1
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
3
|
Wu J, Zheng H, Gong P. Crystal structure of African swine fever virus pE301R reveals a ring-shaped trimeric DNA sliding clamp. J Biol Chem 2023:104872. [PMID: 37257822 PMCID: PMC10320598 DOI: 10.1016/j.jbc.2023.104872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
African swine fever virus (ASFV) is an important animal pathogen that is causing a current ASF pandemic and affecting pork industry globally. ASFV encodes at least 150 proteins, and the functions of many of them remain to be clarified. The ASFV protein E301R (pE301R) was predicted to be a DNA sliding clamp protein homolog working as a DNA replication processivity factor. However, structural evidence was lacking to support the existence of a ring-shaped sliding clamp in large eukaryotic DNA viruses. Here we have solved a high-resolution crystal structure of pE301R and identified a canonical ring-shaped clamp comprising a pE301R trimer. Interestingly, this complete-toroidal structure is different from those of the monomeric clamp protein homolog, herpes simplex virus UL42, and the C-shaped dimeric human cytomegalovirus UL44, but highly homologous to that of the eukaryotic clamp homolog proliferating cell nuclear antigen. Moreover, pE301R has a unique N-terminal extension (NE) that is important in maintaining the trimeric form of the protein in solution, while specific features in length and surface electrostatic potential of its inter-domain connector (IDC) implies specificity in interactions with binding partners such as the viral DNA polymerase. Thus, our data pave the way for further dissection of the processivity clamp protein structural and functional diversity and ASFV DNA replication mechanisms.
Collapse
Affiliation(s)
- Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei, 430207, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei, 430207, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China; Hubei Jiangxia Laboratory, Wuhan, Hubei 430207, China.
| |
Collapse
|
4
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Wang Y, Wei Y, Wu H, Feng L, Huang L. Specific inhibition of the interaction between pseudorabies virus DNA polymerase subunits UL30 and UL42 by a synthetic peptide. Vet Microbiol 2022; 272:109517. [PMID: 35908441 DOI: 10.1016/j.vetmic.2022.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) is a ubiquitous and economically important swine alphaherpesvirus that causes devastating swine diseases worldwide. PRV-encoded DNA-dependent DNA polymerase, comprised of the catalytic subunit UL30 and the accessory subunit UL42, is essential for viral replication. PRV UL30 and UL42 act as a heterodimer with UL30 harboring inherent DNA polymerase activity and UL42 conferring processivity on the DNA polymerase holoenzyme. The formation of PRV UL30/UL42 heterodimer holoenzyme through protein-protein interactions is indispensable for viral replication. In work described here, we defined the key domains that mediate PRV UL30/UL42 interaction, and found that the 41 carboxy-terminal amino acids region of PRV UL30 is critical for its interaction with UL42. Intriguingly, a synthetic peptide corresponding to these 41 carboxy-terminal amino acid residues efficiently disrupted PRV UL30/UL42 interaction through competitively binding to UL42. These findings suggest that the peptides from the PRV DNA polymerase UL30/UL42 subunit interface may represent potential targets for designing a novel intervention strategy against PRV infection. This work further strengthens the concept that the herpesvirus DNA polymerase catalytic subunits utilize their extreme carboxy-terminal domains as a conserved mechanism to associate with their cognate accessory subunits, providing us the opportunity of designing novel antiviral agents against herpesvirus infection through disruption of the herpesvirus DNA polymerase subunit interactions.
Collapse
Affiliation(s)
- Yiping Wang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanwu Wei
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongli Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liping Huang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
6
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
7
|
Lai S, Xu M, Wang Y, Li R, Xia C, Xia S, Chen J. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus. Virulence 2021; 12:2883-2901. [PMID: 34747321 PMCID: PMC8923073 DOI: 10.1080/21505594.2021.2000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lytic replication of human cytomegalovirus (HCMV), a member of β-herpesvirus, is a highly complicated and organized process that requires its DNA polymerase processivity factor, UL44, the first-reported HCMV replication protein subjected to SUMO post-translational modification (PTM). SUMOylation plays a pleiotropic role in protein functions of host cells and infecting viruses. Particularly, formation of herpesviral replication compartments (RCs) upon infection is induced in proximity to ND10 subnuclear domains, the host cell’s intrinsic antiviral immune devices and hot SUMOylation spots, relying just on SUMOylation of their protein components to become mature and functional in restriction of the viral replication. In this study, to unveil the exact role of SUMO PTM on UL44 involved in HCMV replication, we screened and identified PIAS3, an annotated E3 SUMO ligase, as a novel UL44-interacting protein engaged in cellular SUMOylation pathway. Co-existence of PIAS3 could enhance the UBC9-based SUMO modification of UL44 specifically at its conserved 410lysine residue lying within the single canonical ψKxE SUMO Conjugation Motif (SCM). Intriguingly, we found this SCM-specific SUMOylation contributes to UL44 co-localization and interaction with subnuclear ND10 domains during infection, which in turn exerts an inhibitory effect on HCMV replication and growth. Together, these results highlight the importance of SUMOylation in regulating viral protein subnuclear localization, representing a novel way of utilizing ND10-based restriction to achieve the self-controlled slower replication and reproduction of herpesviruses.
Collapse
Affiliation(s)
- Shuyan Lai
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chuan Xia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Sisi Xia
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
| |
Collapse
|
8
|
Ghassabian H, Falchi F, Timmoneri M, Mercorelli B, Loregian A, Palù G, Alvisi G. Divide et impera: An In Silico Screening Targeting HCMV ppUL44 Processivity Factor Homodimerization Identifies Small Molecules Inhibiting Viral Replication. Viruses 2021; 13:v13050941. [PMID: 34065234 PMCID: PMC8160850 DOI: 10.3390/v13050941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein–protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.
Collapse
Affiliation(s)
- Hanieh Ghassabian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | | | - Martina Timmoneri
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
- Correspondence:
| |
Collapse
|
9
|
Di Antonio V, Palù G, Alvisi G. Live-Cell Analysis of Human Cytomegalovirus DNA Polymerase Holoenzyme Assembly by Resonance Energy Transfer Methods. Microorganisms 2021; 9:microorganisms9050928. [PMID: 33925913 PMCID: PMC8146696 DOI: 10.3390/microorganisms9050928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) genome replication is a complex and still not completely understood process mediated by the highly coordinated interaction of host and viral products. Among the latter, six different proteins form the viral replication complex: a single-stranded DNA binding protein, a trimeric primase/helicase complex and a two subunit DNA polymerase holoenzyme, which in turn contains a catalytic subunit, pUL54, and a dimeric processivity factor ppUL44. Being absolutely required for viral replication and representing potential therapeutic targets, both the ppUL44-pUL54 interaction and ppUL44 homodimerization have been largely characterized from structural, functional and biochemical points of view. We applied fluorescence and bioluminescence resonance energy transfer (FRET and BRET) assays to investigate such processes in living cells. Both interactions occur with similar affinities and can take place both in the nucleus and in the cytoplasm. Importantly, single amino acid substitutions in different ppUL44 domains selectively affect its dimerization or ability to interact with pUL54. Intriguingly, substitutions preventing DNA binding of ppUL44 influence the BRETmax of protein-protein interactions, implying that binding to dsDNA induces conformational changes both in the ppUL44 homodimer and in the DNA polymerase holoenzyme. We also compared transiently and stably ppUL44-expressing cells in BRET inhibition assays. Transient expression of the BRET donor allowed inhibition of both ppUL44 dimerization and formation of the DNA polymerase holoenzyme, upon overexpression of FLAG-tagged ppUL44 as a competitor. Our approach could be useful both to monitor the dynamics of assembly of the HCMV DNA polymerase holoenzyme and for antiviral drug discovery.
Collapse
|
10
|
Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis. Virus Res 2021; 298:198394. [PMID: 33775751 DOI: 10.1016/j.virusres.2021.198394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.
Collapse
|
11
|
Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. eLife 2020; 9:e56996. [PMID: 32845237 PMCID: PMC7498267 DOI: 10.7554/elife.56996] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Sandrine Caburet
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Rodrigo Garcia-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Anne Laure Todeschini
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Paloma Duque
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Manuel Adolfo Sánchez-Martin
- Transgenic Facility, Nucleus platform, Universidad de SalamancaSalamancaSpain
- Departamento de Medicina, Universidad de SalamancaSalamancaSpain
| | - Stavit A Shalev
- The Genetic Institute, "Emek" Medical CenterAfulaIsrael
- Bruce and Ruth Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
- Departamento de Fisiología y Farmacología, Universidad de SalamancaSalamancaSpain
| | - Reiner A Veitia
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
- Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l’Energie AtomiqueFontenay aux RosesFrance
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| |
Collapse
|
12
|
Chen H, Coseno M, Ficarro SB, Mansueto MS, Komazin-Meredith G, Boissel S, Filman DJ, Marto JA, Hogle JM, Coen DM. A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 2017; 3:112-118. [PMID: 28183184 PMCID: PMC5480311 DOI: 10.1021/acsinfecdis.6b00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.
Collapse
Affiliation(s)
- Han Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Molly Coseno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Scott B. Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - My Sam Mansueto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Sandrine Boissel
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States,Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, United States,Corresponding Author: (D.M.C.)
| |
Collapse
|
13
|
Zhukovskaya NL, Guan H, Saw YL, Nuth M, Ricciardi RP. The processivity factor complex of feline herpes virus-1 is a new drug target. Antiviral Res 2015; 115:17-20. [DOI: 10.1016/j.antiviral.2014.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
14
|
Strang BL. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells. J Gen Virol 2014; 96:239-252. [PMID: 25359764 DOI: 10.1099/vir.0.071084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
15
|
Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli. J Virol 2014; 88:11738-47. [PMID: 25078694 DOI: 10.1128/jvi.01889-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function.
Collapse
|
16
|
Lepri S, Nannetti G, Muratore G, Cruciani G, Ruzziconi R, Mercorelli B, Palù G, Loregian A, Goracci L. Optimization of Small-Molecule Inhibitors of Influenza Virus Polymerase: From Thiophene-3-Carboxamide to Polyamido Scaffolds. J Med Chem 2014; 57:4337-50. [DOI: 10.1021/jm500300r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Susan Lepri
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Giulio Nannetti
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giulia Muratore
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Renzo Ruzziconi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Giorgio Palù
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Arianna Loregian
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
17
|
Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Antiviral Res 2013; 99:318-27. [DOI: 10.1016/j.antiviral.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
18
|
Human cytomegalovirus IE1 protein disrupts interleukin-6 signaling by sequestering STAT3 in the nucleus. J Virol 2013; 87:10763-76. [PMID: 23903834 DOI: 10.1128/jvi.01197-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the canonical STAT3 signaling pathway, binding of agonist to receptors activates Janus kinases that phosphorylate cytoplasmic STAT3 at tyrosine 705 (Y705). Phosphorylated STAT3 dimers accumulate in the nucleus and drive the expression of genes involved in inflammation, angiogenesis, invasion, and proliferation. Here, we demonstrate that human cytomegalovirus (HCMV) infection rapidly promotes nuclear localization of STAT3 in the absence of robust phosphorylation at Y705. Furthermore, infection disrupts interleukin-6 (IL-6)-induced phosphorylation of STAT3 and expression of a subset of IL-6-induced STAT3-regulated genes, including SOCS3. We show that the HCMV 72-kDa immediate-early 1 (IE1) protein associates with STAT3 and is necessary to localize STAT3 to the nucleus during infection. Furthermore, expression of IE1 is sufficient to disrupt IL-6-induced phosphorylation of STAT3, binding of STAT3 to the SOCS3 promoter, and SOCS3 gene expression. Finally, inhibition of STAT3 nuclear localization or STAT3 expression during infection is linked to diminished HCMV genome replication. Viral gene expression is also disrupted, with the greatest impact seen following viral DNA synthesis. Our study identifies IE1 as a new regulator of STAT3 intracellular localization and IL-6 signaling and points to an unanticipated role of STAT3 in HCMV infection.
Collapse
|
19
|
Islam S, Firestine SM. Synthesis of Substituted Pyridyl-Pyrimidines as Potential Protein-Protein Interaction Inhibitors. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shahid Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Wayne State University; Detroit; Michigan; 48201
| | - Steven M. Firestine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Wayne State University; Detroit; Michigan; 48201
| |
Collapse
|
20
|
The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630. [PMID: 23166733 PMCID: PMC3499415 DOI: 10.1371/journal.pone.0049630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
Collapse
|
21
|
Human cytomegalovirus inhibitor AL18 also possesses activity against influenza A and B viruses. Antimicrob Agents Chemother 2012; 56:6009-13. [PMID: 22908168 DOI: 10.1128/aac.01219-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AL18, an inhibitor of human cytomegalovirus DNA polymerase, was serendipitously found to also block the interaction between the PB1 and PA polymerase subunits of influenza A virus. Furthermore, AL18 effectively inhibited influenza A virus polymerase activity and the overall replication of influenza A and B viruses. A molecular model to explain the binding of AL18 to both cytomegalovirus and influenza targets is proposed. Thus, AL18 represents an interesting lead for the development of new antivirals.
Collapse
|
22
|
Strang BL, Boulant S, Kirchhausen T, Coen DM. Host cell nucleolin is required to maintain the architecture of human cytomegalovirus replication compartments. mBio 2012; 3:e00301-11. [PMID: 22318319 PMCID: PMC3280463 DOI: 10.1128/mbio.00301-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Drastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2'-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis. IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology and
| | | | | | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology and
| |
Collapse
|
23
|
Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44. Virology 2011; 417:268-80. [PMID: 21784501 DOI: 10.1016/j.virol.2011.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/12/2011] [Accepted: 06/11/2011] [Indexed: 12/27/2022]
Abstract
The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.
Collapse
|
24
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
25
|
The carboxy-terminal segment of the human cytomegalovirus DNA polymerase accessory subunit UL44 is crucial for viral replication. J Virol 2010; 84:11563-8. [PMID: 20739543 DOI: 10.1128/jvi.01033-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amino-terminal 290 residues of UL44, the presumed processivity factor of human cytomegalovirus DNA polymerase, possess all of the established biochemical activities of the full-length protein, while the carboxy-terminal 143 residues contain a nuclear localization signal (NLS). We found that although the amino-terminal domain was sufficient for origin-dependent synthesis in a transient-transfection assay, the carboxy-terminal segment was crucial for virus replication and for the formation of DNA replication compartments in infected cells, even when this segment was replaced with a simian virus 40 NLS that ensured nuclear localization. Our results suggest a role for this segment in viral DNA synthesis.
Collapse
|
26
|
Strang BL, Geballe AP, Coen DM. Association of human cytomegalovirus proteins IRS1 and TRS1 with the viral DNA polymerase accessory subunit UL44. J Gen Virol 2010; 91:2167-75. [PMID: 20444996 PMCID: PMC3052514 DOI: 10.1099/vir.0.022640-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple proteins interacting with DNA polymerases orchestrate DNA replication. Human cytomegalovirus (HCMV) encodes a DNA polymerase that includes the presumptive processivity factor UL44. UL44 is structurally homologous to the eukaryotic DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous proteins. Previous proteomic analysis has identified the HCMV protein IRS1 as a candidate protein interacting with UL44. Nuclease-resistant reciprocal co-immunoprecipitation of UL44 with IRS1 and with TRS1, which has an amino terminus identical to that of IRS1, was observed from lysate of cells infected with viruses expressing epitope-tagged UL44, epitope-tagged IRS1 or epitope-tagged TRS1. Western blotting of protein immunoprecipitated from infected cell lysate indicated that epitope-tagged IRS1 and TRS1 do not associate simultaneously with UL44. Glutathione S-transferase pull-down experiments indicated that IRS1 and TRS1 interact with UL44 via a region that is identical in both proteins. Taken together, these data suggest that IRS1 and TRS1 may compete for association with UL44 and may affect UL44 function differentially.
Collapse
Affiliation(s)
- Blair L Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 2010; 84:1771-84. [PMID: 20007282 PMCID: PMC2812382 DOI: 10.1128/jvi.01510-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/23/2009] [Indexed: 01/04/2023] Open
Abstract
In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Steeve Boulant
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Boutolleau D, Deback C, Bressollette-Bodin C, Conan F, Aït-Arkoub Z, Imbert-Marcille BM, Agut H. Genetic analysis and putative role in resistance to antivirals of the human cytomegalovirus DNA polymerase UL44 processivity factor. Antivir Ther 2009; 14:847-52. [PMID: 19812447 DOI: 10.3851/imp1299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The human cytomegalovirus (HCMV) DNA polymerase is composed of the UL54 catalytic subunit and the UL44 accessory protein. UL44 increases the processivity of polymerase along the DNA template during replication and, incidentally, is a substrate for the UL97 phosphotransferase. The molecular mechanisms of HCMV resistance to antiviral drugs interfering with viral DNA synthesis reported so far only rely on the presence of amino acid changes within the UL97 and UL54 viral enzymes. We aimed to describe the natural polymorphism of UL44 and to analyse the changes of its amino acids potentially associated with HCMV resistance to antivirals. METHODS The full-length UL44 gene sequence was compared to that of four reference strains (including the AD169 strain) and 43 clinical strains from patients who had not received any previous anti-HCMV treatment, and 25 blood samples from 15 HCMV-infected patients experiencing therapeutic failure and exhibiting genotypic traits of HCMV resistance to antivirals. RESULTS Overall, seven different amino acid changes associated with natural polymorphisms were identified among the 433 residues of the UL44 protein, occurring at a frequency of 2.1% for five of them and 10.6% for the double change G296S+L319I. The analysis of the HCMV strains exhibiting genotypic resistance to antivirals did not show any changes in UL44 that had significant association with resistance mutations of UL97 and/or UL54. CONCLUSIONS UL44 processivity factor exhibits a very low polymorphism that does not concern the assumed functional domains of the protein. From this preliminary study, UL44 does not seem to be involved in HCMV resistance to antivirals.
Collapse
|
29
|
Bruce AG, Bakke AM, Gravett CA, DeMaster LK, Bielefeldt-Ohmann H, Burnside KL, Rose TM. The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques. Virol J 2009; 6:205. [PMID: 19922662 PMCID: PMC2785786 DOI: 10.1186/1743-422x-6-205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/18/2009] [Indexed: 11/17/2022] Open
Abstract
Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses. Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Childhood Infection and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101-1304, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
The crystal structure of PF-8, the DNA polymerase accessory subunit from Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 83:12215-28. [PMID: 19759157 DOI: 10.1128/jvi.01158-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 A. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.
Collapse
|
31
|
The flexible loop of the human cytomegalovirus DNA polymerase processivity factor ppUL44 is required for efficient DNA binding and replication in cells. J Virol 2009; 83:9567-76. [PMID: 19570866 DOI: 10.1128/jvi.00669-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphoprotein ppUL44 of the human cytomegalovirus (HCMV) DNA polymerase plays an essential role in viral replication, conferring processivity to the DNA polymerase catalytic subunit pUL54 by tethering it to the DNA. Here, for the first time, we examine in living cells the function of the highly flexible loop of ppUL44 (UL44-FL; residues 162 to 174 [PHTRVKRNVKKAP(174)]), which has been proposed to be directly involved in ppUL44's interaction with DNA. In particular, we use a variety of approaches in transfected cells to characterize in detail the behavior of ppUL44Deltaloop, a mutant derivative in which three of the five basic residues within UL44-FL are replaced by nonbasic amino acids. Our results indicate that ppUL44Deltaloop is functional in dimerization and binding to pUL54 but strongly impaired in binding nuclear structures within the nucleus, as shown by its inability to form nuclear speckles, reduced nuclear accumulation, and increased intranuclear mobility compared to wild-type ppUL44. Moreover, analysis of cellular fractions after detergent and DNase treatment indicates that ppUL44Deltaloop is strongly reduced in DNA-binding ability, in similar fashion to ppUL44-L86A/L87A, a point mutant derivative impaired in dimerization. Finally, ppUL44Deltaloop fails to transcomplement HCMV oriLyt-dependent DNA replication in cells and also inhibits replication in the presence of wild-type ppUL44, possibly via formation of heterodimers defective for double-stranded DNA binding. UL44-FL thus emerges for the first time as an important determinant for HCMV replication in cells, with potential implications for the development of novel antiviral approaches by targeting HCMV replication.
Collapse
|
32
|
Zhuang Z, Ai Y. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1081-93. [PMID: 19576301 DOI: 10.1016/j.bbapap.2009.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.
Collapse
Affiliation(s)
- Zhihao Zhuang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE, 19716, USA.
| | | |
Collapse
|
33
|
Analysis of the association of the human cytomegalovirus DNA polymerase subunit UL44 with the viral DNA replication factor UL84. J Virol 2009; 83:7581-9. [PMID: 19457994 DOI: 10.1128/jvi.00663-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The central enzyme responsible for human cytomegalovirus (HCMV) DNA synthesis is a virally encoded DNA polymerase that includes a catalytic subunit, UL54, and a homodimeric accessory subunit, UL44, the presumptive HCMV DNA polymerase processivity factor. The structure of UL44 is similar to that of the eukaryotic processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous other proteins required for faithful DNA replication. We sought to determine whether, like PCNA, UL44 is capable of interacting with multiple DNA replication proteins and, if so, whether these proteins bind UL44 at the site corresponding to where multiple proteins bind to PCNA. Initially, several proteins, including the viral DNA replication factors UL84 and UL57, were identified by mass spectrometry in immunoprecipitates of UL44 from infected cell lysate. The association of UL44/UL84, but not UL44/UL57, was confirmed by reciprocal coimmunoprecipitation of these proteins from infected cell lysates and was resistant to nuclease treatment. Yeast two-hybrid analyses demonstrated that the substitution of residues in UL44 that prevent UL44 homodimerization or abrogate the binding of UL54 to UL44 do not abrogate the UL44/UL84 interaction. Reciprocal glutathione-S-transferase (GST) pulldown experiments using bacterially expressed UL44 and UL84 confirmed these results and, further, demonstrated that a UL54-derived peptide that competes with UL54 for UL44 binding does not prevent the association of UL84 with UL44. Taken together, our results strongly suggest that UL44 and UL84 interact directly using a region of UL44 different from the UL54 binding site. Thus, UL44 can bind interacting replication proteins using a mechanism different from that of PCNA.
Collapse
|
34
|
Role of homodimerization of human cytomegalovirus DNA polymerase accessory protein UL44 in origin-dependent DNA replication in cells. J Virol 2008; 82:12574-9. [PMID: 18842734 DOI: 10.1128/jvi.01193-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presumed processivity subunit of human cytomegalovirus (HCMV) DNA polymerase, UL44, forms homodimers. The dimerization of UL44 is important for binding to DNA in vitro; however, whether it is also important for DNA replication in a cellular context is unknown. Here we show that UL44 point mutants that are impaired for dimerization, but not for nuclear localization or interaction with the C terminus of the polymerase catalytic subunit, are not capable of supporting HCMV oriLyt-dependent DNA replication in cells. These data suggest that the disruption of UL44 homodimers could represent a novel anti-HCMV strategy.
Collapse
|
35
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
36
|
Komazin-Meredith G, Petrella RJ, Santos WL, Filman DJ, Hogle JM, Verdine GL, Karplus M, Coen DM. The human cytomegalovirus UL44 C clamp wraps around DNA. Structure 2008; 16:1214-25. [PMID: 18682223 PMCID: PMC2878485 DOI: 10.1016/j.str.2008.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 02/02/2023]
Abstract
Processivity factors tether the catalytic subunits of DNA polymerases to DNA so that continuous synthesis of long DNA strands is possible. The human cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer intermediate in structure between monomeric herpes simplex virus UL42, which binds DNA directly via a basic surface, and the trimeric sliding clamp PCNA, which encircles DNA. To investigate how UL44 interacts with DNA, calculations were performed in which a 12 bp DNA oligonucleotide was docked to UL44. The calculations suggested that UL44 encircles DNA, which interacts with basic residues both within the cavity of the C clamp and in flexible loops of UL44 that complete the "circle." The results of mutational and crosslinking studies were consistent with this model. Thus, UL44 is a "hybrid" of UL42 and PCNA: its structure is intermediate between the two and its mode of interaction with DNA has elements of both.
Collapse
Affiliation(s)
- Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Webster L. Santos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory L. Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, 67000 Strasbourg, France
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Woon HG, Scott GM, Yiu KL, Miles DH, Rawlinson WD. Identification of putative functional motifs in viral proteins essential for human cytomegalovirus DNA replication. Virus Genes 2008; 37:193-202. [PMID: 18618235 DOI: 10.1007/s11262-008-0255-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 06/23/2008] [Indexed: 01/07/2023]
Abstract
Six of the eleven genes essential for Human cytomegalovirus (HCMV) DNA synthesis have been analyzed for putative structural motifs that may have a significant functional role in DNA replication. The genes studied encode for the DNA polymerase accessory protein (UL44), single-stranded DNA binding protein (UL57), primase-helicase complex (UL70, UL102, and UL105), and the putative initiator protein (UL84). The full-length open reading frames of these genes were highly conserved between ten isolates with amino acid sequence identity of >97% for all genes. Using ScanProsite software from the Expert Protein Analysis System (ExPASy) proteomics server, we have mapped putative motifs throughout these HCMV replication genes. Interesting motifs identified include casein kinase-2 (CKII) phosphorylation sites, a microbodies signal motif in UL57, and an ATP binding site in the putative UL105 helicase. Our investigations have also elucidated motif-rich regions of the UL44 DNA polymerase accessory protein and identified cysteine motifs that have potential implications for UL57 and UL70 primase. Taken together, these findings provide insights to regions of these HCMV replication proteins that are important for post-translation modification, activation, and overall function, and this information can be utilized to target further research into these proteins and advance the development of novel antiviral agents that target these processes.
Collapse
Affiliation(s)
- Heng-Giap Woon
- Virology Division, Department of Microbiology, SEALS, POWH and UNSW Research Laboratories, Prince of Wales Hospital, Randwick, NSW, Australia
| | | | | | | | | |
Collapse
|
38
|
Komazin-Meredith G, Santos WL, Filman DJ, Hogle JM, Verdine GL, Coen DM. The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J Biol Chem 2008; 283:6154-61. [PMID: 18178550 DOI: 10.1074/jbc.m708691200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.
Collapse
Affiliation(s)
- Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Loregian A, Sinigalia E, Mercorelli B, Palù G, Coen DM. Binding parameters and thermodynamics of the interaction of the human cytomegalovirus DNA polymerase accessory protein, UL44, with DNA: implications for the processivity mechanism. Nucleic Acids Res 2007; 35:4779-91. [PMID: 17617644 PMCID: PMC1950537 DOI: 10.1093/nar/gkm506] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/06/2007] [Accepted: 06/11/2007] [Indexed: 12/02/2022] Open
Abstract
The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and isothermal titration calorimetry (ITC) analysis of binding to oligonucleotides. UL44 bound directly to double-stranded DNA as short as 12 bp, with apparent dissociation constants in the nanomolar range for DNAs >18 bp, suggesting a minimum DNA length for UL44 interaction. UL44 also bound single-stranded DNA, albeit with lower affinity, and for either single- or double-stranded DNA, there was no apparent sequence specificity. ITC analysis revealed that UL44 binds to duplex DNA as a dimer. Binding was endothermic, indicating an entropically driven process, likely due to release of bound ions. Consistent with this hypothesis, analysis of the relationship between binding and ionic strength indicated that, on average, 4 +/- 1 monovalent ions are released in the interaction of each monomer of UL44 with DNA. The results taken together reveal interesting implications for how UL44 may mediate processivity.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Sinigalia
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgio Palù
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Donald M. Coen
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Alvisi G, Ripalti A, Ngankeu A, Giannandrea M, Caraffi SG, Dias MM, Jans DA. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs. Traffic 2006; 7:1322-32. [PMID: 16911590 DOI: 10.1111/j.1600-0854.2006.00477.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Dipartimento di Medicina Clinica Specialistica e Sperimentale, Sezione di Microbiologia, Università degli Studi di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Badtke MP, Cao F, Tavis JE. Combining genetic and biochemical approaches to identify functional molecular contact points. Biol Proced Online 2006; 8:77-86. [PMID: 17033698 PMCID: PMC1592461 DOI: 10.1251/bpo121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 12/03/2022] Open
Abstract
Protein-protein interactions are required for many viral and cellular functions and are potential targets for novel therapies. Here we detail a series of genetic and biochemical techniques used in combination to find an essential molecular contact point on the duck hepatitis B virus polymerase. These techniques include differential immunoprecipitation, mutagenesis and peptide competition. The strength of these techniques is their ability to identify contact points on intact proteins or protein complexes employing functional assays. This approach can be used to aid identification of putative binding sites on proteins and protein complexes which are resistant to characterization by other methods.
Collapse
Affiliation(s)
- Matthew P. Badtke
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - Feng Cao
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| |
Collapse
|
42
|
Loregian A, Coen DM. Selective anti-cytomegalovirus compounds discovered by screening for inhibitors of subunit interactions of the viral polymerase. ACTA ACUST UNITED AC 2006; 13:191-200. [PMID: 16492567 DOI: 10.1016/j.chembiol.2005.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/28/2022]
Abstract
Better drugs are needed against human cytomegalovirus (HCMV), a pathogen responsible for severe diseases in immunocompromised hosts and newborn children. We investigated whether selective inhibitors of HCMV replication could be discovered by screening for compounds that disrupt the interaction between the accessory subunit of the viral DNA polymerase, UL44, and the C-terminal 22 residues of the catalytic subunit. From approximately 50,000 small molecules, we identified 5 structurally diverse compounds that not only specifically interfere with this interaction, but also with the physical and functional interaction of UL44 with full-length catalytic subunit. These five compounds also inhibited HCMV replication with sub- to low micromolar potency, and at concentrations up to 500-fold lower than those at which they exhibited cytotoxicity. These compounds represent a promising starting point for the development of anti-HCMV drugs.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Alvisi G, Jans DA, Guo J, Pinna LA, Ripalti A. A protein kinase CK2 site flanking the nuclear targeting signal enhances nuclear transport of human cytomegalovirus ppUL44. Traffic 2006; 6:1002-13. [PMID: 16190981 DOI: 10.1111/j.1600-0854.2005.00331.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The processivity factor of the human cytomegalovirus (HCMV) DNA polymerase phosphoprotein ppUL44 plays an essential role in viral replication, showing nuclear localization in infected cells. The present study examines ppUL44's nuclear import pathway for the first time, ectopic expression of ppUL44 revealing a strong nuclear localization in transfected COS-7 and other cell types, implying that no other HCMV proteins are required for nuclear transportation and retention. We show that of the two potential nuclear localization signals (NLSs) located at amino acids 162-168 (NLS1) and 425-431 (NLS2), NLS2 is necessary and sufficient to confer nuclear localization. Moreover, using enzyme-linked immunosorbent assays and gel mobility shift assays, we show that NLS2 is recognized with high affinity by the importin (IMP) alpha/beta heterodimer. Using gel mobility shift and transient transfection assays, we find that flanking sequences containing a cluster of potential phosphorylation sites, including a consensus site for protein kinase CK2 (CK2) at Ser413 upstream of the NLS, increase NLS2-dependent IMP binding and nuclear localization, suggesting a role for these sites in enhancing UL44 nuclear transport. Results from site-directed mutagenic analysis and live-cell imaging of green fluorescent protein (GFP)-UL44 fusion protein-expressing cells treated with the CK2-specific inhibitor 4,5,6,7-tetrabromobenzotriazole are consistent with phosphorylation of Ser413 enhancing ppUL44 nuclear transport.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Dipartimento di Medicina Clinica Specialistica e Sperimentale, Sezione di Microbiologia, Università degli Studi di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
44
|
Tchesnokov EP, Gilbert C, Boivin G, Götte M. Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet. J Virol 2006; 80:1440-50. [PMID: 16415021 PMCID: PMC1346920 DOI: 10.1128/jvi.80.3.1440-1450.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the human cytomegalovirus DNA polymerase (UL54) can not only decrease but also increase susceptibility to the pyrophosphate (PP(i)) analogue foscarnet. The proximity of L802M, which confers resistance, and K805Q, which confers hypersusceptibility, suggests a possible unifying mechanism that affects drug susceptibility in one direction or the other. We found that the polymerase activities of L802M- and K805Q-containing mutant enzymes were literally indistinguishable from that of wild-type UL54; however, susceptibility to foscarnet was decreased or increased, respectively. A comparison with the crystal structure model of the related RB69 polymerase suggests that L802 and K805 are located in the conserved alpha-helix P that is implicated in nucleotide binding. Although L802 and K805 do not appear to make direct contacts with the incoming nucleotide, it is conceivable that changes at these residues could exert their effects through the adjacent, highly conserved amino acids Q807 and/or K811. Our data show that a K811A substitution in UL54 causes reductions in rates of nucleotide incorporation. The activity of the Q807A mutant is only marginally affected, while this enzyme shows relatively high levels of resistance to foscarnet. Based on these data, we suggest that L802M exerts its effects through subtle structural changes in alpha-helix P that affect the precise positioning of Q807 and, in turn, its presumptive involvement in binding of foscarnet. In contrast, the removal of a positive charge associated with the K805Q change may facilitate access or increase affinity to the adjacent Q807.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- McGill University, Department of Microbiology and Immunology, Room D-6, Duff Medical Building, 3775 University Street, Montreal, Québec, Canada H3A 2B4
| | | | | | | |
Collapse
|
45
|
Appleton BA, Brooks J, Loregian A, Filman DJ, Coen DM, Hogle JM. Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 2005; 281:5224-32. [PMID: 16371349 DOI: 10.1074/jbc.m506900200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus DNA polymerase is composed of a catalytic subunit, UL54, and an accessory protein, UL44, which has a structural fold similar to that of other processivity factors, including herpes simplex virus UL42 and homotrimeric sliding clamps such as proliferating cell nuclear antigen. Several specific residues in the C-terminal region of UL54 and in the "connector loop" of UL44 are required for the association of these proteins. Here, we describe the crystal structure of residues 1-290 of UL44 in complex with a peptide from the extreme C terminus of UL54, which explains this interaction at a molecular level. The UL54 peptide binds to structural elements similar to those used by UL42 and the sliding clamps to associate with their respective binding partners. However, the details of the interaction differ from those of other processivity factor-peptide complexes. Crucial residues include a three-residue hydrophobic "plug" from the UL54 peptide and Ile(135) of UL44, which forms a critical intramolecular hydrophobic anchor for interactions between the connector loop and the peptide. As was the case for the unliganded UL44 structure, the UL44-peptide complex forms a head-to-head dimer that could potentially form a C-shaped clamp on DNA. However, the peptide-bound structure displays subtle differences in the relative orientation of the two subdomains of the protein, resulting in a more open clamp, which we predicted would affect its association with DNA. Indeed, filter binding assays revealed that peptide-bound UL44 binds DNA with higher affinity. Thus, interaction with the catalytic subunit appears to affect both the structure and function of UL44.
Collapse
Affiliation(s)
- Brent A Appleton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Loregian A, Palù G. Disruption of the interactions between the subunits of herpesvirus DNA polymerases as a novel antiviral strategy. Clin Microbiol Infect 2005; 11:437-46. [PMID: 15882193 DOI: 10.1111/j.1469-0691.2005.01149.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most biological processes depend on the co-ordinated formation of protein-protein interactions. Besides their importance for virus replication, several interactions between virus proteins have been proposed as attractive targets for antiviral drug discovery, as the exquisite specificity of such cognate interactions affords the possibility of interfering with them in a highly specific and effective manner. There is a considerable need for new drugs active against herpesviruses, since available agents, most of which target the polymerisation activity of the virus DNA polymerase, are limited by pharmacokinetic issues, toxicity and antiviral resistance. A potential novel target for anti-herpesvirus drugs is the interaction between the two subunits of the virus DNA polymerase. This review focuses on recent developments using peptides and small molecules to inhibit protein-protein interactions between herpesvirus DNA polymerase subunits.
Collapse
Affiliation(s)
- A Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy.
| | | |
Collapse
|
47
|
Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions play a key role in various mechanisms of cellular growth and differentiation, and in the replication of pathogen organisms in host cells. Thus, inhibition of these interactions is a promising novel approach for rational drug design against a wide number of cellular and microbial targets. In the past few years, attempts to inhibit protein-protein interactions using antibodies, peptides, and synthetic or natural small molecules have met with varying degrees of success, and these will be the focus of this review.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Italy.
| | | |
Collapse
|
48
|
Tellinghuisen J. Optimizing Experimental Parameters in Isothermal Titration Calorimetry. J Phys Chem B 2005; 109:20027-35. [PMID: 16853587 DOI: 10.1021/jp053550y] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In isothermal titration calorimetry, the statistical precisions with which the equilibrium constant (K) and reaction enthalpy (DeltaH degrees ) can be estimated from data for 1:1 binding depend on a number of quantities, key among them being the products c identical with K[M](0) and h identical with DeltaH degrees [M](0), the stoichiometry range (R(m)(), ratio of total titrant X to total titrate M after the last injection), and the number of injections of titrant. A study of the statistical errors as functions of these quantities leads to the following prescription for optimizing throughput and precision: (1) Make 10 injections of titrant. (2) Set the concentrations in accord with the empirical equation R(m)() = 6.4/c(0.2) + 13/c (but no smaller than 1.1). (3) Make the starting concentration [M](0) as large as possible within the large-signal limits of the instrumentation but limited to c < 10(3) for estimating K. With this procedure, both K and [M](0) are predicted to have relative standard errors <1% over large ranges of K. Systematic errors in the concentrations, [X](0) and [M](0), are fully compensated by the "site number" or stoichiometry parameter (n). On the other hand, altering and freezing any of the fit parameters leads to a deterioration of the fit quality and to predictable changes in the other parameters. Fit divergence at very small c is avoidable through a simple redefinition of the fit parameters; however, unless n can be fixed from other information, DeltaH degrees may be statistically ill-defined in this region.
Collapse
Affiliation(s)
- Joel Tellinghuisen
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
49
|
Prichard MN, Lawlor H, Duke GM, Mo C, Wang Z, Dixon M, Kemble G, Kern ER. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2005; 2:55. [PMID: 16022730 PMCID: PMC1185570 DOI: 10.1186/1743-422x-2-55] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 07/15/2005] [Indexed: 11/10/2022] Open
Abstract
Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL, USA
| | - Heather Lawlor
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Gregory M Duke
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Chengjun Mo
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Zhaoti Wang
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Melissa Dixon
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - George Kemble
- Department of Research, MedImmune Vaccines Inc., Mountain View, CA, USA
| | - Earl R Kern
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL, USA
| |
Collapse
|
50
|
Ababou A, Ladbury JE. Survey of the year 2004: literature on applications of isothermal titration calorimetry. J Mol Recognit 2005; 19:79-89. [PMID: 16220545 DOI: 10.1002/jmr.750] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The market for commercially available isothermal titration calorimeters continues to grow as new applications and methodologies are developed. Concomitantly the number of users (and abusers) increases dramatically, resulting in a steady increase in the number of publications in which isothermal titration calorimetry (ITC) plays a role. In the present review, we will focus on areas where ITC is making a significant contribution and will highlight some interesting applications of the technique. This overview of papers published in 2004 also discusses current issues of interest in the development of ITC as a tool of choice in the determination of the thermodynamics of molecular recognition and interaction.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|