1
|
Razonable RR. Current Perspectives on Letermovir and Maribavir for the Management of Cytomegalovirus Infection in Solid Organ Transplant Recipients. Drug Des Devel Ther 2024; 18:3987-4001. [PMID: 39258274 PMCID: PMC11385360 DOI: 10.2147/dddt.s265644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Cytomegalovirus (CMV) infection is arguably the most important infectious complication that negatively affects the outcome of solid organ transplantation. For decades, CMV management after transplantation has relied on antiviral drugs that inhibit viral DNA polymerase (ganciclovir, foscarnet, and cidofovir). However, their use has been complicated by myelosuppression, nephrotoxicity, and selection of drug-resistant viruses. During the past few years, the therapeutic armamentarium for the management of CMV in solid organ transplant recipients has expanded with the approval of letermovir for CMV prophylaxis in high-risk CMV D+/R- kidney recipients, and maribavir for the treatment of refractory and resistant CMV infection. Both drugs offer significant improvement when compared to standard anti-CMV therapies; letermovir was as efficacious for CMV prevention, whereas maribavir was more effective in treating refractory and resistant CMV infections. Both letermovir and maribavir have favorable safety profiles compared to CMV DNA polymerase inhibitors, without the risk of neutropenia and leukopenia associated with ganciclovir and renal toxicities associated with foscarnet and cidofovir. Moreover, letermovir and maribavir are orally bioavailable, which allows convenient outpatient treatment. However, letermovir and maribavir have a significant drug interaction potential in solid organ transplant recipients, resulting in higher levels of calcineurin inhibitors (cyclosporine and tacrolimus) and mTOR inhibitors (sirolimus and everolimus). Both letermovir and maribavir are CMV-specific and do not have clinical efficacy against other herpes viruses. Thus, there is a need for additional antiviral drugs to prevent herpes simplex and other herpes viruses when clinically indicated. This article provides a comprehensive review of the clinical data supporting the use of letermovir and maribavir in clinical practice. The author provides perspectives on the role of these newly approved drugs in the current management landscape of CMV infection in solid organ transplantation.
Collapse
Affiliation(s)
- Raymund R Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Mallory MA, Hymas WC, Simmon KE, Pyne MT, Stevenson JB, Barker AP, Hillyard DR, Hanson KE. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J Clin Microbiol 2023; 61:e0082923. [PMID: 38092673 PMCID: PMC10729743 DOI: 10.1128/jcm.00829-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 12/20/2023] Open
Abstract
Cytomegalovirus (CMV) resistance testing by targeted next-generation sequencing (NGS) allows for the simultaneous analysis of multiple genes. We developed and validated an amplicon-based Ion Torrent NGS assay to detect CMV resistance mutations in UL27, UL54, UL56, and UL97 and compared the results to standard Sanger sequencing. NGS primers were designed to generate 83 overlapping amplicons of four CMV genes (~10 kb encompassing 138 mutation sites). An open-access software plugin was developed to perform read alignment, call variants, and interpret drug resistance. Plasmids were tested to determine NGS error rate and minor variant limit of detection. NGS limit of detection was determined using the CMV WHO International Standard and quantified clinical specimens. Reproducibility was also assessed. After establishing quality control metrics, 185 patient specimens previously tested using Sanger were reanalyzed by NGS. The NGS assay had a low error rate (<0.05%) and high accuracy (95%) for detecting CMV-associated resistance mutations present at ≥5% in contrived mixed populations. Mutation sites were reproducibly sequenced with 40× coverage when plasma viral loads were ≥2.6 log IU/mL. NGS detected the same resistance-associated mutations identified by Sanger in 68/69 (98.6%) specimens. In 16 specimens, NGS detected 18 resistance mutations that Sanger failed to detect; 14 were low-frequency variants (<20%), and six would have changed the drug resistance interpretation. The NGS assay showed excellent agreement with Sanger and generated high-quality sequence from low viral load specimens. Additionally, the higher resolution and analytic sensitivity of NGS potentially enables earlier detection of antiviral resistance.
Collapse
Affiliation(s)
- Melanie A. Mallory
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Weston C. Hymas
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Keith E. Simmon
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Michael T. Pyne
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Jeffery B. Stevenson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Adam P. Barker
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David R. Hillyard
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly E. Hanson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
5
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
6
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
7
|
Abstract
Maribavir was approved by the U.S. Food and Drug Administration in November 2021 for the treatment of adult and pediatric patients with post-transplant cytomegalovirus (CMV) infection/disease that is refractory to treatment (with or without genotypic resistance) with ganciclovir, valganciclovir, cidofovir, or foscarnet. Maribavir is an oral benzimidazole riboside with potent and selective multimodal anti-CMV activity. It utilizes a novel mechanism of action which confers activity against CMV strains that are resistant to traditional anti-CMV agents, and also offers a more favorable safety profile relative to the dose-limiting side effects of previously available therapies. Maribavir was initially studied as an agent for CMV prophylaxis in solid organ and hematopoietic stem cell recipients, but initial phase III trials failed to meet clinical efficacy endpoints. It has been more recently studied as a therapeutic agent at higher doses for refractory-resistant (R-R) CMV infections with favorable outcomes. After an overview of maribavir's chemistry and clinical pharmacology, this review will summarize clinical efficacy, safety, tolerability, and resistance data associated with maribavir therapy.
Collapse
|
8
|
Santos Bravo M, Plault N, Sánchez-Palomino S, Rodríguez C, Navarro Gabriel M, Mosquera MM, Fernández Avilés F, Suarez-Lledó M, Rovira M, Bodro M, Moreno A, Linares L, Cofan F, Berengua C, Esteva C, Cordero E, Martin-Davila P, Aranzamendi M, Pérez Jiménez AB, Vidal E, Fernández Sabé N, Len O, Hantz S, Alain S, Marcos MÁ. Genotypic and phenotypic study of antiviral resistance mutations in refractory cytomegalovirus infection. J Infect Dis 2022; 226:1528-1536. [PMID: 35993155 DOI: 10.1093/infdis/jiac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
This study describes the genotypic and phenotypic characterisation of novel human cytomegalovirus (HCMV) genetic variants of a cohort of 94 clinically-resistant HCMV patients. Antiviral-resistant mutations were detected in the UL97, UL54 and UL56 target genes of 25/94 (26.6%) patients. The genotype-phenotype correlation study resolved the status of 5 uncharacterised UL54 DNA polymerase (G441S, A543V, F460S, R512C, A928T) and 2 UL56 terminase (F345L, P800L) mutations found in clinical isolates. A928T conferred high triple-resistance to ganciclovir, foscarnet and cidofovir, and A543V had 10-fold reduced susceptibility to cidofovir. Viral growth assays showed G441S, A543V, F345L and P800L impaired viral growth capacities compared with wild-type AD169 HCMV. 3D modelling predicted A543V and A928T phenotypes but not R512C, reinforcing the need for individual characterisation of mutations by recombinant phenotyping. Extending mutation databases is crucial to optimize treatments and to improve the assessment of patients with resistant/refractory HCMV infection.
Collapse
Affiliation(s)
- Marta Santos Bravo
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Nicolas Plault
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sonsoles Sánchez-Palomino
- AIDS Research Group, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic I Provincial de Barcelona, University of Barcelona, Barcelona, Spain
| | - Cristina Rodríguez
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Mireia Navarro Gabriel
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - María Mar Mosquera
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Francesc Fernández Avilés
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - María Suarez-Lledó
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Frederic Cofan
- Renal Transplantation Unit, Department of Nephrology. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carla Berengua
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Esteva
- Molecular Microbiology Unit, Hospital Universitari Sant Joan de Déu, Barcelona, Spain. Malalties Prevenibles amb Vacunes, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona. Centre of Biomedical Research for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine. Viral and Infectious Diseases in Immunodeficient Group. Institute of Biomedicine of Seville (IBiS). Virgen del Rocio University Hospital. University of Seville. Seville, Spain
| | | | - Maitane Aranzamendi
- Microbiology Department. Hospital Universitario de Cruces, Donostia, Gipuzkoa, Spain
| | - Ana Belén Pérez Jiménez
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Elisa Vidal
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Nuria Fernández Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, Insitut D'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sebastien Hantz
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sophie Alain
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - María Ángeles Marcos
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | | |
Collapse
|
9
|
Abstract
Human cells encode up to 15 DNA polymerases with specialized functions in chromosomal DNA synthesis and damage repair. In contrast, complex DNA viruses, such as those of the herpesviridae family, encode a single B-family DNA polymerase. This disparity raises the possibility that DNA viruses may rely on host polymerases for synthesis through complex DNA geometries. We tested the importance of error-prone Y-family polymerases involved in translesion synthesis (TLS) to human cytomegalovirus (HCMV) infection. We find most Y-family polymerases involved in the nucleotide insertion and bypass of lesions restrict HCMV genome synthesis and replication. In contrast, other TLS polymerases, such as the polymerase ζ complex, which extends past lesions, was required for optimal genome synthesis and replication. Depletion of either the polζ complex or the suite of insertion polymerases demonstrate that TLS polymerases suppress the frequency of viral genome rearrangements, particularly at GC-rich sites and repeat sequences. Moreover, while distinct from HCMV, replication of the related herpes simplex virus type 1 is impacted by host TLS polymerases, suggesting a broader requirement for host polymerases for DNA virus replication. These findings reveal an unexpected role for host DNA polymerases in ensuring viral genome stability.
Collapse
|
10
|
Gandhi RG, Kotton CN. Evaluating the Safety of Maribavir for the Treatment of Cytomegalovirus. Ther Clin Risk Manag 2022; 18:223-232. [PMID: 35308097 PMCID: PMC8926008 DOI: 10.2147/tcrm.s303052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose of Review Cytomegalovirus (CMV) infections are a common complication in solid organ (SOT) and hematopoietic stem cell transplant (HSCT) recipients, leading to increased morbidity and mortality. Currently available treatment options have reduced the burden of infection, but utilization of these agents can be limited by toxicities such as nephrotoxicity and/or myelosuppression as well as emergence of resistance. The expansion of our current armamentarium towards CMV infection is crucial. Here, we review an emerging therapy, maribavir, and the safety and efficacy of this potential new agent for the prophylaxis and treatment of CMV infections including resistant/refractory disease. Recent Findings Maribavir is a novel agent with CMV activity approved by Federal Food and Drug Administration (FDA) in December 2021 for resistant/refractory disease. Compared to currently available treatment for CMV infection, maribavir has a unique mechanism of action, retains activity against most (val)ganciclovir resistant strains, provides a more predictable pharmacokinetic profile, and fewer severe toxicities. Maribavir has been studied in phase 2 and 3 studies with ongoing phase 3 studies. While maribavir failed to meet the primary endpoints in the initial phase 3 study for prophylaxis therapy in allogeneic-HSCT and liver transplant recipients, results from the phase 2 study when used for pre-emptive therapy after HSCT show similar efficacy to valganciclovir, and results from the phase 3 study examining resistant/refractory disease demonstrate superiority to investigator-initiated therapy of (val)ganciclovir, foscarnet, or cidofovir. Summary Maribavir provides a new agent for the management of resistant/refractory CMV infection. Results of the recently published phase 3 study provide further insight into the role of this novel therapy.
Collapse
Affiliation(s)
- Ronak G Gandhi
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
- Correspondence: Ronak G Gandhi, Senior Attending Pharmacist – Infectious Diseases, Department of Pharmacy, Massachusetts General Hospital, 55 Fruit Street, GRB 005, Boston, MA02114, USA, Tel +1 617-643-6570, Fax +1 617-726-9232, Email
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Santos Bravo M, Plault N, Sánchez Palomino S, Mosquera Gutierrez MM, Fernández Avilés F, Suarez Lledo M, Sabé Fernández N, Rovira M, Alain S, Marcos Maeso MÁ. Phenotype and genotype study of novel C480F maribavir-ganciclovir cross-resistance mutation detected in hematopoietic stem cell and solid organ transplanted patients. J Infect Dis 2021; 224:1024-1028. [PMID: 33475730 DOI: 10.1093/infdis/jiab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Two kidney and hematopoietic stem-cell transplant recipients received maribavir (MBV) after cytomegalovirus (CMV) infection clinically resistant to standard therapy. Both patients achieved CMV-DNA clearance within 30 and 18 days, however, the UL97 C480F variant emerged causing recurrent CMV infection after cumulative 2 months of MBV and 15 or 4 weeks of valganciclovir/gangciclovir treatment, respectively. C480F was not detected under ganciclovir before MBV treatment. Recombinant phenotyping showed C480F conferred the highest level of MBV resistance and ganciclovir cross-resistance, with impaired viral growth. Clinical follow-up, genotypic and phenotypic studies are essential for the assessment and optimization of patients with suspected MBV resistance.
Collapse
Affiliation(s)
- Marta Santos Bravo
- Microbiology Department, Hospital Clinic I Provincial de Barcelona. Institut of Global Health of Barcelona (ISGlobal), Barcelona, Spain
| | - Nicolas Plault
- National Reference Center for Cytomegaloviruses, Microbiology Department, CHU Limoges, UMR Inserm 1092, Limoges, France
| | | | - María Mar Mosquera Gutierrez
- Microbiology Department, Hospital Clinic I Provincial de Barcelona. Institut of Global Health of Barcelona (ISGlobal), Barcelona, Spain
| | - Francesc Fernández Avilés
- Bone Marrow Transplant Unit, Hematology Department, Hospital Clínic i Provincial. IDIBAPS, Institut Josep Carreras, Barcelona, Spain
| | - María Suarez Lledo
- Bone Marrow Transplant Unit, Hematology Department, Hospital Clínic i Provincial. IDIBAPS, Institut Josep Carreras, Barcelona, Spain
| | - Nuria Sabé Fernández
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Hematology Department, Hospital Clínic i Provincial. IDIBAPS, Institut Josep Carreras, Barcelona, Spain
| | - Sophie Alain
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - M Ángeles Marcos Maeso
- Microbiology Department, Hospital Clinic I Provincial de Barcelona. Institut of Global Health of Barcelona (ISGlobal), Barcelona, Spain
| |
Collapse
|
12
|
Resistant or refractory cytomegalovirus infections after hematopoietic cell transplantation: diagnosis and management. Curr Opin Infect Dis 2020; 32:565-574. [PMID: 31567572 DOI: 10.1097/qco.0000000000000607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Refractory or resistant cytomegalovirus (CMV) infections are challenging complications after hematopoietic cell transplantation (HCT). Most refractory or resistant CMV infections are associated with poor outcomes and increased mortality. Prompt recognition of resistant or refractory CMV infections, understanding the resistance pathways, and the treatment options in HCT recipients are imperative. RECENT FINDINGS New definitions for refractory and resistant CMV infections in HCT recipients have been introduced for future clinical trials. Interestingly, refractory CMV infections are more commonly encountered in HCT recipients when compared with resistant CMV infections. CMV terminase complex mutations in UL56, UL89, and UL51 could be associated with letermovir resistance; specific mutations in UL56 are the most commonly encountered in clinical practice. Finally, brincidofovir, maribavir, letermovir, and CMV-specific cytotoxic T-cell therapy expanded our treatment options for refractory or resistant CMV infections. SUMMARY Many advances have been made to optimize future clinical trials for management of refractory or resistant CMV infections, and to better understand new resistance mechanisms to novel drugs. New drugs or strategies with limited toxicities are needed to improve outcomes of difficult to treat CMV infections in HCT recipients.
Collapse
|
13
|
The Cytomegalovirus Protein Kinase pUL97:Host Interactions, Regulatory Mechanisms and Antiviral Drug Targeting. Microorganisms 2020; 8:microorganisms8040515. [PMID: 32260430 PMCID: PMC7232230 DOI: 10.3390/microorganisms8040515] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that undergo close interaction with host factors including viral-cellular multiprotein complexes. The HCMV protein kinase pUL97 represents a viral cyclin-dependent kinase ortholog (vCDK) that determines the efficiency of HCMV replication via phosphorylation of viral and cellular substrates. A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has been discussed; however, the most pronounced pUL97-dependent phenotype could be assigned to viral nuclear egress, as illustrated by deletion of the UL97 gene or pharmacological pUL97 inhibition. Despite earlier data pointing to a cyclin-independent functionality, experimental evidence increasingly emphasized the role of pUL97-cyclin complexes. Consequently, the knowledge about pUL97 involvement in host interaction, viral nuclear egress and additional replicative steps led to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in vitro and in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97 in antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and henceforward include pUL97-specific kinase inhibitors. Among a number of interesting small molecules analyzed in experimental and preclinical stages, maribavir is presently investigated in clinical studies and, in the near future, might represent a first kinase inhibitor applied in the field of antiviral therapy.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of CMV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and immune-based approaches to mitigating CMV infection. RECENT FINDINGS Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3 treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine development continues, with several promising candidates currently under study. No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient is a rapidly evolving field which should translate into improvements in CMV-related outcomes.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail code L457, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antiviral Res 2020; 176:104711. [PMID: 31940472 DOI: 10.1016/j.antiviral.2020.104711] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/22/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) drug resistance mutation maps are updated with recent information for polymerase inhibitors, the terminase inhibitor letermovir and the UL97 kinase inhibitor maribavir. Newly mapped mutations and their phenotypes provide more detail on cross-resistance properties and suggest the need to expand the CMV gene regions covered in diagnostic testing. Next-generation deep sequencing technology offers a more sensitive, higher resolution view of emerging antiviral resistance and is recommended for use in clinical trials. Issues of standardization and diagnostic utility in comparison with traditional Sanger sequencing remain unresolved. Quality control is important for the accurate and reproducible detection of mutant viral populations in clinical specimens.
Collapse
|
16
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
17
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
18
|
Strang BL, Asquith CRM, Moshrif HF, Ho CMK, Zuercher WJ, Al-Ali H. Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data. PLoS One 2018; 13:e0201321. [PMID: 30048526 PMCID: PMC6062112 DOI: 10.1371/journal.pone.0201321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
Chemogenomic approaches involving highly annotated compound sets and cell based high throughput screening are emerging as a means to identify novel drug targets. We have previously screened a collection of highly characterized kinase inhibitors (Khan et al., Journal of General Virology, 2016) to identify compounds that increase or decrease expression of a human cytomegalovirus (HCMV) protein in infected cells. To identify potential novel anti-HCMV drug targets we used a machine learning approach to relate our phenotypic data from the aforementioned screen to kinase inhibition profiling of compounds used in this screen. Several of the potential targets had no previously reported role in HCMV replication. We focused on one potential anti-HCMV target, MAPK4K, and identified lead compounds inhibiting MAP4K4 that have anti-HCMV activity with little cellular cytotoxicity. We found that treatment of HCMV infected cells with inhibitors of MAP4K4, or an siRNA that inhibited MAP4K4 production, reduced HCMV replication and impaired detection of IE2-60, a viral protein necessary for efficient HCMV replication. Our findings demonstrate the potential of this machine learning approach to identify novel anti-viral drug targets, which can inform the discovery of novel anti-viral lead compounds.
Collapse
Affiliation(s)
- Blair L. Strang
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Christopher R. M. Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hanan F. Moshrif
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Catherine M-K Ho
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Katz Drug Discovery Center, University of Miami, Miami, Florida, United States of America
- Department of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
19
|
Mirarab A, Mohebbi A, Moradi A, Javid N, Vakili MA, Tabarraei A. Frequent pUL27 Variations in HIV-Infected Patients. Intervirology 2017; 59:262-266. [PMID: 28402975 DOI: 10.1159/000471484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Drug-resistant isolates of human cytomegalovirus (HCMV) have led to the development of new anti-HCMV drugs. Maribavir (MBV) is a novel inhibitor of the HCMV viral kinase. Resistance to MBV is mapped to gene UL27, a viral nuclear protein. In this study, we investigated UL27 polymorphisms in MBV-naive HIV-positive and HCMV congenitally infected clinical samples. METHODS DNA was extracted from 20 CMV-positive HIV (9/20) and congenitally infected (11/20) patients and used for UL27 polymerase chain reaction amplification. Sanger sequencing and multiple sequence alignment of products was performed. RESULTS K90 was the most prevalent polymorphism in both HIV-positive and congenitally infected patients. Polymorphisms Q54, D123, and R107 (10%) were seen in more than one sample. There were significantly more polymorphisms in the HIV-positive samples (p = 0.038). CONCLUSION HCMV pUL27 is highly variable in adult immunocompromised HIV-positive patients.
Collapse
Affiliation(s)
- Azam Mirarab
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Antiviral Chemistry & Chemotherapy's Current Antiviral Agents FactFile 2006 (1st Edition) the DNA Viruses. Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Antiviral Chemistry & Chemotherapy's Current Antiviral Agents FactFile 2006 (1st edition): The RNA Viruses with DNA Intermediates (Retroviruses). Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
22
|
Antiviral Chemistry & Chemotherapy'sCurrent Antiviral Agents FactFile 2006 (1st edition) the RNA viruses. Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Cherng BPZ, Tan TT, Tan BH. Resistant cytomegalovirus infection in renal transplant recipients. PROCEEDINGS OF SINGAPORE HEALTHCARE 2015. [DOI: 10.1177/2010105815611811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Resistant cytomegalovirus infection is a significant problem in the transplant population including renal transplant recipients. A combination of factors including receipt of potent immunosuppression, high viral loads and suboptimal levels of anti-cytomegalovirus antivirals leads to emergence of resistant strains. Reports of associated poor graft survival and mortality demonstrate the potential pathogenic nature of such strains. Genotypic and phenotypic resistance testing are available for laboratory diagnosis of resistant cytomegalovirus infection and may help guide therapy. Various agents, including novel and newly minted antivirals and treatment approaches have been employed, with variable success. Thus, in spite of major advances in both diagnostics and therapeutics, management of resistant cytomegalovirus infection in renal transplant recipients remains a challenging prospect.
Collapse
Affiliation(s)
| | - Thuan Tong Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| |
Collapse
|
24
|
Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection. J Virol 2015. [PMID: 26223645 DOI: 10.1128/jvi.00986-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.
Collapse
|
25
|
Inhibition of human cytomegalovirus replication by artemisinins: effects mediated through cell cycle modulation. Antimicrob Agents Chemother 2015; 59:3870-9. [PMID: 25870074 DOI: 10.1128/aac.00262-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/09/2015] [Indexed: 12/15/2022] Open
Abstract
Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition.
Collapse
|
26
|
Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. Antiviral Res 2014; 101:12-25. [DOI: 10.1016/j.antiviral.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|
27
|
Bommer M, Michel D. Prevention of cytomegalovirus disease in patients with impaired cell-mediated immunity – is there a need for maribavir? Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.842166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Chou S, Hakki M, Villano S. Effects on maribavir susceptibility of cytomegalovirus UL97 kinase ATP binding region mutations detected after drug exposure in vitro and in vivo. Antiviral Res 2012; 95:88-92. [PMID: 22664236 DOI: 10.1016/j.antiviral.2012.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022]
Abstract
Resistance to the experimental human cytomegalovirus (CMV) UL97 kinase inhibitor maribavir has been mapped to UL97 mutations at codons 353, 397, 409 and 411, in the kinase ATP-binding region, and to mutations in the UL27 gene. We studied the maribavir susceptibility phenotypes of additional UL97 mutations observed in vitro and in clinical trials, and the effect of simultaneous mutation in both UL97 and UL27. In vitro selection under maribavir identified a new locus of UL97 mutation within the conserved kinase p-loop (L337M), which conferred low grade maribavir resistance (3.5-fold increased EC50) without ganciclovir cross-resistance. During maribavir Phase III CMV prevention clinical trials, three previously unknown UL97 sequence variants were detected in plasma samples after 27-98 days of drug exposure (I324V, S334G and S386L). These variants did not confer any drug resistance despite proximity to mutations that confer maribavir resistance. The UL27 resistance mutation R233S, when added to strains containing UL97 mutations L337M or V353A, doubled their maribavir EC50s. These results expand the range of UL97 maribavir-resistance mutations into another part of the kinase ATP-binding region, but offer no genotypic evidence that development of drug resistance affected the outcomes of Phase III maribavir clinical trials after drug exposure of up to 14 weeks. There is a potential for increased maribavir resistance in UL27-UL97 double mutants.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
29
|
Estudios de resistencia. ¿Cuándo están indicados? Enferm Infecc Microbiol Clin 2011; 29 Suppl 6:24-7. [DOI: 10.1016/s0213-005x(11)70053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Maribavir and human cytomegalovirus-what happened in the clinical trials and why might the drug have failed? Curr Opin Virol 2011; 1:555-62. [PMID: 22440913 DOI: 10.1016/j.coviro.2011.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 02/07/2023]
Abstract
We summarize the history of the clinical drug development of maribavir for its use as prophylaxis in stem-cell transplant recipients. We highlight key aspects in the design and interpretation of the results of the dose escalation phase II maribavir study that may have contributed to the negative findings on the phase III trials. We discuss key aspects of study design that should be considered in the study of new interventions needed to advance the prevention and treatment of CMV in transplant recipients.
Collapse
|
31
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a lifelong asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life-threatening end-organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long-term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled preclinical animal models but species specificity of human CMV precludes the direct study of the virus in an animal model. AREAS COVERED This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. EXPERT OPINION Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients, there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important as an effective CMV vaccine remains an elusive goal. In this regard, greater emphasis should be placed on suitable preclinical animal models and greater collaboration between industry and academia.
Collapse
Affiliation(s)
- Alistair McGregor
- University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, MN 55455, USA.
| | | |
Collapse
|
32
|
Hakki M, Drummond C, Houser B, Marousek G, Chou S. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection. Antiviral Res 2011; 92:313-8. [PMID: 21906628 DOI: 10.1016/j.antiviral.2011.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
Abstract
Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596-599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
33
|
Reitsma JM, Savaryn JP, Faust K, Sato H, Halligan BD, Terhune SS. Antiviral inhibition targeting the HCMV kinase pUL97 requires pUL27-dependent degradation of Tip60 acetyltransferase and cell-cycle arrest. Cell Host Microbe 2011; 9:103-14. [PMID: 21320693 DOI: 10.1016/j.chom.2011.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/22/2010] [Accepted: 01/20/2011] [Indexed: 11/18/2022]
Abstract
Infection with the β-herpesvirus human cytomegalovirus (HCMV) is lifelong, causing limited disease in healthy adults, but life threatening in immunocompromised individuals. The viral kinase pUL97, a functional ortholog of cellular cyclin-dependent kinases (CDKs), is critical for HCMV replication and a target for antiviral drug development. Upon kinase inhibition, drug-resistant strains emerge with mutations in UL27, an HCMV gene of unknown function. Using a proteomics approach, we discovered that pUL27 is necessary and sufficient to degrade Tip60, a host acetyltransferase and interacting partner of HIV Tat. Consistent with this, the expression of Tat restored antiviral inhibition of an otherwise resistant HCMV strain. The functional consequence of Tip60 degradation was the induction of the CDK inhibitor p21(Waf1/Cip1) and cell-cycle arrest, representing changes necessary for the antiviral effects of pUL97 inhibition. Consequently, either increasing p21(Waf1/Cip1) expression or decreasing Tip60 levels improved the antiviral activity of the HCMV kinase inhibitor maribavir.
Collapse
Affiliation(s)
- Justin M Reitsma
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | | | |
Collapse
|
34
|
Prichard MN, Kern ER. The search for new therapies for human cytomegalovirus infections. Virus Res 2011; 157:212-21. [PMID: 21095209 PMCID: PMC3068221 DOI: 10.1016/j.virusres.2010.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Ganciclovir (GCV), the therapy of choice for human cytomegalovirus (CMV) infections and foscarnet, a drug used to treat GCV-resistant CMV infections was approved more than twenty years ago. Although cidofovir and a prodrug of GCV have since been added to the armamentarium, a highly effective drug without significant toxicities has yet to be approved. Such a therapeutic agent is required for treatment of immunocompromised hosts and infants, which bear the greatest burden of disease. The modest antiviral activity of existing drugs is insufficient to completely suppress viral replication, which results in the selection of drug-resistant variants that remain pathogenic, continue to replicate, and contribute to disease. Sustained efforts, largely in the biotech industry and academia, have identified highly active lead compounds that have progressed into clinical studies with varying levels of success. A few of these compounds inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapies. Some of the more promising drugs will be discussed with an emphasis on those progressing to clinical studies. Their antiviral activity both in vitro and in vivo, spectrum of antiviral activity, and mechanism of action will be reviewed to provide an update on the progress of potential new therapies for CMV infections.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233-1711, USA.
| | | |
Collapse
|
35
|
Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 2010; 24:809-33. [PMID: 20674805 DOI: 10.1016/j.idc.2010.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B.
Collapse
Affiliation(s)
- Lynne Strasfeld
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
36
|
Dropulic LK, Cohen JI. Update on new antivirals under development for the treatment of double-stranded DNA virus infections. Clin Pharmacol Ther 2010; 88:610-9. [PMID: 20881959 PMCID: PMC3426500 DOI: 10.1038/clpt.2010.178] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
All the currently available antiviral agents used in the treatment of double-stranded (ds) DNA viruses, with the exception of interferon-α, inhibit the same target, the viral DNA polymerase. With increasing reports of the development of resistance of herpes simplex virus (HSV), cytomegalovirus (CMV), and hepatitis B virus (HBV) to some of these drugs, new antiviral agents are needed to treat these infections. Additionally, no drugs have been approved to treat several DNA virus infections, including those caused by adenovirus, smallpox, molluscum contagiosum, and BK virus. We report the status of 10 new antiviral drugs for the treatment of dsDNA viruses. CMX-001 has broad activity against dsDNA viruses; 3 helicase-primase inhibitors, maribavir, and FV-100 have activity against certain herpesviruses; ST-246 inhibits poxviruses; GS-9191 inhibits papillomaviruses; and clevudine and emtricitabine are active against HBV. Most of these drugs have completed at least phase I trials in humans, and many are in additional clinical trials.
Collapse
Affiliation(s)
- Lesia K. Dropulic
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892
| |
Collapse
|
37
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
Affiliation(s)
- Nell S Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
38
|
Abstract
Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B.
Collapse
Affiliation(s)
- Lynne Strasfeld
- Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, mail code L457, Portland, Oregon 97239, phone: 503-418-0136
| | - Sunwen Chou
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, mail code L457, Portland, Oregon 97239, phone: 503-273-5115
| |
Collapse
|
39
|
Chevillotte M, von Einem J, Meier BM, Lin FM, Kestler HA, Mertens T. A new tool linking human cytomegalovirus drug resistance mutations to resistance phenotypes. Antiviral Res 2010; 85:318-27. [DOI: 10.1016/j.antiviral.2009.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/02/2009] [Accepted: 10/10/2009] [Indexed: 11/25/2022]
|
40
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
41
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
42
|
Maribavir inhibits epstein-barr virus transcription in addition to viral DNA replication. J Virol 2009; 83:12108-17. [PMID: 19759127 DOI: 10.1128/jvi.01575-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although many drugs inhibit the replication of Epstein-Barr virus (EBV) in cell culture systems, there is still no drug that is effective and approved for use in primary EBV infection. More recently, maribavir (MBV), an l-ribofuranoside benzimidazole, has been shown to be a potent and nontoxic inhibitor of EBV replication and to have a mode of action quite distinct from that of acyclic nucleoside analogs such as acyclovir (ACV) that is based primarily on MBV's ability to block the phosphorylation of target proteins by EBV and human cytomegalovirus protein kinases. However, since the antiviral mechanisms of the drug are complex, we have carried out a comprehensive analysis of the effects of MBV on the RNA expression levels of all EBV genes with a quantitative real-time reverse transcription-PCR-based array. We show that in comparisons with ACV, the RNA expression profiles produced by the two drugs are entirely different, with MBV causing a pronounced inhibition of multiple viral mRNAs and with ACV causing virtually none. The results emphasize the different modes of action of the two drugs and suggest that the action of MBV may be linked to indirect effects on the transcription of EBV genes through the interaction of BGLF4 with multiple viral proteins.
Collapse
|
43
|
Sanchez Puch SI, Mathet VL, Porta M, Cuestas ML, Oubiña JR, Videla CM, Salomón HE. Single and multiple mutations in the human cytomegalovirus UL97 gene and their relationship to the enzymatic activity of UL97 kinase for ganciclovir phosphorylation. Antiviral Res 2009; 84:194-8. [PMID: 19712701 DOI: 10.1016/j.antiviral.2009.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 08/10/2009] [Accepted: 08/19/2009] [Indexed: 11/17/2022]
Abstract
In this study we determined that the double mutant M460V/D605E in the UL97 gene of an HCMV isolate from an immunocompromised patient (MMT isolate) is related to resistance to ganciclovir (GCV) therapy. Our results suggest that the aspartic acid-to-glutamic acid substitution at codon 605 may be associated with a natural polymorphism of the UL97 gene, and not with positive selection pressure exerted by the antiviral drug. We also determined that GCV resistance due to the M460V mutation in the HCMV UL97 gene is not offset by a second mutation (D605E) at codon 605. Furthermore, we showed that when the two mutations related to GCV resistance were simultaneously detected in the same HCMV construct, virus-drug resistance might be enhanced in comparison to that of the single mutants studied separately. To our knowledge for the first time, seven of 12 amino acid changes (F102L, D118V, M330T, T400A, R507P and C511R and I533V) in the UL97 gene of an isolate are herein reported.
Collapse
Affiliation(s)
- Silvia I Sanchez Puch
- Centro de Referencia para el SIDA, Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina-Universidad de Buenos Aires, Paraguay 2155, piso 11, (C1121ABG)-CABA, Argentina.
| | | | | | | | | | | | | |
Collapse
|
44
|
Human cytomegalovirus UL28 and UL29 open reading frames encode a spliced mRNA and stimulate accumulation of immediate-early RNAs. J Virol 2009; 83:10187-97. [PMID: 19625400 DOI: 10.1128/jvi.00396-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have identified a spliced transcript that contains sequences from the HCMV UL29 and UL28 open reading frames. It contains amino-terminal UL29 sequences followed by UL28 sequences, and it includes a poly(A) signal derived from the 3'-untranslated region following the UL26 open reading frame. UL29/28 RNA is expressed with early kinetics, and a virus containing a FLAG epitope inserted at the amino terminus of UL29 expressed a tagged approximately 79-kDa protein, pUL29/28, that was detected at 6 h postinfection. The virus also expressed a less-abundant tagged 41-kDa protein, which corresponds in size to a protein that could be produced by translation of an unspliced UL29/28 transcript. Consistent with this prediction, both unspliced and spliced UL29/28 transcript was present in RNA isolated from polysomes. FLAG-tagged protein from the UL29/28 locus accumulated within nuclear viral replication centers during the early phase of infection. Late after infection it was present in the cytoplasm as well, and the protein was present and resistant to proteinase treatment in partially purified preparations of viral particles. Disruption of the UL29/28 locus by mutation resulted in a 10-fold decrease in the levels of DNA replication along with a similar reduction in virus yield. Quantitative reverse transcription-PCR analysis revealed an approximately 2-fold decrease in immediate-early gene expression at 4 to 10 h postinfection compared to the wild-type virus, and transient expression of pUL29/28 activated the major immediate-early promoter. Our results argue that the UL29/28 locus contributes to activation of immediate-early gene expression.
Collapse
|
45
|
Hantz S, Couvreux A, Champier G, Trapes L, Cotin S, Denis F, Bouaziz S, Alain S. Conserved domains and structure prediction of human cytomegalovirus UL27 protein. Antivir Ther 2009. [DOI: 10.1177/135965350901400510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background The human cytomegalovirus (HCMV) nuclear UL27 protein (pUL27) could be involved at the stage of nuclear egress. Maribavir is a new anti-HCMV drug that targets nuclear egress through direct inhibition of the HCMV serine–threonine kinase, UL97 protein (pUL97). Because maribavir- resistance-related mutations are observed in both proteins, pUL27 is thought to interfere with pUL97 activity; however, its mechanism of action remains unclear. Methods As there is no available crystal structure for pUL27 or any known structures of its homologous proteins, we attempted to identify pUL27 functional domains by sequence analysis, identification of conserved domains, structure prediction and matching with previously known maribavir resistance mutations. Results The UL27 sequence analysis of 20 HCMV wild-type strains and 8 ganciclovir-resistant HCMV strains allowed us to describe four conserved domains, to localize the putative phosphorylation sites and to identify protein–protein interface domains, suggesting that pUL27 could interact with either pUL97 or itself. Conclusions Although the function of pUL27 is still unknown in the HCMV replication cycle, our approach identified target domains that appeared to be essential to the function of pUL27. This work provides a better understanding on the relative importance of each pUL27 mutation and could form the basis of later comparison analyses, when a three-dimensional structure of a pUL27 homologue will be available.
Collapse
Affiliation(s)
- Sébastien Hantz
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
| | - Anthony Couvreux
- Unité de Pharmacologie Chimique & Génétique, Université Paris Descartes, INSERM, CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Gaël Champier
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
- SAS B Cell Design, Faculté de Médecine, Limoges, France
| | - Laurène Trapes
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
| | - Sébastien Cotin
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
| | - François Denis
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique & Génétique, Université Paris Descartes, INSERM, CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Sophie Alain
- Centre National de Référence des Cytomégalovirus, Université de Limoges, EA3175, INSERM, Equipe Avenir, Limoges, France
| |
Collapse
|
46
|
Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D. Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 2009; 10:191-209. [PMID: 19236193 DOI: 10.1517/14656560802678138] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review discusses the management of resistant cytomegalovirus and prevention strategies for fatal therapy failures. Five drugs, ganciclovir/valganciclovir, cidofovir, foscarnet and fomivirsen, have been approved so far for the treatment of human cytomegalovirus (HCMV) diseases. Except for fomivirsen, all of the approved drugs share the same target molecule, the viral DNA polymerase. The emergence of drug-resistant HCMV has also been reported for all of them. For optimal care of patients, the clinical virologist has to provide the most meaningful assays for monitoring of therapy and early detection of emerging drug-resistant HCMV. Additionally, a quantitative drug monitoring would be helpful. New antiviral agents are urgently needed with less adverse effects, good oral bioavailability and possibly novel targets or mechanisms of action to avoid cross-resistance and to improve the ability to suppress the selection of resistant virus strains by combination therapy. Compounds like maribavir, leflunomide and artesunate, which exhibit anti-HCMV activity in vitro and in patients need to be evaluated in clinical studies. Besides these, new therapy approaches like immunotherapy or new diagnostic techniques like pyrosequencing have to be considered in the future.
Collapse
Affiliation(s)
- Andreas Schreiber
- Universitätsklinikum Ulm, Institut für Virologie, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Delayed onset CMV disease in solid organ transplant recipients. Transpl Immunol 2009; 21:1-9. [DOI: 10.1016/j.trim.2008.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
|
48
|
Chou S. Diverse cytomegalovirus UL27 mutations adapt to loss of viral UL97 kinase activity under maribavir. Antimicrob Agents Chemother 2009; 53:81-5. [PMID: 18981262 PMCID: PMC2612169 DOI: 10.1128/aac.01177-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/16/2008] [Accepted: 10/24/2008] [Indexed: 01/10/2023] Open
Abstract
In vitro resistance to maribavir (MBV), a cytomegalovirus UL97 kinase inhibitor currently in clinical trials, is known to result from viral UL97 mutations that confer moderate to high-level resistance and UL27 mutations that confer low-level resistance. To add to the four reported UL27 mutations, cytomegalovirus isolates or strains were propagated under MBV. Four clinical isolates evolved UL27 mutations, which were first detected after 8 to 30 passages under drug selection. In three separate experiments, laboratory strain T2294, which contained an exonuclease mutation, developed UL27 mutations at 10 to 12 passages under MBV. Most of these isolates and strains also developed a UL97 mutation, commonly T409M, before or after the appearance of the UL27 mutation. The passage of two laboratory strains genetically defective in UL97, in the absence of MBV, likewise resulted in UL27 mutations. The nine UL27 mutations observed included multiple instances of point, stop, and frameshift mutations, which were individually transferred to a reference CMV strain and which were shown to confer two- to threefold increases in MBV inhibitory concentrations. In contrast, seven common UL27 amino acid changes found in baseline clinical isolates conferred no MBV resistance. The mutants with UL27 mutations had slightly attenuated growth. The frequent mutation of UL27 suggests that its normal expression is mildly disadvantageous to the virus in the absence of UL97 kinase activity, whether the latter results from MBV inhibition or a genetic defect. Although the function of UL27 is unknown, it does not appear to be a direct antiviral target for MBV.
Collapse
Affiliation(s)
- Sunwen Chou
- Department of Veterans Affairs Medical Center, Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
49
|
Chou S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol 2008; 18:233-46. [PMID: 18383425 DOI: 10.1002/rmv.574] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the human CMV UL97 kinase gene are a major mechanism of viral resistance to two anti-CMV drugs, ganciclovir (GCV) and maribavir (MBV). GCV, the most widely used and established therapy for CMV, is a substrate for the UL97 kinase. Well-characterised GCV-resistance mutations at UL97 codons 460, 520 and 590-607 impair the phosphorylation of GCV that is necessary for its antiviral activity, presumably by altering substrate recognition. In contrast, MBV is an inhibitor of the UL97 kinase and is the first new CMV therapy to reach later stage clinical trials in many years. No MBV-resistant CMV isolates have yet been detected in clinical trials, but after culture propagation under drug, UL97 mutations that confer moderate to high-level MBV resistance have been identified at codons 353, 397, 409 and 411. These mutations are located upstream of the GCV-resistance mutations and are close to the ATP-binding and catalytic domains common to all kinases, consistent with MBV acting as a small molecule ATP-competitive kinase inhibitor. So far, no UL97 mutations are known to confer resistance to both GCV and MBV.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
50
|
Abstract
Prophylactic drug therapy for cytomegalovirus (CMV) disease in stem cell and solid organ transplant recipients is effective and simple to implement, with oral ganciclovir and oral valganciclovir as the primary agents. The main problems with the ganciclovir derivatives are myelotoxicity and development of resistance. The new antiviral drug, maribavir, in Phase III clinical trials of CMV prophylaxis after stem cell and liver transplantation, works through a mechanism distinct from that of ganciclovir and shows no myelotoxicity or cross-resistance. The primary toxicity is headache and taste disturbance. If the clinical trials are effective, it is expected that maribavir will be available in 2009. The availability of a new antiviral agent will help in the control of the persistent bane of transplant care.
Collapse
Affiliation(s)
- Mark D Pescovitz
- Indiana University Medical Center, Department of Surgery, MS 2031, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| |
Collapse
|