they possess a net neutral charge, they display a characteristic charge distribution. Our results indicate that supramolecular amphiphilic peptide structures constitute a class of highly selective HCV entry inhibitors.
Collapse
Affiliation(s)
- Ana Montero
- Department of Chemistry, Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Pablo Gastaminza
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Guofeng Cheng
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Francis V. Chisari
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - M. Reza Ghadiri
- Department of Chemistry, Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Edwards VC, Tarr AW, Urbanowicz RA, Ball JK. The role of neutralizing antibodies in hepatitis C virus infection. J Gen Virol 2011; 93:1-19. [PMID: 22049091 DOI: 10.1099/vir.0.035956-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is a blood-borne virus estimated to infect around 170 million people worldwide and is, therefore, a major disease burden. In some individuals the virus is spontaneously cleared during the acute phase of infection, whilst in others a persistent infection ensues. Of those persistently infected, severe liver diseases such as cirrhosis and primary liver cancer may develop, although many individuals remain asymptomatic. A range of factors shape the course of HCV infection, not least host genetic polymorphisms and host immunity. A number of studies have shown that neutralizing antibodies (nAb) arise during HCV infection, but that these antibodies differ in their breadth and mechanism of neutralization. Recent studies, using both mAbs and polyclonal sera, have provided an insight into neutralizing determinants and the likely protective role of antibodies during infection. This understanding has helped to shape our knowledge of the overall structure of the HCV envelope glycoproteins--the natural target for nAb. Most nAb identified to date target receptor-binding sites within the envelope glycoprotein E2. However, there is some evidence that other viral epitopes may be targets for antibody neutralization, suggesting the need to broaden the search for neutralization epitopes beyond E2. This review provides a comprehensive overview of our current understanding of the role played by nAb in HCV infection and disease outcome and explores the limitations in the study systems currently used. In addition, we briefly discuss the potential therapeutic benefits of nAb and efforts to develop nAb-based therapies.
Collapse
Affiliation(s)
- Victoria C Edwards
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Richard A Urbanowicz
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jonathan K Ball
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
33
|
Di Lorenzo C, Angus AGN, Patel AH. Hepatitis C virus evasion mechanisms from neutralizing antibodies. Viruses 2011; 3:2280-2300. [PMID: 22163345 PMCID: PMC3230852 DOI: 10.3390/v3112280] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major public health problem, affecting 3% of the world's population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies.
Collapse
Affiliation(s)
- Caterina Di Lorenzo
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Allan G. N. Angus
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Arvind H. Patel
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| |
Collapse
|
34
|
Fraser J, Boo I, Poumbourios P, Drummer HE. Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 contain reduced cysteine residues essential for virus entry. J Biol Chem 2011; 286:31984-92. [PMID: 21768113 PMCID: PMC3173156 DOI: 10.1074/jbc.m111.269605] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/13/2011] [Indexed: 12/14/2022] Open
Abstract
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.
Collapse
Affiliation(s)
- Johanna Fraser
- From the Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
- the Department of Microbiology, Monash University, Clayton 3800, Australia, and
| | - Irene Boo
- From the Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
| | - Pantelis Poumbourios
- From the Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
- the Department of Microbiology, Monash University, Clayton 3800, Australia, and
| | - Heidi E. Drummer
- From the Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
- the Department of Microbiology, Monash University, Clayton 3800, Australia, and
- the Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
35
|
The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol 2011; 85:10404-8. [PMID: 21795336 DOI: 10.1128/jvi.00856-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candid1, a live-attenuated Junin virus vaccine strain, was developed during the early 1980s to control Argentine hemorrhagic fever, a severe and frequently fatal human disease. Six amino acid substitutions were found to be unique to this vaccine strain, and their role in virulence attenuation in mice was analyzed using a series of recombinant viruses. Our results indicate that Candid1 is attenuated in mice through a single amino acid substitution in the transmembrane domain of the G2 glycoprotein. This work provides insight into the molecular mechanisms of attenuation of the only arenavirus vaccine currently available.
Collapse
|
36
|
Impact of intra- and interspecies variation of occludin on its function as coreceptor for authentic hepatitis C virus particles. J Virol 2011; 85:7613-21. [PMID: 21632765 DOI: 10.1128/jvi.00212-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) is characterized by a narrow host range and high interindividual variability in the clinical course of infection. Both of these traits are thought to be largely due to genetic variation between species and between individual hosts. The tight junction component occludin (OCLN) is essential for HCV entry into host cells, and the differences between human and murine OCLN are thought to account in part for the inability of HCV to infect mice and hence preclude their use as a convenient small-animal model. This study assesses the impact of genetic variation in OCLN on cell culture-grown HCV (HCVcc) using a newly generated and characterized OCLN(low) subclone of the Huh-7.5 cell line (Huh-7.5 subclone in which endogenous OCLN expression has been downregulated by a short hairpin RNA). We report the frequency of coding nonsynonymous single nucleotide polymorphisms, i.e., polymorphisms resulting in amino acid exchanges, present in the human population and determine their ability to function as HCV (co)receptors. Moreover, we show that murine OCLN can sustain HCVcc entry, albeit with about 5-fold reduced efficiency compared to that of human OCLN. This reduction in efficiency is due solely to two amino acid residues previously identified by others using an HCV pseudoparticle approach. Finally, we use the Huh-7.5/OCLN(low) cell line to show that HCV spread between neighboring cells is strictly dependent on OCLN.
Collapse
|
37
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
38
|
Triyatni M, Berger EA, Saunier B. A new model to produce infectious hepatitis C virus without the replication requirement. PLoS Pathog 2011; 7:e1001333. [PMID: 21533214 PMCID: PMC3077361 DOI: 10.1371/journal.ppat.1001333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 03/14/2011] [Indexed: 02/06/2023] Open
Abstract
Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes. Two decades after its identification, hepatitis C virus (HCV) remains a leading cause of serious liver diseases worldwide. The poor in vitro propagation of patient isolates has impaired their study. Conversely, viral strains of the most prevalent (∼70% of total infections) and clinically problematic (∼45% cured with the standard of care) genotype 1 adapted for in vitro replication display mutations impairing yield and/or in vivo infectivity. We established a new cell culture model for producing infectious HCV in a cell line stably bearing a subgenomic replicon from West Nile virus (a flavivirus belonging to the same family as HCV) that circumvents the requirement for HCV RNA replication. To study viral infectivity in vitro, we devised several HCV genome-based constructs. This system produced wild type HCV particles of subtypes 1a, 1b, 2a and a 1b/2a chimera. All specifically infected permissive target cells, and HCV particles containing wild type genomes known to be infectious in vivo infected human liver slices ex vivo. The production of authentic HCV particles independent of HCV RNA replication represents a new paradigm to decipher requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant genotypes.
Collapse
Affiliation(s)
- Miriam Triyatni
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Edward A. Berger
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Bertrand Saunier
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- Paris-Descartes University, Faculty of Medicine, Paris, France
- Institut Cochin, Paris, France
- Inserm U1016, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Khaliq S, Jahan S, Ijaz B, Ahmad W, Asad S, Hassan S. Inhibition of hepatitis C virus genotype 3a by siRNAs targeting envelope genes. Arch Virol 2010; 156:433-42. [PMID: 21161551 DOI: 10.1007/s00705-010-0887-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 12/04/2010] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) genotype 3a is considered a significant risk factor for the development of liver diseases and hepatocellular carcinoma for most of the cases in Pakistan. Because of the limited efficiency of the current therapy, RNA interference (RNAi), which results in sequence-specific degradation of HCV RNA, has potential as a powerful alternative molecular therapeutic approach. The envelope genes (E1 and E2) of HCV come in immediate contact with cells during infection and therefore might be a relevant target for new drug development. In the present study, the expression of E1 and E2 genes of HCV genotype 3a was dramatically reduced at both the mRNA and protein level using gene-specific small interfering RNAs (siRNA) when compared to mock-transfected and cells treated with control siRNAs. The potential of siRNAs to inhibit HCV-3a replication in serum-infected Huh-7 cells was also demonstrated by combined treatment of siRNAs against the E1 and E2 genes, which resulted in a significant decrease in HCV viral copy number. This clearly demonstrates that the RNAi-mediated silencing of HCV E1 and E2 is among the first of its type for the development of an effective siRNA-based therapeutic option against HCV-3a.
Collapse
Affiliation(s)
- Saba Khaliq
- Applied and Functional Genomics Laboratory, National Centre of Excellence in Molecular Biology, University of Punjab, Lahore 53700, Pakistan
| | | | | | | | | | | |
Collapse
|
40
|
Cai W, Su L, Liao Q, Ye L, Wu Y, Wu Z, She Y. Expression, purification and immunogenic characterization of hepatitis C virus recombinant E1E2 protein expressed by Pichia pastoris yeast. Antiviral Res 2010; 88:80-5. [DOI: 10.1016/j.antiviral.2010.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/14/2010] [Accepted: 07/28/2010] [Indexed: 01/12/2023]
|
41
|
Vieyres G, Thomas X, Descamps V, Duverlie G, Patel AH, Dubuisson J. Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J Virol 2010; 84:10159-68. [PMID: 20668082 PMCID: PMC2937754 DOI: 10.1128/jvi.01180-10] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/16/2010] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C is caused by an enveloped virus whose entry is mediated by two glycoproteins, namely, E1 and E2, which have been shown to assemble as a noncovalent heterodimer. Despite extensive research in the field of such an important human pathogen, hepatitis C virus (HCV) glycoproteins have only been studied so far in heterologous expression systems, and their organization at the surfaces of infectious virions has not yet been described. Here, we characterized the envelope glycoproteins associated with cell-cultured infectious virions and compared them with their prebudding counterparts. Viral particles were analyzed by ultracentrifugation, and the envelope glycoproteins were characterized by coimmunoprecipitation and receptor pulldown assays. Furthermore, their oligomeric state was determined by sedimentation through sucrose gradients and by separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions. In sucrose gradient analyses, HCV envelope glycoproteins were associated with fractions containing the most infectious viral particles. Importantly, besides maturation of some of their glycans, HCV envelope glycoproteins showed a dramatic change in their oligomeric state after incorporation into the viral particle. Indeed, virion-associated E1 and E2 envelope glycoproteins formed large covalent complexes stabilized by disulfide bridges, whereas the intracellular forms of these proteins assembled as noncovalent heterodimers. Furthermore, the virion-associated glycoprotein complexes were recognized by the large extracellular loop of CD81 as well as conformation-sensitive antibodies, indicating that these proteins are in a functional conformation. Overall, our study fills a gap in the description of HCV outer morphology and should guide further investigations into virus entry and assembly.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Xavier Thomas
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Véronique Descamps
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gilles Duverlie
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Arvind H. Patel
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
42
|
Lindenbach BD. New cell culture models of hepatitis C virus entry, replication, and virus production. Gastroenterology 2010; 139:1090-3. [PMID: 20797436 DOI: 10.1053/j.gastro.2010.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 2010; 153:29-35. [PMID: 20619306 DOI: 10.1016/j.virusres.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
To infect target cells, enveloped viruses use their virion surface proteins to direct cell attachment and subsequent entry via virus-cell membrane fusion. How hantaviruses enter cells has been largely unexplored. To study early steps of Andes virus (ANDV) cell infection, a lentiviral vector system was developed based on a Simian immunodeficiency virus (SIV) vector pseudotyped with the ANDV-Gn/Gc envelope glycoproteins. The incorporation of Gn and Gc onto SIV-derived vector particles was assessed using newly generated monoclonal antibodies against ANDV glycoproteins. In addition, sera of ANDV infected humans were able to block cell entry of the SIV vector pseudotyped with ANDV glycoproteins, suggesting that their antigenic conformation is similar to that in the native virus. The use of such SIV vector pseudotyped with ANDV-Gn/Gc glycoproteins should facilitate studies on ANDV cell entry. Along this line, it was found that depletion of cholesterol from target cells strongly diminished cell infection, indicating a possible role of lipid rafts in ANDV cell entry. The Gn/Gc pseudotyped SIV vector has several advantages, notably high titer vector production and easy quantification of cell infection by monitoring GFP reporter gene expression by flow cytometry. Such pseudotyped SIV vectors can be used to identify functional domains in the Gn/Gc glycoproteins and to screen for potential hantavirus cell entry inhibitors.
Collapse
|
44
|
Abstract
The mechanisms of hepatitis C virus (HCV) replication remain poorly understood, and the cellular factors required for HCV replication are yet to be completely defined. CD81 is known to mediate HCV entry. Our study uncovered an unexpected novel function of CD81 in the HCV life cycle that is important for HCV RNA replication. HCV replication occurred efficiently in infected cells with high levels of CD81 expression. In HCV-infected or RNA-transfected cells with low levels of CD81 expression, initial viral protein synthesis occurred normally, but efficient replication failed to proceed. The aborted replication could be restored by the transient transfection of a CD81 expression plasmid. CD81-dependent replication was demonstrated with both an HCV infectious cell culture and HCV replicon cells of genotypes 1b and 2a. We also showed that CD81 expression is positively correlated with the kinetics of HCV RNA synthesis but inversely related to the kinetics of viral protein production, suggesting that CD81 may control viral replication by directing viral RNA template function to RNA replication. Thus, CD81 may be necessary for the efficient replication of the HCV genome in addition to its role in viral entry.
Collapse
|
45
|
Li HF, Huang CH, Ai LS, Chuang CK, Chen SSL. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J Biomed Sci 2009; 16:89. [PMID: 19778418 PMCID: PMC2759930 DOI: 10.1186/1423-0127-16-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 09/24/2009] [Indexed: 01/19/2023] Open
Abstract
Background Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive. Methods To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined. Results None of these mutations affected the synthesis or cell surface expression of envelope proteins, nor did they alter the formation of a non-covalent E1-E2 heterodimer or E2 binding to the large extracellular loop of CD81. The Cys residues located at positions 272 and 281 were unlikely involved in intra- or intermolecular disulfide bond formation. With the exception of the G267A mutant, which showed increased cell fusion, other mutants displayed reduced or marginally inhibited cell fusion capacities compared to the wild-type (WT) E1E2. The G267A mutant was also an exception in human immunodeficiency virus type 1 (HIV-1)/HCV E1E2 pseudotyping analyses, in that it showed higher one-cycle infectivity; all other mutants exhibited greatly or partially reduced viral entry versus the WT pseudotype. All but the G278A and D279N mutants showed a WT-like profile of E1E2 incorporation into HIV-1 particles. Since C272A, C281A, G282A, and G288A pseudotypes bound to Huh7 cells as effectively as did the WT pseudotype, the reduced infectivity of these pseudotypes was due to their ability to inhibit cell fusion. Conclusion Our results indicate that specific residues, but not the structure, of this fusion peptide-like domain are required for mediating cell fusion and viral entry.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | |
Collapse
|
46
|
Sabahi A. Hepatitis C Virus entry: the early steps in the viral replication cycle. Virol J 2009; 6:117. [PMID: 19643019 PMCID: PMC2726125 DOI: 10.1186/1743-422x-6-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023] Open
Abstract
Approximately 170 million are infected with the hepatitis C virus (HCV) world wide and an estimated 2.7 million are HCV RNA positive in the United States alone. The acute phase of the HCV infection, in majority of individuals, is asymptomatic. A large percentage of those infected with HCV are unable to clear the virus and become chronically infected. The study of the HCV replication cycle was hampered due to difficulties in growing and propagating the virus in an in vitro setting. The advent of the HCV pseudo particle (HCVpp) and HCV cell culture (HCVcc) systems have made possible the study of the HCV replication cycle, in vitro. Studies utilizing the HCVpp and HCVcc systems have increased our insight into the early steps of the viral replication cycle of HCV, such as the identification of cellular co-receptors for binding and entry. The aim of this article is to provide a review of the outstanding literature on HCV entry, specifically looking at cellular co-receptors involved and putting the data in the context of the systems used (purified viral envelope proteins, HCVpp system, HCVcc system and/or patient sera) and to also give a brief description of the cellular co-receptors themselves.
Collapse
Affiliation(s)
- Ali Sabahi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
47
|
Sapparapu G, Planque SA, Nishiyama Y, Foung SK, Paul S. Antigen-specific proteolysis by hybrid antibodies containing promiscuous proteolytic light chains paired with an antigen-binding heavy chain. J Biol Chem 2009; 284:24622-33. [PMID: 19542217 DOI: 10.1074/jbc.m109.011858] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The antigen recognition site of antibodies consists of the heavy and light chain variable domains (V(L) and V(H) domains). V(L) domains catalyze peptide bond hydrolysis independent of V(H) domains (Mei, S., Mody, B., Eklund, S. H., and Paul, S. (1991) J. Biol. Chem. 266, 15571-15574). V(H) domains bind antigens noncovalently independent of V(L) domains (Ward, E. S., Güssow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Nature 341, 544-546). We describe specific hydrolysis of fusion proteins of the hepatitis C virus E2 protein with glutathione S-transferase (GST-E2) or FLAG peptide (FLAG-E2) by antibodies containing the V(H) domain of an anti-E2 IgG paired with promiscuously catalytic V(L) domains. The hybrid IgG hydrolyzed the E2 fusion proteins more rapidly than the unpaired light chain. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. The hybrid IgG displayed noncovalent E2 binding in enzyme-linked immunosorbent assay tests. Immunoblotting studies suggested hydrolysis of FLAG-E2 at a bond within E2 located approximately 11 kDa from the N terminus. GST-E2 was hydrolyzed by the hybrid IgG at bonds in the GST tag. The differing cleavage pattern of FLAG-E2 and GST-E2 can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. These studies provide proof-of-principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit.
Collapse
Affiliation(s)
- Gopal Sapparapu
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Lin X, Zhang Y, Bi S, Lu J, Zhao H, Tan W, Li D, Wang Y. Hepatitis C virus envelope glycoproteins complementation patterns and the role of the ecto- and transmembrane domains. Biochem Biophys Res Commun 2009; 385:257-62. [PMID: 19464265 DOI: 10.1016/j.bbrc.2009.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 05/14/2009] [Indexed: 12/13/2022]
Abstract
We separated E1 and E2 of hepatitis C virus (HCV) genotypes 1a, 1b, and 2a into two individual expression plasmids and replaced the transmembrane domains of 1b and 2a E1 and E2 with that of genotype 1a. The complementation features of E1 and E2 as well as the contributions of both the ecto- and transmembrane domains to the formation of the E1E2 complex were evaluated using the HCV pseudoparticle(s) (HCVpp(s)) system. We demonstrated that 1aE2 could not only complement its native 1aE1, but could also complement 1bE1 as well; in genotype 1b, glycoprotein complex formation is primarily dependent on the overall biological characteristics of the intact native E1 and E2; in genotype 2a, although the interaction of intact native E1 and E2 is critical for the formation of the glycoprotein complex, the ectodomain made a greater contribution than that of the transmembrane domain. Our study provides valuable findings regarding HCV E1 and E2 biology and will be of use in both anti-HCV strategy and understanding on the mechanisms of coinfection of different HCV strains.
Collapse
Affiliation(s)
- Xiaojing Lin
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bian T, Zhou Y, Bi S, Tan W, Wang Y. HCV envelope protein function is dependent on the peptides preceding the glycoproteins. Biochem Biophys Res Commun 2008; 378:118-22. [PMID: 19013428 DOI: 10.1016/j.bbrc.2008.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 11/06/2008] [Indexed: 01/21/2023]
Abstract
Although significant advances have been made on the studies of HCV glycoproteins (E1 and E2) recently, the role of the peptides preceding each glycoprotein remains unclear. We expressed E1 and E2 using two individual plasmids to form HCV pseudoparticles (HCVpp) in order to characterize the peptides preceding E1 and E2. Our data show that 14 amino acids from the HCV core and 12 amino acids from the E1 C-terminus are required for E1 and E2 function, respectively. The lack of a long enough peptide preceding E1 or E2 will abolish HCVpp infectivity, and the presence of fewer than 14 amino acids ahead of E1 and 12 amino acids ahead of E2 may alter their glycosylation. Furthermore, the peptides preceding E1 and E2 may be interchanged or may be replaced by those from genotype 2a. Our findings may contribute to the future development of new anti-HCV drugs.
Collapse
Affiliation(s)
- Tao Bian
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street 100, Xuanwu Distract, Beijing 100052, PR China
| | | | | | | | | |
Collapse
|
50
|
Vanwolleghem T, Bukh J, Meuleman P, Desombere I, Meunier JC, Alter H, Purcell RH, Leroux-Roels G. Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology 2008; 47:1846-55. [PMID: 18452146 DOI: 10.1002/hep.22244] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED The role of the humoral immune response in the natural course of hepatitis C virus (HCV) infection is widely debated. Most chronically infected patients have immunoglobulin G (IgG) antibodies capable of neutralizing HCV pseudoparticles (HCVpp) in vitro. It is, however, not clear whether these IgG can prevent a de novo HCV infection in vivo and contribute to the control of viremia in infected individuals. We addressed this question with homologous in vivo protection studies in human liver-urokinase-type plasminogen activator (uPA)(+/+) severe combined immune deficient (SCID) mice. Chimeric mice were loaded with chronic phase polyclonal IgG and challenged 3 days later with a 100% infectious dose of the acute phase H77C virus, both originating from patient H. Passive immunization induced sterilizing immunity in five of eight challenged animals. In the three nonprotected animals, the HCV infection was attenuated, as evidenced by altered viral kinetics in comparison with five control IgG-treated animals. Plasma samples obtained from the mice at viral challenge neutralized H77C-HCVpp at dilutions as high as 1/400. Infection was completely prevented when, before administration to naïve chimeric mice, the inoculum was pre-incubated in vitro at an IgG concentration normally observed in humans. CONCLUSION Polyclonal IgG from a patient with a long-standing HCV infection not only displays neutralizing activity in vitro using the HCVpp system, but also conveys sterilizing immunity toward the ancestral HCV strain in vivo, using the human liver-chimeric mouse model. Both experimental systems will be useful tools to identify neutralizing antibodies for future clinical use.
Collapse
|