1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2025; 100:116-130. [PMID: 39387681 PMCID: PMC11625990 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences‐SantéÉcole Normale Supérieure de LyonLyonFrance
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
| | - Françoise Porteu
- Institut Gustave RoussyINSERM U1287 Université Paris SaclayVillejuifFrance
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de LyonUMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon BérardLyonFrance
- ErVimmuneLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Vincent Alcazer
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
- Université Claude Bernard Lyon 1LyonFrance
- Service d'hématologie CliniqueCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre‐BéniteFrance
| |
Collapse
|
3
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Evans EF, Saraph A, Tokuyama M. Transactivation of Human Endogenous Retroviruses by Viruses. Viruses 2024; 16:1649. [PMID: 39599764 PMCID: PMC11599155 DOI: 10.3390/v16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that are part the human genome and are normally silenced through epigenetic mechanisms. However, HERVs can be induced by various host and environmental factors, including viral infection, and transcriptionally active HERVs have been implicated in various physiological processes. In this review, we summarize mounting evidence of transactivation of HERVs by a wide range of DNA and RNA viruses. Though a mechanistic understanding of this phenomenon and the biological implications are still largely missing, the link between exogenous and endogenous viruses is intriguing. Considering the increasing recognition of the role of viral infections in disease, understanding these interactions provides novel insights into human health.
Collapse
Affiliation(s)
| | | | - Maria Tokuyama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Bao C, Gao Q, Xiang H, Shen Y, Chen Q, Gao Q, Cao Y, Zhang M, He W, Mao L. Human endogenous retroviruses and exogenous viral infections. Front Cell Infect Microbiol 2024; 14:1439292. [PMID: 39397863 PMCID: PMC11466896 DOI: 10.3389/fcimb.2024.1439292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
The human genome harbors many endogenous retroviral elements, known as human endogenous retroviruses (HERVs), which have been integrated into the genome during evolution due to infections by exogenous retroviruses. Accounting for up to 8% of the human genome, HERVs are tightly regulated by the host and are implicated in various physiological and pathological processes. Aberrant expression of HERVs has been observed in numerous studies on exogenous viral infections. In this review, we focus on elucidating the potential roles of HERVs during various exogenous viral infections and further discuss their implications in antiviral immunity.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuanfei Cao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Mengyu Zhang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
6
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Dai L, Fan J, Qin Z. Development of human endogenous retrovirus type K- related treatments for human diseases. J Med Virol 2024; 96:e29532. [PMID: 38497450 DOI: 10.1002/jmv.29532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Human endogenous retroviruses (HERVs) constitute approximately 8% of the human genome and have long been regarded as silent passengers within our genomes. However, the reactivation of HERVs has been increasingly linked to a range of human diseases, particularly the HERV-K (HML-2) family. Many studies are dedicated to elucidating the potential role of HERV-K in pathogenicity. While the underlying mechanisms require further investigation, targeting HERV-K transactivation emerges as a promising avenue for treating human diseases, including cancer, autoimmune disorders, neurodegenerative conditions, and infectious diseases. In this review, we summarize recent advancements in the development of HERV-K-targeted therapeutic strategies against various human diseases, including antiretroviral drugs, immunotherapy, and vaccines.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiaojiao Fan
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Yoshizaki T, Kondo S, Dochi H, Kobayashi E, Mizokami H, Komura S, Endo K. Recent Advances in Assessing the Clinical Implications of Epstein-Barr Virus Infection and Their Application to the Diagnosis and Treatment of Nasopharyngeal Carcinoma. Microorganisms 2023; 12:14. [PMID: 38276183 PMCID: PMC10820804 DOI: 10.3390/microorganisms12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Reports about the oncogenic mechanisms underlying nasopharyngeal carcinoma (NPC) have been accumulating since the discovery of Epstein-Barr virus (EBV) in NPC cells. EBV is the primary causative agent of NPC. EBV-host and tumor-immune system interactions underlie the unique representative pathology of NPC, which is an undifferentiated cancer cell with extensive lymphocyte infiltration. Recent advances in the understanding of immune evasion and checkpoints have changed the treatment of NPC in clinical settings. The main EBV genes involved in NPC are LMP1, which is the primary EBV oncogene, and BZLF1, which induces the lytic phase of EBV. These two multifunctional genes affect host cell behavior, including the tumor-immune microenvironment and EBV behavior. Latent infections, elevated concentrations of the anti-EBV antibody and plasma EBV DNA have been used as biomarkers of EBV-associated NPC. The massive infiltration of lymphocytes in the stroma suggests the immunogenic characteristics of NPC as a virus-infected tumor and, at the same time, also indicates the presence of a sophisticated immunosuppressive system within NPC tumors. In fact, immune checkpoint inhibitors have shown promise in improving the prognosis of NPC patients with recurrent and metastatic disease. However, patients with advanced NPC still require invasive treatments. Therefore, there is a pressing need to develop an effective screening system for early-stage detection of NPC in patients. Various modalities, such as nasopharyngeal cytology, cell-free DNA methylation, and deep learning-assisted nasopharyngeal endoscopy for screening and diagnosis, have been introduced. Each modality has its advantages and disadvantages. A reciprocal combination of these modalities will improve screening and early diagnosis of NPC.
Collapse
|
9
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
10
|
Li X, Wu X, Li W, Yan Q, Zhou P, Xia Y, Yao W, Zhu F. HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via linc01930/cGAS Axis in Recent-Onset Schizophrenia. Int J Mol Sci 2023; 24:3000. [PMID: 36769337 PMCID: PMC9917391 DOI: 10.3390/ijms24033000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting about 1% of individuals worldwide. Increased innate immune activation and neuronal apoptosis are common findings in schizophrenia. Interferon beta (IFN-β), an essential cytokine in promoting and regulating innate immune responses, causes neuronal apoptosis in vitro. However, the precise pathogenesis of schizophrenia is unknown. Recent studies indicate that a domesticated endogenous retroviral envelope glycoprotein of the W family (HERV-W ENV, also called ERVWE1 or syncytin 1), derived from the endogenous retrovirus group W member 1 (ERVWE1) locus on chromosome 7q21.2, has a high level in schizophrenia. Here, we found an increased serum IFN-β level in schizophrenia and showed a positive correlation with HERV-W ENV. In addition, serum long intergenic non-protein coding RNA 1930 (linc01930), decreased in schizophrenia, was negatively correlated with HERV-W ENV and IFN-β. In vitro experiments showed that linc01930, mainly in the nucleus and with noncoding functions, was repressed by HERV-W ENV through promoter activity suppression. Further studies indicated that HERV-W ENV increased IFN-β expression and neuronal apoptosis by restraining the expression of linc01930. Furthermore, HERV-W ENV enhanced cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes protein (STING) expression and interferon regulatory factor 3 (IRF3) phosphorylation in neuronal cells. Notably, cGAS interacted with HERV-W ENV and triggered IFN-β expression and neuronal apoptosis caused by HERV-W ENV. Moreover, Linc01930 participated in the increased neuronal apoptosis and expression level of cGAS and IFN-β induced by HERV-W ENV. To summarize, our results suggested that linc01930 and IFN-β might be novel potential blood-based biomarkers in schizophrenia. The totality of these results also showed that HERV-W ENV facilitated antiviral innate immune response, resulting in neuronal apoptosis through the linc01930/cGAS/STING pathway in schizophrenia. Due to its monoclonal antibody GNbAC1 application in clinical trials, we considered HERV-W ENV might be a reliable therapeutic choice for schizophrenia.
Collapse
Affiliation(s)
- Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Alldredge J, Kumar V, Nguyen J, Sanders BE, Gomez K, Jayachandran K, Zhang J, Schwarz J, Rahmatpanah F. Endogenous Retrovirus RNA Expression Differences between Race, Stage and HPV Status Offer Improved Prognostication among Women with Cervical Cancer. Int J Mol Sci 2023; 24:1492. [PMID: 36675007 PMCID: PMC9864224 DOI: 10.3390/ijms24021492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Endogenous human retroviruses (ERVs) are remnants of exogenous retroviruses that have integrated into the human genome. Using publicly available RNA-seq data from 63 cervical cancer patients, we investigated the expression of ERVs in cervical cancers. Four aspects of cervical cancer were investigated: patient ancestral background, tumor HPV type, tumor stage and patient survival. Between the racial subgroups, 74 ERVs were significantly differentially expressed, with Black Americans having 30 upregulated and 44 downregulated (including MER21C, HERV9-int, and HERVH-int) ERVs when compared to White Americans. We found that 3313 ERVs were differentially expressed between HPV subgroups, including MER41A, HERVH-int and HERVK9. There were 28 downregulated (including MLT1D and HERVH-int) and 61 upregulated (including MER41A) ERVs in locally advanced-stage compared to early-stage samples. Tissue microarrays of cervical cancer patients were used to investigate the protein expression of ERVs with protein coding potential (i.e., HERVK and ERV3). Significant differences in protein expression of ERV3 (p = 0.000905) were observed between early-stage and locally advanced-stage tumors. No significant differential expression at the protein level was found for HERVK7 (p = 0.243). We also investigated a prognostic model, supplementing a baseline prediction model using FIGO stage, age and HPV positivity with ERVs data. The expression levels of all ERVs in the HERVd were input into a Lasso-Cox proportional hazards model, developing a predictive 67-ERV panel. When ERVs expression levels were supplemented with the clinical data, a significant increase in prognostic power (p = 9.433 × 10-15) relative to that obtained with the clinical parameters alone (p = 0.06027) was observed. In summary, ERV RNA expression in cervical cancer tumors is significantly different among racial cohorts, HPV subgroups and disease stages. The combination of the expression of certain ERVs in cervical cancers with clinical factors significantly improved prognostication compared to clinical factors alone; therefore, ERVs may serve as future prognostic biomarkers and therapeutic targets. Novelty and Impact: When endogenous retroviral (ERV) expression signatures were combined with currently employed clinical prognosticators of relapse of cervical cancer, the combination outperformed prediction models based on clinical prognosticators alone. ERV expression signatures in tumor biopsies may therefore be useful to help identify patients at greater risk of recurrence. The novel ERV expression signatures or adjacent genes possibly impacted by ERV expression described here may also be targets for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jill Alldredge
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Brooke E. Sanders
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Karina Gomez
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Julie Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022; 11:cells11223619. [PMID: 36429047 PMCID: PMC9688211 DOI: 10.3390/cells11223619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The immune pathogenesis of multiple sclerosis (MS) is thought to be triggered by environmental factors in individuals with an unfavorable genetic predisposition. Epstein-Barr virus (EBV) infection is a major risk factor for subsequent development of MS. Human endogenous retroviruses (HERVs) can be activated by EBV, and might be a missing link between an initial EBV infection and the later onset of MS. In this study, we investigated differential gene expression patterns in EBV-immortalized lymphoblastoid B cell lines (LCL) from MS-affected individuals (MSLCL) and controls by using RNAseq and qRT-PCR. RNAseq data from LCL mapped to the human genome and a virtual virus metagenome were used to identify possible biomarkers for MS or disease-relevant risk factors, e.g., the relapse rate. We observed that lytic EBNA-1 transcripts seemed to be negatively correlated with age leading to an increased expression in LCL from younger PBMC donors. Further, HERV-K (HML-2) GAG was increased upon EBV-triggered immortalization. Besides the well-known transactivation of HERV-K18, our results suggest that another six HERV loci are up-regulated upon stimulation with EBV. We identified differentially expressed genes in MSLCL, e.g., several HERV-K loci, ERVMER61-1 and ERV3-1, as well as genes associated with relapses. In summary, EBV induces genes and HERV in LCL that might be suitable as biomarkers for MS or the relapse risk.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Schwarz
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alexander Tarabuko
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jutta Junghans
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Malte E. Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Frank Hoffmann
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-34-5557-7280
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses 2022; 14:v14112505. [PMID: 36423114 PMCID: PMC9694637 DOI: 10.3390/v14112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not been fully elucidated. In this work, we analyzed RNAseq data derived from infected human primary astrocytes by Zika (ZikV), Mayaro (MayV), Oropouche (OroV) and Chikungunya (ChikV) viruses, and evaluated the modulation of HERVs and their nearby genes. Our data show common HERVs expression modulation by both alphaviruses, suggesting conserved evolutionary routes of transcription regulation. A total of 15 HERVs were co-modulated by the four arboviruses, including the highly upregulated HERV4_4q22. Data on the upregulation of genes nearby to these elements in ChikV, MayV and OroV infections were also obtained, and interaction networks were built. The upregulation of 14 genes common among all viruses was observed in the networks, and 93 genes between MayV and ChikV. These genes are related to cellular processes such as cellular replication, cytoskeleton, cell vesicle traffic and antiviral response. Together, our results support the role of HERVs induction in the transcription regulation process of genes during arboviral infections.
Collapse
|
14
|
Genetic characterization and drug sensitivity study of newly derived HGBL double/triple-hit lymphoma cell lines. Blood Adv 2022; 6:5067-5071. [PMID: 35687491 PMCID: PMC9631616 DOI: 10.1182/bloodadvances.2021006709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
|
15
|
Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord 2022; 57:103318. [PMID: 35158423 DOI: 10.1016/j.msard.2021.103318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is one of the chronic inflammatory diseases with neurological disability in the central nervous system (CNS). Although the exact cause of MS is still largely unknown, both genetic and environmental factors are thought to play a role in disease risk. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. HERVs are normally silenced or expressed at low levels, although their expression is higher in MS than in the healthy population. Several studies highlighted the plausible interaction between HERVs and other MS risk factors, including viral infection like Epstein-Barr viruses and vitamin D deficiency which may lead to high expression of HERVs in these patients. Understanding how HERVs act in this scenario can improve our understanding towards MS etiology and may lead to the development of antiretroviral therapies in these patients. Here in this review, we try to examine the different HERVs expression implicated in MS and their association with EBV infection and vitamin D status.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Posso-Osorio I, Tobón GJ, Cañas CA. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J Transl Autoimmun 2021; 4:100137. [PMID: 34917914 PMCID: PMC8669383 DOI: 10.1016/j.jtauto.2021.100137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic incorporation of viruses as human endogenous retroviruses (HERVs) are components of our genome that possibly originated by incorporating ancestral of exogenous viruses. Their roles in the evolution of the human genome, gene expression, and the pathogenesis of autoimmune diseases (ADs) and neoplastic phenomena are the subject of intense research. This review analyzes the evolutionary and virological aspects of HERVs and other viruses that incorporate their genome into the human genome and have known role in the genesis of ADs. These insights are helpful to understand further the possible role in autoimmunity genesis of HERVs, other ancestral viruses no HERVs and modern viruses with the ability to incorporate into the human genome or interact with HERVs.
Collapse
Affiliation(s)
- Iván Posso-Osorio
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| | - Gabriel J Tobón
- Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia.,Department of Medical Microbiology, Immunology and Cell Biology. Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos A Cañas
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| |
Collapse
|
17
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
19
|
Wieland L, Engel K, Volkmer I, Krüger A, Posern G, Kornhuber ME, Staege MS, Emmer A. Overexpression of Endogenous Retroviruses and Malignancy Markers in Neuroblastoma Cell Lines by Medium-Induced Microenvironmental Changes. Front Oncol 2021; 11:637522. [PMID: 34026614 PMCID: PMC8138558 DOI: 10.3389/fonc.2021.637522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the commonest solid tumor outside the central nervous system in infancy and childhood with a unique biological heterogeneity. In patients with advanced, metastasizing neuroblastoma, treatment failure and poor prognosis is often marked by resistance to chemo- or immunotherapy. Thus, identification of robust biomarkers seems essential for understanding tumor progression and developing effective therapy. Here, we have studied the expression of human endogenous retroviruses (HERV) as potential targets in NB cell lines during stem-cell medium-induced microenvironmental change. Quantitative PCR revealed that relative expression of the HERV-K family and HERV-W1 ENV were increased in all three NB cell lines after incubation in stem-cell medium. Virus transcriptome analyses revealed the transcriptional activation of three endogenous retrovirus elements: HERV-R ENV (ERV3-1), HERV-E1 and HERV-Fc2 ENV (ERVFC1-1). Known malignancy markers in NB, e.g. proto-oncogenic MYC or MYCN were expressed highly heterogeneously in the three investigated NB cell lines with up-regulation of MYC and MYCN upon medium-induced microenvironmental change. In addition, SiMa cells exclusively showed a phenotype switching from loosely-adherent monolayers to low proliferating grape-like cellular aggregates, which was accompanied by an enhanced CD133 expression. Interestingly, the overexpression of HERV was associated with a significant elevation of immune checkpoint molecule CD200 in both quantitative PCR and RNA-seq analysis suggesting tumor escape mechanism in NB cell lines after incubation in serum-free stem cell medium.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
21
|
High levels of LINE-1 transposable elements expressed in Kaposi's sarcoma-associated herpesvirus-related primary effusion lymphoma. Oncogene 2020; 40:536-550. [PMID: 33188297 DOI: 10.1038/s41388-020-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is a gamma herpesvirus associated with several human malignancies. Transposable elements (TEs) are ubiquitous in eukaryotic genomes, occupying about 45% of the human genome. TEs have been linked with a variety of disorders and malignancies, though the precise nature of their contribution to many of them has yet to be elucidated. Global transcriptome analysis for differentially expressed TEs in KSHV-associated primary effusion lymphoma (PEL) cells (BCBL1 and BC3) revealed large number of differentially expressed TEs. These differentially expressed TEs include LTR transposons, long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). Further analysis of LINE-1 (L1) elements revealed expression upregulation, hypo-methylation, and transition into open chromatin in PEL. In agreement with high L1 expression, PEL cells express ORF1 protein and possess high reverse transcriptase (RT)-activity. Interestingly, inhibition of this RT-activity suppressed PEL cell growth. Collectively, we identified high expression of TEs, and specifically of L1 as a critical component in the proliferation of PEL cells. This observation is relevant for the treatment of KSHV-associated malignancies since they often develop in AIDS patients that are treated with RT inhibitors with potent inhibition for both HIV and L1 RT activity.
Collapse
|
22
|
Salavatiha Z, Soleimani-Jelodar R, Jalilvand S. The role of endogenous retroviruses-K in human cancer. Rev Med Virol 2020; 30:1-13. [PMID: 32734655 DOI: 10.1002/rmv.2142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
It is known that human endogenous retroviruses (HERVs) constitute almost 8% of the human genome. Although the expression of HERVs from the human genome is tightly regulated, different exogenous and endogenous factors could trigger HERV activation. Aberrant expression of different HERVs may potentially cause a variety of diseases such as neurological and autoimmune diseases as well as cancer. It is suggested that HERV-K can induce cancer through different mechanisms that are discussed. The interplay between some tumor viruses and HERV-K seems to be a key player in progression of viral-associated cancers because elevated levels of Rec and Np9 proteins are observed in several cancers. The frequent over expression of HERV proteins and some specific antibodies in cancer cells could be considered as suitable prognostic and therapeutic biomarkers in diagnosis and treatment of cancers. The expression of HERV proteins in cancers and development of immune responses against them may also be used as targets for cancer immunotherapy. Further studies are warranted to evaluate the role of HERVs in cancer formation and use of different HERV proteins in developing new diagnostic and therapeutic approaches for cancer treatments.
Collapse
Affiliation(s)
- Zahra Salavatiha
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Soleimani-Jelodar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Talotta R, Atzeni F, Laska MJ. The contribution of HERV-E clone 4-1 and other HERV-E members to the pathogenesis of rheumatic autoimmune diseases. APMIS 2020; 128:367-377. [PMID: 32202683 DOI: 10.1111/apm.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Human endogenous retroviruses (HERV)-E consist of a family of more than 1300 elements, stably integrated in the human genome. Some of them are full-length proviruses able to synthesize the viral proteins gag, pol and env. The reactivation of HERV-E elements has been associated to placentation, cancer and autoimmunity. In this narrative review, we aimed to report the status of the art concerning the involvement of HERV-E in rheumatic autoimmune diseases. Following a research on PubMed database, a total of 87 articles were selected. The highest amount of evidence derives from studies on systemic lupus erythematosus (SLE), whereas a few to no data are available on other immune-mediated diseases. In SLE, the hyper-expression of HERV-E clone 4-1 in peripheral blood mononuclear cells or differentiated lymphocytes has been associated with disease activity and autoantibody production. It is likely that HERV-E take part to the pathogenesis of rheumatic autoimmune diseases but additional research is needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, Azienda Ospedaliera "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
24
|
Zhu S, Chen J, Xiong Y, Kamara S, Gu M, Tang W, Chen S, Dong H, Xue X, Zheng ZM, Zhang L. Novel EBV LMP-2-affibody and affitoxin in molecular imaging and targeted therapy of nasopharyngeal carcinoma. PLoS Pathog 2020; 16:e1008223. [PMID: 31905218 PMCID: PMC6964910 DOI: 10.1371/journal.ppat.1008223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/16/2020] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is closely linked to several human malignancies including endemic Burkitt’s lymphoma, Hodgkin’s lymphoma and nasopharyngeal carcinomas (NPC). Latent membrane protein 2 (LMP-2) of EBV plays a pivotal role in pathogenesis of EBV-related tumors and thus, is a potential target for diagnosis and targeted therapy of EBV LMP-2+ malignant cancers. Affibody molecules are developing as imaging probes and tumor-targeted delivery of small molecules. In this study, four EBV LMP-2-binding affibodies (ZEBV LMP-212, ZEBV LMP-2132, ZEBV LMP-2137, and ZEBV LMP-2142) were identified by screening a phage-displayed LMP-2 peptide library for molecular imaging and targeted therapy in EBV xenograft mice model. ZEBV LMP-2 affibody has high binding affinity for EBV LMP-2 and accumulates in mouse tumor derived from EBV LMP-2+ xenografts for 24 h after intravenous (IV) injection. Subsequent fusion of Pseudomonas exotoxin PE38KDEL to the ZEBV LMP-2 142 affibody led to production of Z142X affitoxin. This fused Z142X affitoxin exhibits high cytotoxicity specific for EBV+ cells in vitro and significant antitumor effect in mice bearing EBV+ tumor xenografts by IV injection. The data provide the proof of principle that EBV LMP-2-speicifc affibody molecules are useful for molecular imaging diagnosis and have potentials for targeted therapy of LMP-2-expressing EBV malignancies. Molecular imaging diagnosis and targeted therapy have been successfully used for several types of tumors, but not yet applied to diagnose or treat EBV-associated NPC. Affibody molecules are small proteins engineered to bind to a large number of target proteins with high affinity, and therefore, can be developed as potential biopharmaceutical drugs for molecular diagnosis and therapeutic applications. In the present study, we screened and characterized EBV LMP-2-specific affibodies and evaluated their usage in molecular imaging of LMP-2 expressing cells and EBV LMP-2 tumor-bearing mice. Subsequently, we engineered and obtained an EBV LMP-2 affitoxin based on EBV LMP-2-binding affibodies and demonstrated its targeted cytotoxicity for EBV+ cell lines in vitro and in vivo. Our data indicate that the EBV LMP-2-specific affibody and its derived affitoxin are useful for diagnosis of LMP-2 expressing cells and targeted therapy of EBV-derived, LMP-2+ malignancies.
Collapse
Affiliation(s)
- Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yirong Xiong
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Meiping Gu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wanlin Tang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shao Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Haiyan Dong
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (ZMZ); (LZ)
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- * E-mail: (ZMZ); (LZ)
| |
Collapse
|
25
|
Endogenous Avian Leukosis Virus in Combination with Serotype 2 Marek's Disease Virus Significantly Boosted the Incidence of Lymphoid Leukosis-Like Bursal Lymphomas in Susceptible Chickens. J Virol 2019; 93:JVI.00861-19. [PMID: 31554689 PMCID: PMC6854487 DOI: 10.1128/jvi.00861-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023] Open
Abstract
Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation. In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek’s disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes. IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.
Collapse
|
26
|
Fishman JA, Sachs DH, Yamada K, Wilkinson RA. Absence of interaction between porcine endogenous retrovirus and porcine cytomegalovirus in pig-to-baboon renal xenotransplantation in vivo. Xenotransplantation 2018; 25:e12395. [PMID: 29624743 PMCID: PMC6158079 DOI: 10.1111/xen.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Studies of xenotransplantation from swine have identified porcine viruses as potential barriers to clinical trials. The biology of these viruses has not been extensively investigated in the in vivo xeno-environment. Enhancement of viral gene expression by viral and cellular factors acting in trans has been demonstrated for certain viruses, including bidirectional interactions between human herpesviruses and endogenous (HERV) and exogenous (HIV) retroviruses. Both porcine cytomegalovirus (PCMV) and porcine endogenous retrovirus (PERV) infections have been identified in xenografts from swine. PERV receptors exist on human cells with productive infection in vitro in permissive human target cell lines. PCMV is largely species-specific with infection restricted to the xenograft in pig-to-baboon transplants. It is unknown whether coinfection by PCMV affects the replication of PERV within xenograft tissues which might have implications for the risk of retroviral infection in the human host. METHODS A series of 11 functioning, life-supporting pig-to-baboon kidney xenografts from PERV-positive miniature swine were studied with and without PCMV co-infection. Frozen biopsy samples were analyzed using quantitative, real-time PCR with internal controls. RESULTS PERV replication was not altered in the presence of PCMV coinfection (P = .70). The absence of variation with coinfection was confirmed when PERV quantitation was expressed relative to simultaneous cellular GAPDH levels with or without PCMV coinfection (P = .59). CONCLUSIONS PCMV coinfection does not alter the replication of PERV in life-supporting renal xenotransplantation in vivo in baboons.
Collapse
Affiliation(s)
- Jay A Fishman
- Infectious Disease Division and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David H Sachs
- Columbia Center for Translational Immunology, Departments of Medicine and Surgery, Columbia University, New York, NY, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Departments of Medicine and Surgery, Columbia University, New York, NY, USA
| | - Robert A Wilkinson
- Infectious Disease Division and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Dai L, Del Valle L, Miley W, Whitby D, Ochoa AC, Flemington EK, Qin Z. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene 2018; 37:4534-4545. [PMID: 29743595 PMCID: PMC6195842 DOI: 10.1038/s41388-018-0282-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers such as Kaposi's sarcoma (KS), which represents the most common AIDS-associated malignancy that lacks effective treatment options. Despite its clear role in AIDS malignancies, the fact that only a small set of KSHV-infected patients will eventually develop these tumors implies that additional co-factors are required for the development of KSHV-related cancers. In the current study, we demonstrate for the first time that KSHV de novo infection or viral latent proteins are able to transactivate human endogenous retrovirus K (HERV-K) through a variety of cellular signaling pathways and transcriptional factors. Moreover, we found that HERV-K transactivation, particularly activation of its encoded oncogenic NP9 protein, plays an important role in KSHV pathogenesis and tumorigenesis in vitro and in vivo. Our data provide innovative insights into the mechanisms of HERV-K transactivation contributing to viral oncogenesis, which may represent a promising target for KS treatment.
Collapse
Affiliation(s)
- Lu Dai
- Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Augusto C Ochoa
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zhiqiang Qin
- Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
28
|
Gröger V, Cynis H. Human Endogenous Retroviruses and Their Putative Role in the Development of Autoimmune Disorders Such as Multiple Sclerosis. Front Microbiol 2018; 9:265. [PMID: 29515547 PMCID: PMC5826199 DOI: 10.3389/fmicb.2018.00265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral germ line infections of human ancestors and make up ~8% of the human genome. Under physiological conditions, these elements are frequently inactive or non-functional due to deactivating mutations and epigenetic control. However, they can be reactivated under certain pathological conditions and produce viral transcripts and proteins. Several disorders, like multiple sclerosis or amyotrophic lateral sclerosis are associated with increased HERV expression. Although their detailed contribution to individual diseases has yet to be elucidated, an increasing number of studies in vitro and in vivo suggest HERVs as potent modulators of the immune system. They are able to affect the transcription of other immune-related genes, interact with pattern recognition receptors, and influence the positive and negative selection of developing thymocytes. Interestingly, HERV envelope proteins can both stimulate and suppress immune responses based on different mechanisms. In the light of HERV proteins becoming an emerging drug target for autoimmune-related disorders and cancer, we will provide an overview on recent findings of the complex interactions between HERVs and the human immune system with a focus on autoimmunity.
Collapse
Affiliation(s)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| |
Collapse
|
29
|
Medina J, Charvet B, Leblanc P, Germi R, Horvat B, Marche PN, Perron H. [Endogenous retroviral sequences in the human genome can play a physiological or pathological role]. Med Sci (Paris) 2017; 33:397-403. [PMID: 28497735 DOI: 10.1051/medsci/20173304009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human endogenous retroviruses (HERV) represent a large part of our genome and the few elements that have retained a potential of expression still remain "dormant" in physiological conditions. In some instances, they can be awakened by environmental factors activating their expression. The best studied conditions of HERV activation are infections caused by microorganisms such as viruses of the Herpesvirus family. This activation can thus lead to the expression of pathogenic proteins such as envelope proteins belonging to the HERV-W and HERV-K families, respectively involved in Multiple Sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Endogenous retroviral proteins can also acquire a physiological function beneficial for humans. This is the case of Syncytin-1 from the HERV-W family, that is involved in placenta formation.
Collapse
Affiliation(s)
- Julie Medina
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France
| | - Benjamin Charvet
- CIRI, Centre International de Recherche en Infectiologie; - Inserm, U1111, Lyon, France - CNRS, UMR5308, Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - Laboratoire d'Excellence ECOFECT, Lyon, France
| | - Pascal Leblanc
- Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - UMR 5239 CNRS-ENS, Université Lyon 1, Lyon, France
| | - Raphaële Germi
- Laboratoire de Virologie, Institut de Biologie et Pathologie, CHU de Grenoble, France - Institut de Biologie Structurale, UMR 5075 CEA/CNRS/UGA, Grenoble, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie; - Inserm, U1111, Lyon, France - CNRS, UMR5308, Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - Laboratoire d'Excellence ECOFECT, Lyon, France
| | - Patrice N Marche
- Inserm U1209, Grenoble, France - Institut Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes
| | - Hervé Perron
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - GeNeuro, 18, chemin des Aulx, 1228 Plan-Les-Ouates, Genève, Suisse
| |
Collapse
|
30
|
Tao C, Simpson S, Taylor BV, van der Mei I. Association between human herpesvirus & human endogenous retrovirus and MS onset & progression. J Neurol Sci 2016; 372:239-249. [PMID: 28017222 DOI: 10.1016/j.jns.2016.11.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the role of Epstein-Barr virus (EBV), human herpesvirus 6 (HHV6) and human endogenous retroviruses (HERVs) in the onset and progression of multiple sclerosis (MS). Although EBV has been established as one of the causal factors in MS onset, its role in MS progression is still uncertain. Moreover, interactions between EBV and other risk factor on MS development still need more investment. With less consistent evidence than EBV, HHV6 has also been implicated in the pathogenesis of MS; moreover, it showed a closer connection with the disease activity. Recent studies found that HERVs were associated with the development and progression of MS. Some antiviral treatments have shown promise for clinical interventions in the future. Future studies are yet needed to fully clarify the role of these agents in MS onset and disease course and the modes by which they realise these effects.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Australia.
| |
Collapse
|
31
|
Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses. Arch Virol 2016; 162:89-101. [PMID: 27686071 DOI: 10.1007/s00705-016-3086-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/21/2016] [Indexed: 02/01/2023]
Abstract
Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates and have been implicated in a variety of human diseases, including cancer. However, the characteristic expression patterns of ERVs, particularly in virus-induced tumours, is not fully clear. DNA methylation was analysed by bisulfite pyrosequencing, and gene expression was analysed by RT-qPCR. In this study, we first found that the endogenous avian retrovirus ALVE1 was highly expressed in some chicken tissues (including the heart, bursa, thymus, and spleen) at 2 days of age, but its expression was markedly decreased at 35 days of age. In contrast, the CpG methylation level of ALVE1 was significantly lower in heart and bursa at 2 days than at 35 days of age. Moreover, we found that the expression of ALVE1 was significantly inhibited in chicken embryo fibroblast cells (CEFs) and MSB1 cells infected with avian leukosis virus subgroup J (ALVJ) and reticuloendotheliosis virus (REV) at the early stages of infection. In contrast, the expression of the ALVE1 env gene was significantly induced in CEFs and MSB1 cells infected with Marek's disease virus (MDV). However, the methylation and expression levels of the ALVE1 long terminal repeat (LTR) did not show obvious alterations in response to viral infection. The present study revealed the expression patterns of ALVE1 in a variety of chicken organs and tissues and in chicken cells in response to avian tumour virus infection. These findings may be of significance for understanding the role and function of ERVs that are present in the host genome.
Collapse
|
32
|
Dreyfus DH. Gene sharing between Epstein–Barr virus and human immune response genes. Immunol Res 2016; 65:37-45. [DOI: 10.1007/s12026-016-8814-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155. Arch Virol 2016; 161:1623-32. [PMID: 27016933 DOI: 10.1007/s00705-016-2833-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 01/17/2023]
Abstract
Endogenous retroviruses (ERVs) are important retroelements that reside in host genomes. However, ERV expression patterns and regulatory mechanisms are poorly understood. In this study, chicken embryo fibroblasts (CEFs) and MSB1 cells infected with Marek's disease virus (MDV) exhibited significantly increased expression of env from the endogenous retrovirus ALVE. In contrast, env expression was significantly lower in CEF and MSB1 cells infected with exogenous avian leukosis virus J (ALVJ) at the early infection stage. Furthermore, env was found to be ubiquitously expressed in various chicken tissues, with high expression in certain tissues at 2 days of age and low levels in most tissues, including immune organs (thymus, spleen and bursa) as well as the brain and heart, at 35 days of age. Sequence analysis revealed miR-155 target sites in env transcripts, which was verified using a firefly luciferase reporter assay, and treatment with miR-155 agomir significantly decreased levels of env transcripts in MSB1 and CEF cells. Together, these findings suggest that the env gene from the endogenous retrovirus ALVE is regulated by miR-155.
Collapse
|
34
|
Christensen T. Human endogenous retroviruses in neurologic disease. APMIS 2016; 124:116-26. [DOI: 10.1111/apm.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
|
35
|
Bergallo M, Pinon M, Galliano I, Montanari P, Daprà V, Gambarino S, Calvo PL. Epstein Barr virus induces HERV-K and HERV-W expression in pediatrics liver transplant recipients? Minerva Pediatr 2015; 72:145-148. [PMID: 26677952 DOI: 10.23736/s0026-4946.16.04472-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Human endogenous retrovirus (HER Vs) constitute approximately 8% of the human genome. Induction of HER V transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. Aim of the present study was to verify whether HER V-W and K activation by Epstein Barr Virus (EBV) might occur also in vivo, during EBV infection, in pediatric liver transplant recipients. METHODS A total of 35 pediatric liver transplant (LT) patients who received LT at the University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital were included. The samples were grouped in EBV negative and positive. RESULTS We found that HER V-K, and HER V-W expression levels showed no differences between the two groups (P=0.533 HERV-W and P=0.6017 HERV-K). There was not was a significant difference P=0.1894 and 0.1705 for HERV-W and -K respectively when we compared transplant recipients' group with high EBV viral load vs. others transplant recipients. CONCLUSIONS Our data suggest that EBV does not facilitate in-vivo HERV activation.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy - .,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy -
| | - Michele Pinon
- Unit of Pediatric Gastroenterology and Hepatology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy.,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy.,Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Valentina Daprà
- Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Stefano Gambarino
- Laboratory of Citoimmunodiagnostics, Città della Salute e della Scienza, Regina Margherita Children's Hospital, Turin, Italy
| | - Pier L Calvo
- Unit of Pediatric Gastroenterology and Hepatology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| |
Collapse
|
36
|
Nadeau MJ, Manghera M, Douville RN. Inside the Envelope: Endogenous Retrovirus-K Env as a Biomarker and Therapeutic Target. Front Microbiol 2015; 6:1244. [PMID: 26617584 PMCID: PMC4643131 DOI: 10.3389/fmicb.2015.01244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022] Open
Abstract
Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease.
Collapse
Affiliation(s)
- Marie-Josée Nadeau
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada
| | - Mamneet Manghera
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
37
|
Bergallo M, Galliano I, Montanari P, Gambarino S, Mareschi K, Ferro F, Fagioli F, Tovo PA, Ravanini P. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol 2015; 68:28-31. [PMID: 26071331 DOI: 10.1016/j.jcv.2015.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human endogenous retrovirus (HERVs) constitute approximately 8% of the human genome. Induction of HERV transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. OBJECTIVES The aim of this study was to evaluate HERV-K and -W pol gene expression in kidney transplant recipients and to investigate the possible relationship between HERVs gene expression and CMV infection in these patients. STUDY DESIGN Thirty-three samples of kidney transplant patients and twenty healthy blood donors were used to analyze, HERV-K and -W pol gene RNA expression by relative quantitative relative Real-Time PCR. RESULT We demonstrated that HERVs pol gene expression levels were higher in kidney transplant recipients than in healthy subjects. Moreover, HERV-K and -W pol gene expression was significantly higher in the group of kidney transplant recipients with high CMV viral load than in the groups with no or moderate CMV viral load. CONCLUSION Our data suggest that CMV may facilitate in vivo HERV activation.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, 10136 Turin, Italy; Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, 10136 Turin, Italy; Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, 10136 Turin, Italy; Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Stefano Gambarino
- Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Katia Mareschi
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, 10136 Turin, Italy; Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Francesca Ferro
- Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, 10136 Turin, Italy; Laboratory of Citoimmunodiagnostics, University Hospital City of Science and Health of Turin, Regina Margherita Children's Hospital, Turin, Italy.
| | - Paolo Ravanini
- Laboratory of Molecular Virology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy.
| |
Collapse
|
38
|
Lin X, Chen S, Xue X, Lu L, Zhu S, Li W, Chen X, Zhong X, Jiang P, Sename TS, Zheng Y, Zhang L. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2015; 13:492-501. [PMID: 25864917 DOI: 10.1038/cmi.2015.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195∼232 and LMP2aa419∼436. The EBV-LMP2m protein was expressed in E. coli BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients.
Collapse
Affiliation(s)
- Xiaoyun Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shao Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Lijun Lu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shanli Zhu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangmin Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiaozhi Zhong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Jiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Torsoo Sophia Sename
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Vincendeau M, Göttesdorfer I, Schreml JMH, Wetie AGN, Mayer J, Greenwood AD, Helfer M, Kramer S, Seifarth W, Hadian K, Brack-Werner R, Leib-Mösch C. Modulation of human endogenous retrovirus (HERV) transcription during persistent and de novo HIV-1 infection. Retrovirology 2015; 12:27. [PMID: 25886562 PMCID: PMC4375885 DOI: 10.1186/s12977-015-0156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The human genome contains multiple LTR elements including human endogenous retroviruses (HERVs) that together account for approximately 8-9% of the genomic DNA. At least 40 different HERV groups have been assigned to three major HERV classes on the basis of their homologies to exogenous retroviruses. Although most HERVs are silenced by a variety of genetic and epigenetic mechanisms, they may be reactivated by environmental stimuli such as exogenous viruses and thus may contribute to pathogenic conditions. The objective of this study was to perform an in-depth analysis of the influence of HIV-1 infection on HERV activity in different cell types. RESULTS A retrovirus-specific microarray that covers major HERV groups from all three classes was used to analyze HERV transcription patterns in three persistently HIV-1 infected cell lines of different cellular origins and in their uninfected counterparts. All three persistently infected cell lines showed increased transcription of multiple class I and II HERV groups. Up-regulated transcription of five HERV taxa (HERV-E, HERV-T, HERV-K (HML-10) and two ERV9 subgroups) was confirmed by quantitative reverse transcriptase PCR analysis and could be reversed by knock-down of HIV-1 expression with HIV-1-specific siRNAs. Cells infected de novo by HIV-1 showed stronger transcriptional up-regulation of the HERV-K (HML-2) group than persistently infected cells of the same origin. Analysis of transcripts from individual members of this group revealed up-regulation of predominantly two proviral loci (ERVK-7 and ERVK-15) on chromosomes 1q22 and 7q34 in persistently infected KE37.1 cells, as well as in de novo HIV-1 infected LC5 cells, while only one single HML-2 locus (ERV-K6) on chromosome 7p22.1 was activated in persistently infected LC5 cells. CONCLUSIONS Our results demonstrate that HIV-1 can alter HERV transcription patterns of infected cells and indicate a correlation between activation of HERV elements and the level of HIV-1 production. Moreover, our results suggest that the effects of HIV-1 on HERV activity may be far more extensive and complex than anticipated from initial studies with clinical material.
Collapse
Affiliation(s)
- Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. .,Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Ingmar Göttesdorfer
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Julia M H Schreml
- Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Armand G Ngounou Wetie
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
| | - Markus Helfer
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Kramer
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Kamyar Hadian
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. .,Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. .,Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
40
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Emmer A, Staege MS, Kornhuber ME. The retrovirus/superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol 2014; 34:1087-96. [PMID: 25138639 PMCID: PMC11488904 DOI: 10.1007/s10571-014-0100-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/09/2014] [Indexed: 12/21/2022]
Abstract
The pathogenesis of multiple sclerosis (MS) is as yet unknown. Commonly, MS is assumed to be due to an autoimmune inflammation of the central nervous system (CNS). Neurodegeneration is regarded to be a secondary reaction. This concept is increasingly being challenged. Human endogenous retroviruses (HERV) that could be locally activated in the CNS have been proposed as an alternative concept. HERV-encoded envelope proteins (env) can act as strong immune stimulators (superantigens). Thus, slow disease progression following neurodegeneration might be induced by re-activation of HERV expression directly, while relapses in parallel to inflammation might be secondary to the expression of HERV-encoded superantigens. It has been shown previously that T-cell superantigens are capable to induce a cellular inflammatory reaction in the CNS of experimental animals similar to that in MS. Furthermore, B-cell superantigens have been shown to activate blood leucocytes in vitro to produce immunoglobulin in an oligoclonal manner. It remains to be established, whether the outlined hypothesis accords with all known features of MS. Furthermore, anti-HERV agents may be taken into consideration to enrich and improve MS therapy.
Collapse
Affiliation(s)
- Alexander Emmer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany,
| | | | | |
Collapse
|
42
|
Marrão G, Habib M, Paiva A, Bicout D, Fallecker C, Franco S, Fafi-Kremer S, Simões da Silva T, Morand P, Freire de Oliveira C, Drouet E. Epstein-Barr virus infection and clinical outcome in breast cancer patients correlate with immune cell TNF-α/IFN-γ response. BMC Cancer 2014; 14:665. [PMID: 25213133 PMCID: PMC4171567 DOI: 10.1186/1471-2407-14-665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For nearly two decades now, various studies have reported detecting the Epstein-Barr virus (EBV) in breast cancer (BC) cases. Yet the results are unconvincing, and their interpretation has remained a matter of debate. We have now presented prospective data on the effect of EBV infection combined with survival in patients enrolled in a prospective study. METHODS We assessed 85 BC patients over an 87-month follow-up period to determine whether EBV infection, evaluated by qPCR in both peripheral blood mononuclear cells (PBMCs) and tumor biopsies, interacted with host cell components that modulate the evolution parameters of BC. We also examined the EBV replicating form by the titration of serum anti-ZEBRA antibodies. Immunological studies were performed on a series of 35 patients randomly selected from the second half of the survey, involving IFN-γ and TNF-α intracellular immunostaining tests performed via flow cytometry analysis in peripheral NK and T cells, in parallel with EBV signature. The effect of the EBV load in the blood or tumor tissue on patient survival was analyzed using univariate and multivariate analyses, combined with an analysis of covariance. RESULTS Our study represents the first ever report of the impact of EBV on the clinical outcome of BC patients, regardless of tumor histology or treatment regimen. No correlation was found between: (i) EBV detection in tumor or PBMCs and tumor characteristics; (ii) EBV and other prognostic factors. Notably, patients exhibiting anti-ZEBRA antibodies at high titers experienced poorer overall survival (p = 0.002). Those who recovered from their disease were found to have a measurable EBV DNA load, together with a high frequency of IFN-γ and TNF-α producing PBMCs (p = 0.04), which indicates the existence of a Th1-type polarized immune response in both the tumor and its surrounding tissue. CONCLUSIONS The replicative form of EBV, as investigated using anti-ZEBRA titers, correlated with poorer outcomes, whereas the latent form of the virus that was measured and quantified using the EBV tumor DNA conferred a survival advantage to BC patients, which could occur through the activation of non-specific anti-tumoral immune responses.
Collapse
Affiliation(s)
- Gina Marrão
- Université de Grenoble-Alpes, Unit for Virus Host-Cell Interactions, UMI 3265 UJF-CNRS-EMBL, CIBB, 71 Avenue des Martyrs, F-38042 Grenoble, Cedex 9, France
- Portuguese Institute for Blood and Transplantation, University Hospital, Coimbra, Portugal
| | - Mohammed Habib
- Université de Grenoble-Alpes, Unit for Virus Host-Cell Interactions, UMI 3265 UJF-CNRS-EMBL, CIBB, 71 Avenue des Martyrs, F-38042 Grenoble, Cedex 9, France
| | - Artur Paiva
- Portuguese Institute for Blood and Transplantation, University Hospital, Coimbra, Portugal
| | - Dominique Bicout
- Team Environment and Health Prediction in Populations Unit – TIMC Laboratory, UMR CNRS 5525, Université Joseph Fourier, Grenoble, France
| | - Catherine Fallecker
- Université de Grenoble-Alpes, Unit for Virus Host-Cell Interactions, UMI 3265 UJF-CNRS-EMBL, CIBB, 71 Avenue des Martyrs, F-38042 Grenoble, Cedex 9, France
| | - Sofia Franco
- Department of Gynecology, University Hospital, Coimbra, & Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira Fafi-Kremer
- Unit of Virology, University Hospital, Grenoble, France
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - Patrice Morand
- Université de Grenoble-Alpes, Unit for Virus Host-Cell Interactions, UMI 3265 UJF-CNRS-EMBL, CIBB, 71 Avenue des Martyrs, F-38042 Grenoble, Cedex 9, France
- Unit of Virology, University Hospital, Grenoble, France
| | - Carlos Freire de Oliveira
- Department of Gynecology, University Hospital, Coimbra, & Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Emmanuel Drouet
- Université de Grenoble-Alpes, Unit for Virus Host-Cell Interactions, UMI 3265 UJF-CNRS-EMBL, CIBB, 71 Avenue des Martyrs, F-38042 Grenoble, Cedex 9, France
| |
Collapse
|
43
|
Manghera M, Ferguson J, Douville R. Endogenous Retrovirus-K and Nervous System Diseases. Curr Neurol Neurosci Rep 2014; 14:488. [DOI: 10.1007/s11910-014-0488-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells. PLoS Pathog 2014; 10:e1004302. [PMID: 25101696 PMCID: PMC4125235 DOI: 10.1371/journal.ppat.1004302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. Through coevolution with their hosts, gammaherpesviruses have acquired unique genes that aid in infection of a particular host. Here we study the regulation of the MHV68 M1 gene, which encodes a protein that modulates the host immune response. Using a strategy that allowed us to identify MHV68 infected cells in mice, we have determined that M1 expression is largely limited to the antibody producing plasma cells. In addition, we show that M1 gene expression is regulated by both cellular and viral factors, which allow the virus to fine-tune gene expression in response to environmental signals. These findings provide insights into M1 function through a better understanding of how M1 expression is regulated.
Collapse
|
45
|
Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int J Cancer 2014; 137:1249-57. [PMID: 24890612 PMCID: PMC6264888 DOI: 10.1002/ijc.29003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
Harbored as relics of ancient germline infections, human endogenous retroviruses (HERVs) now constitute up to 8% of our genome. A proportion of this sequence has been co-opted for molecular and cellular processes, beneficial to human physiology, such as the fusogenic activity of the envelope protein, a vital component of placentogenesis. However, the discovery of high levels of HERV-K mRNA and protein and even virions in a wide array of cancers has revealed that HERV-K may be playing a more sinister role–a role as an etiological agent in cancer itself. Whether the presence of this retroviral material is simply an epiphenomenon, or an actual causative factor, is a hotly debated topic. This review will summarize the current state of knowledge regarding HERV-K and cancer and attempt to outline the potential mechanisms by which HERV-K could be involved in the onset and promotion of carcinogenesis.
Collapse
Affiliation(s)
- Ronan F Downey
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland.,Department of Radiation Oncology, Galway University Hospitals, Galway, Ireland
| | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Francis J Giles
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland.,HRB Clinical Research Facilities Galway & Dublin, National University of Ireland Galway and Trinity College Dublin, Galway, Ireland
| | - Sharon A Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
46
|
Virgin HW. The virome in mammalian physiology and disease. Cell 2014; 157:142-50. [PMID: 24679532 DOI: 10.1016/j.cell.2014.02.032] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023]
Abstract
The virome contains the most abundant and fastest mutating genetic elements on Earth. The mammalian virome is constituted of viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect the broad array of other types of organisms that inhabit us. Virome interactions with the host cannot be encompassed by a monotheistic view of viruses as pathogens. Instead, the genetic and transcriptional identity of mammals is defined in part by our coevolved virome, a concept with profound implications for understanding health and disease.
Collapse
Affiliation(s)
- Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Riga A, Belcastro MG, Moggi-Cecchi J. Environmental stress increases variability in the expression of dental cusps. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:397-407. [DOI: 10.1002/ajpa.22438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/08/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Riga
- Department of Biological; Geological and Environmental Sciences, University of Bologna; 40126 Bologna Italy
| | - Maria Giovanna Belcastro
- Department of Biological; Geological and Environmental Sciences, University of Bologna; 40126 Bologna Italy
| | | |
Collapse
|
48
|
Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 2013; 35:794-803. [PMID: 23864388 PMCID: PMC4352332 DOI: 10.1002/bies.201300049] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of observations have led researchers to postulate that, despite being replication-defective, human endogenous retroviruses (HERVs) may have retained the potential to cause or contribute to disease. However, mechanisms of HERV pathogenicity might differ substantially from those of modern infectious retroviruses or of the infectious precursors of HERVs. Therefore, novel pathways of HERV involvement in disease pathogenesis should be investigated. Recent technological advances in sequencing and bioinformatics are making this task increasingly feasible. The accumulating knowledge of HERV biology may also facilitate the definition and general acceptance of criteria that establish HERV pathogenicity. Here, we explore possible mechanisms whereby HERVs may cause disease and examine the evidence that either has been or should be obtained in order to decisively address the pathogenic potential of HERVs.
Collapse
Affiliation(s)
- George R Young
- Division of Virology, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
49
|
Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 2013; 10:16. [PMID: 23394165 PMCID: PMC3598470 DOI: 10.1186/1742-4690-10-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
50
|
Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C, Manetti R, Dolei A. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 2012; 7:e44991. [PMID: 23028727 PMCID: PMC3459916 DOI: 10.1371/journal.pone.0044991] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022] Open
Abstract
Background Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses. Methodology/Principal Findings In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines. Conclusions/Significance In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Luciana Poddighe
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Department of Neurosciences and MIS, University of Sassari, Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Clinical, Experimental and Oncological Medicine, University of Sassari, Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|