1
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
2
|
Bons E, Leemann C, Metzner KJ, Regoes RR. Long-term experimental evolution of HIV-1 reveals effects of environment and mutational history. PLoS Biol 2020; 18:e3001010. [PMID: 33370289 PMCID: PMC7793244 DOI: 10.1371/journal.pbio.3001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/08/2021] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
An often-returning question for not only HIV-1, but also other organisms, is how predictable evolutionary paths are. The environment, mutational history, and random processes can all impact the exact evolutionary paths, but to which extent these factors contribute to the evolutionary dynamics of a particular system is an open question. Especially in a virus like HIV-1, with a large mutation rate and large population sizes, evolution is expected to be highly predictable if the impact of environment and history is low, and evolution is not neutral. We investigated the effect of environment and mutational history by analyzing sequences from a long-term evolution experiment, in which HIV-1 was passaged on 2 different cell types in 8 independent evolutionary lines and 8 derived lines, 4 of which involved a switch of the environment. The experiments lasted for 240–300 passages, corresponding to approximately 400–600 generations or almost 3 years. The sequences show signs of extensive parallel evolution—the majority of mutations that are shared between independent lines appear in both cell types, but we also find that both environment and mutational history significantly impact the evolutionary paths. We conclude that HIV-1 evolution is robust to small changes in the environment, similar to a transmission event in the absence of an immune response or drug pressure. We also find that the fitness landscape of HIV-1 is largely smooth, although we find some evidence for both positive and negative epistatic interactions between mutations. Analysis of the longest evolutionary experiment with HIV-1 to-date reveals continuous viral adaptation over several years. The authors quantify the environment-specific mutations that arise and determine the fraction of mutations that co-occur with significantly different frequencies than expected by chance.
Collapse
Affiliation(s)
- Eva Bons
- Department of Environmental Systems Sciences, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail: (KJM); (RRR)
| | - Roland R. Regoes
- Department of Environmental Systems Sciences, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- * E-mail: (KJM); (RRR)
| |
Collapse
|
3
|
Sutar J, Padwal V, Nagar V, Patil P, Patel V, Bandivdekar A. Analysis of sequence diversity and selection pressure in HIV-1 clade C gp41 from India. Virusdisease 2020; 31:277-291. [PMID: 32904888 DOI: 10.1007/s13337-020-00595-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 01/31/2023] Open
Abstract
Evaluation of viral diversity is critical for the rational design of treatment modalities against Human immunodeficiency virus (HIV). Predominated by HIV-1 clade C (HIV-1C), the epidemic in India represents the third largest population infected with HIV-1 globally. Glycoprotein 41 (gp41) is critical for viral replication and is a target for the design of therapeutic strategies. However, documentation of viral diversity of gp41 gene in infected individuals from India remains limited. Present study employed high throughput sequencing to examine variation in gp41 amplicons generated from blood derived viruses in 24 HIV-1C infected individuals from Mumbai, India. Sequence diversity profiles were documented in different functional domains of gp41. Furthermore, through a meta-analysis approach, all reported gp41 sequences from India (N = 70) were compared with those from South Africa (N = 126), country with the largest HIV epidemic globally, also predominated by HIV-1C. A total of 44 positions displayed statistically significant differential (p < 0.05) Shannon entropy in the two regions. This comparison also identified 11 codon sites undergoing distinct selection, 8 of which remained differentially selected in an extended comparison of data from Asia (N = 137) and Africa(N = 383). Assessment of correlated mutation networks associated with differentially selected residues revealed common as well as distinct interaction networks. Furthermore, codon usage analysis revealed 17 differentially selected codons (Mann-Whitney test, p < 0.001) in Asia and Africa. Dissimilar trends in GC content across codon positions were also observed. In depth understanding of these divergent evolutionary signatures through extended analysis with larger data-sets would assist development of effective interventions being considered for HIV-1C.
Collapse
Affiliation(s)
- Jyoti Sutar
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, Grant Government Medical College, Byculla, Mumbai, India
| | - Priya Patil
- Department of Medicine, Grant Government Medical College, Byculla, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Atmaram Bandivdekar
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| |
Collapse
|
4
|
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. INSECTS 2020; 11:E239. [PMID: 32290327 PMCID: PMC7240362 DOI: 10.3390/insects11040239] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 86069 Ulm, Germany;
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Ewan Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon Lezion, Tel Aviv 5025001, Israel;
| | - Anna Gajda
- Laboratory of Bee Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | | | - Delphine Panziera
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Anne Dalmon
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| |
Collapse
|
5
|
Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, Ignacio C, Porrachia M, Vrancken B, Smith DM. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 2020; 130:1699-1712. [PMID: 31910162 PMCID: PMC7108926 DOI: 10.1172/jci134815] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDUnderstanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge of obtaining fresh tissues.METHODSThis observational study evaluated 6 individuals with HIV (n = 4 with viral suppression using antiretroviral [ART] therapy; n = 2 with rebound viremia after stopping ART), who provided serial blood samples before death and their bodies for rapid autopsy. HIV reservoirs were characterized by digital droplet PCR, single-genome amplification, and sequencing of full-length (FL) envelope HIV. Phylogeographic methods were used to reconstruct HIV spread, and generalized linear models were tested for viral factors associated with dispersal.RESULTSAcross participants, HIV DNA levels varied from approximately 0 to 659 copies/106 cells (IQR: 22.9-126.5). A total of 605 intact FL env sequences were recovered in antemortem blood cells and across 28 tissues (IQR: 5-9). Sequence analysis showed (a) the emergence of large, identical, intact HIV RNA populations in blood after cessation of therapy, which repopulated tissues throughout the body; (b) that multiple sites acted as hubs for HIV dissemination but that blood and lymphoid tissues were the main source; (c) that viral exchanges occurred within brain areas and across the blood-brain barrier; and (d) that migration was associated with low HIV divergence between sites and greater diversity at the recipient site.CONCLUSIONHIV reservoirs persisted in all deep tissues, and blood was the main source of dispersal. This may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some individuals with HIV to experience therapy-free remission, even though deeper tissue reservoirs were not targeted.TRIAL REGISTRATIONNot applicable.FUNDINGNIH grants P01 AI31385, P30 AI036214, AI131971-01, AI120009AI036214, HD094646, AI027763, AI134295, and AI68636.
Collapse
Affiliation(s)
| | - Sara Gianella
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | | - Timothy E. Schlub
- University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney, Australia
| | | | | | | | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | |
Collapse
|
6
|
Lee H, Nguyen MP, Choi Y, Kim YH. Minimum InDel pattern analysis of the Zika virus. BMC Genomics 2018; 19:535. [PMID: 30005607 PMCID: PMC6045892 DOI: 10.1186/s12864-018-4935-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/10/2018] [Indexed: 12/03/2022] Open
Abstract
Background The Zika virus (ZIKV) can cause microcephaly and congenital abnormalities in the foetus. Recent studies have provided insights into the evolution of ZIKV from the current and previous outbreaks, but the types have not been determined. Results We analysed the insertions and deletions (InDels) in 212 ZIKV polyproteins and 5 Dengue virus (DENV) reference sequences. Spearman correlation tests for the minimum InDel (minInDel) patterns were used to assess the type of polyprotein. Using the minInDel frequencies calculated from polyproteins with 11 elements, likelihood estimation was conducted to correct the evolutionary distance. The minInDel-corrected tree topology clearly distinguished between the ZIKV types (I and II) with a unique minInDel character in the E protein. From the 10-year average genetic distance, the African and Asian lineages of ZIKV-II were estimated to have occurred ~ 270 years ago, which is unlikely for ZIKV-I. Conclusions The minInDel pattern analysis showed that the minInDel in the E protein is targetable for the rapid detection and determination of the virus types. Electronic supplementary material The online version of this article (10.1186/s12864-018-4935-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyeji Lee
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Mai Phuong Nguyen
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Yunhee Choi
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea.
| |
Collapse
|
7
|
Subtle differences in selective pressures applied on the envelope gene of HIV-1 in pregnant versus non-pregnant women. INFECTION GENETICS AND EVOLUTION 2018; 62:141-150. [PMID: 29678797 DOI: 10.1016/j.meegid.2018.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Pregnancy is associated with modulations of maternal immunity that contribute to foeto-maternal tolerance. To understand whether and how these alterations impact antiviral immunity, a detailed cross-sectional analysis of selective pressures exerted on HIV-1 envelope amino-acid sequences was performed in a group of pregnant (n = 32) and non-pregnant (n = 44) HIV-infected women in absence of treatment with antiretroviral therapy (ART). Independent of HIV-1 subtype, p-distance, dN and dS were all strongly correlated with one another but were not significantly different in pregnant as compared to non-pregnant patients. Differential levels of selective pressure applied on different Env subdomains displayed similar yet non-identical patterns between the two groups, with pressure applied on C1 being significantly lower in constant regions C1 and C2 than in V1, V2, V3 and C3. To draw a general picture of the selection applied on the envelope and compensate for inter-individual variations, we performed a binomial test on selection frequency data pooled from pregnant and non-pregnant women. This analysis uncovered 42 positions, present in both groups, exhibiting statistically-significant frequency of selection that invariably mapped to the surface of the Env protein, with the great majority located within epitopes recognized by Env-specific antibodies or sites associated with the development of cross-reactive neutralizing activity. The median frequency of occurrence of positive selection per site was significantly lower in pregnant versus non-pregnant women. Furthermore, examination of the distribution of positively selected sites using a hypergeometric test revealed that only 2 positions (D137 and S142) significantly differed between the 2 groups. Taken together, these result indicate that pregnancy is associated with subtle yet distinctive changes in selective pressures exerted on the HIV-1 Env protein that are compatible with transient modulations of maternal immunity.
Collapse
|
8
|
Domínguez-Rodríguez S, Rojas P, Fernández McPhee C, Pagán I, Navarro ML, Ramos JT, Holguín Á. Effect of HIV/HCV Co-Infection on the Protease Evolution of HIV-1B: A Pilot Study in a Pediatric Population. Sci Rep 2018; 8:2347. [PMID: 29403002 PMCID: PMC5799169 DOI: 10.1038/s41598-018-19312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022] Open
Abstract
This pilot study evaluates in pediatric patients the impact of HIV/HCV coinfection in the molecular evolution of the HIV-1 subtype B protease (HIV-1BPR). For this study, HIV-1B/HCV coinfected (15) and HIV-1B monoinfected (56) patients with available HIV-1B pol sequences were enrolled. Both groups of patients had comparable gender frequencies and average age, time of infection, antiretroviral treatment (ART) exposure and time under ART. Prevalence of drug resistance mutations (DRM), genetic diversity, number of synonymous (dS) and non-synonymous (dN) mutations per site and selection pressures (dN - dS) in the HIV-1BPR were estimated and compared between mono- and coinfected patients. Both HIV-1B populations presented similar genetic diversity (0.050 ± 0.02 vs. 0.045 ± 0.01) and dS (0.074 ± 0.03 vs. 0.078 ± 0.04). In turn, in coinfected patients the HIV-1BPR had higher dN (0.045 ± 0.01 vs. 0.024 ± 0.01) and dN-dS (-0.026 ± 0.02 vs. -0.048 ± 0.04) values, and less amino acid sites under purifying selection (4.2% vs. 42.1%) than in monoinfected patients. Accordingly, in co-infection with HCV, the HIV-1BPR sites 50, 53, 82, 84 and 88 - associated with resistance to PIs - were under neutral evolution, whereas these sites were under purifying selection in monoinfected patients. This pilot study suggests that HIV-1B may evolve differently in the presence than in the absence of HCV.
Collapse
Affiliation(s)
- Sara Domínguez-Rodríguez
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, 28034, Spain
| | - Patricia Rojas
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, 28034, Spain
| | - Carolina Fernández McPhee
- Department of Pediatric Infectious Diseases, Hospital Universitario Gregorio Marañón-IisGM-UCM-RITIP-CoRISPe, Madrid, 28009, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - María Luisa Navarro
- Department of Pediatric Infectious Diseases, Hospital Universitario Gregorio Marañón-IisGM-UCM-RITIP-CoRISPe, Madrid, 28009, Spain
| | - José Tomás Ramos
- Pediatric Department, Hospital Clínico Universitario and Universidad Complutense, Madrid, 28040, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, 28034, Spain.
| |
Collapse
|
9
|
Patiño-Galindo JÁ, González-Candelas F. The substitution rate of HIV-1 subtypes: a genomic approach. Virus Evol 2017; 3:vex029. [PMID: 29942652 PMCID: PMC6007745 DOI: 10.1093/ve/vex029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HIV-1M causes most infections in the AIDS pandemic. Its genetic diversity is defined by nine pure subtypes and more than sixty recombinant forms. We have performed a comparative analysis of the evolutionary rate of five pure subtypes (A1, B, C, D, and G) and two circulating recombinant forms (CRF01_AE and CRF02 AG) using data obtained from nearly complete genome coding sequences. Times to the most recent common ancestor (tMRCA) and substitution rates of these HIV genomes, and their genomic partitions, were estimated by Bayesian coalescent analyses. Genomic substitution rate estimates were compared between the HIV-1 datasets analyzed by means of randomization tests. Significant differences in the rate of evolution were found between subtypes, with subtypes C and A1 and CRF01_AE displaying the highest rates. On the other hand, CRF02_AG and subtype D were the slowest evolving types. Using a different molecular clock model for each genomic partition led to more precise tMRCA estimates than when linking the same clock along the HIV genome. Overall, the earliest tMRCA corresponded to subtype A1 (median = 1941, 95% HPD = 1943-55), whereas the most recent tMRCA corresponded to subtype G and CRF01_AE subset 3 (median = 1971, 95% HPD = 1967-75 and median = 1972, 95% HPD = 1970-75, respectively). These results suggest that both biological and epidemiological differences among HIV-1M subtypes are reflected in their evolutionary dynamics. The estimates obtained for tMRCAs and substitution rates provide information that can be used as prior distributions in future Bayesian coalescent analyses of specific HIV-1 subtypes/CRFs and genes.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Pública/Universitat de València, Institute for Integrative Systems Biology (I2SysBio), CIBERESP, c/Catedratico Jose Beltran, 2, 46980 Paterna, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Pública/Universitat de València, Institute for Integrative Systems Biology (I2SysBio), CIBERESP, c/Catedratico Jose Beltran, 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
10
|
Negi N, Vajpayee M, Singh R, Sharma A, Murugavel KG, Ranga U, Thakar M, Sreenivas V, Das BK. Cross-Reactive Potential of HIV-1 Subtype C-Infected Indian Individuals Against Multiple HIV-1 Potential T Cell Epitope Gag Variants. Viral Immunol 2016; 29:572-582. [PMID: 27875663 DOI: 10.1089/vim.2016.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vaccine immunogen with expanded T cell coverage for protection against HIV-1 diversity is the need of the hour. This study was undertaken to examine the ability of T cells to respond to a broad spectrum of potential T cell epitope (PTE) peptides containing variable as well as conserved sequences that would most accurately reflect immune responses to different circulating strains. Set of 320 PTE peptides were pooled in a matrix format that included 40 pools of 32 peptides per pool. These pools were used in interferon-γ enzyme-linked immunospot assay for screening and confirmation of HIV-1 PTE Gag-specific T cell immune responses in 34 HIV-1 seropositive Indian individuals. "Deconvolute This" software was used for result analysis. The dominant target in terms of magnitude and breadth of responses was observed to be the p24 subunit of Gag protein. Of the 34 study subjects, 26 (77%) showed a response to p24 PTE Gag peptides, 17 (50%) to p17, and 17 (50%) responded to p15 PTE peptides. The total breadth and magnitude of immune response ranged from 0.75 to 14.50 and 95.02 to 1,103 spot-forming cells/106 cells, respectively. Seventy-six peptides located in p24 Gag were targeted by 77% of the study subjects followed by 51 peptides in p17 Gag and 46 peptides in p15 Gag with multiple variants being recognized. Maximum study participants recognized PTE peptide sequence Gag271→285NKIVRMYSPVSILDI located in p24 Gag subunit. T cells from HIV-1-infected individuals can recognize multiple PTE peptide variants, although the magnitude of the responses can vary greatly across these variants.
Collapse
Affiliation(s)
- Neema Negi
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | - Madhu Vajpayee
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | - Ravinder Singh
- 2 Department of Pediatrics, All India Institute of Medical Sciences , New Delhi, India
| | - Ashutosh Sharma
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | - Kailapuri G Murugavel
- 3 YRG Centre for AIDS Research and Education, Voluntary Health Services Hospital , Chennai, India
| | - Udaykumar Ranga
- 4 HIV-AIDS Laboratory, Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| | - Madhuri Thakar
- 5 Department of Immunology, National AIDS Research Institute (ICMR) , Pune, India
| | - Vishnubhatla Sreenivas
- 6 Department of Biostatistics, All India Institute of Medical Sciences , New Delhi, India
| | - Bimal Kumar Das
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| |
Collapse
|
11
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
13
|
HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity. Sci Rep 2015; 5:11130. [PMID: 26057350 PMCID: PMC4460916 DOI: 10.1038/srep11130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity.
Collapse
|
14
|
Bęczkowski PM, Hughes J, Biek R, Litster A, Willett BJ, Hosie MJ. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2015; 96:893-903. [PMID: 25535323 PMCID: PMC4361796 DOI: 10.1099/vir.0.000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10(-3) substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health & Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Otsuki H, Yoneda M, Igarashi T, Miura T. Generation of a monkey-tropic human immunodeficiency virus type 1 carrying env from a CCR5-tropic subtype C clinical isolate. Virology 2014; 460-461:1-10. [PMID: 25010265 DOI: 10.1016/j.virol.2014.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 04/25/2014] [Indexed: 02/03/2023]
Abstract
Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that differs from CCR5 used by most currently circulating HIV-1 strains. We generated a new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical isolate. Using intracellular homologous recombination, we generated an uncloned chimeric virus consisting of at least seven types of recombination breakpoints in the region between vpr and env. The virus increased its replication capacity while maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM infection with the adapted virus exhibited high peak viremia levels in plasma while the virus was undetectable at 12-16 weeks. This virus serves as starting point for generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, perhaps through serial passage in macaques.
Collapse
Affiliation(s)
- Hiroyuki Otsuki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mai Yoneda
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Cenci A, D'Avenio G, Tavoschi L, Chiappi M, Becattini S, Narino MDP, Picconi O, Bernasconi D, Fanales-Belasio E, Vardas E, Sukati H, Lo Presti A, Ciccozzi M, Monini P, Ensoli B, Grigioni M, Buttò S. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms. PLoS One 2014; 9:e95183. [PMID: 24788065 PMCID: PMC4005737 DOI: 10.1371/journal.pone.0095183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of “shifting” putative N-glycosylation sites (PNGSs) in the α2 helix (in C3) and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.
Collapse
Affiliation(s)
| | - Giuseppe D'Avenio
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Lara Tavoschi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Michele Chiappi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Orietta Picconi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Eftyhia Vardas
- Stellenbosch University, Division of Medical Virology, Stellenbosch, South Africa; Lancet Laboratories, Johannesburg, South Africa
| | - Hosea Sukati
- National Center Public Health Laboratory, Manzini, Swaziland
| | - Alessandra Lo Presti
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy
| | - Massimo Ciccozzi
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy; University of Biomedical Campus, Rome, Italy
| | - Paolo Monini
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Barbara Ensoli
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Mauro Grigioni
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Stefano Buttò
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| |
Collapse
|
17
|
Woo J, Robertson DL, Lovell SC. Constraints from protein structure and intra-molecular coevolution influence the fitness of HIV-1 recombinants. Virology 2014; 454-455:34-9. [PMID: 24725929 DOI: 10.1016/j.virol.2014.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/10/2014] [Accepted: 01/29/2014] [Indexed: 11/18/2022]
Abstract
A major challenge for developing effective treatments for HIV-1 is the viruses' ability to generate new variants. Inter-strain recombination is a major contributor to this high evolutionary rate, since at least 20% of viruses are observed to be recombinant. However, the patterns of recombination vary across the viral genome. A number of factors influence recombination, including sequence identity and secondary RNA structure. In addition the recombinant genome must code for a functional virus, and expressed proteins must fold to stable and functional structures. Any intragenic recombination that disrupts internal residue contacts may therefore produce an unfolded protein. Here we find that contact maps based on protein structures predict recombination breakpoints observed in the HIV-1 pandemic. Moreover, many pairs of contacting residues that are unlikely to be disrupted by recombination are coevolving. We conclude that purifying selection arising from protein structure and intramolecular coevolutionary changes shapes the observed patterns of recombination in HIV-1.
Collapse
Affiliation(s)
- Jeongmin Woo
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David L Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Simon C Lovell
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
18
|
Dang S, Wang Y, Budeus B, Verheyen J, Yang R, Hoffmann D. Differential selection in HIV-1 gp120 between subtype B and East Asian variant B'. Virol Sin 2014; 29:40-7. [PMID: 24452536 PMCID: PMC8206395 DOI: 10.1007/s12250-014-3389-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022] Open
Abstract
HIV-1 evolves strongly and undergoes geographic differentiation as it spreads in diverse host populations around the world. For instance, distinct genomic backgrounds can be observed between the pandemic subtype B, prevalent in Europe and North-America, and its offspring clade B' in East Asia. Here we ask whether this differentiation affects the selection pressure experienced by the virus. To answer this question we evaluate selection pressure on the HIV-1 envelope protein gp120 at the level of individual codons using a simple and fast estimation method based on the ratio k a /k s of amino acid changes to synonymous changes. To validate the approach we compare results to those from a state-of-the-art mixed-effect method. The agreement is acceptable, but the analysis also demonstrates some limitations of the simpler approach. Further, we find similar distributions of codons under stabilizing and directional selection pressure in gp120 for subtypes B and B' with more directional selection pressure in variable loops and more stabilizing selection in the constant regions. Focusing on codons with increased k a /k s values in B', we show that these codons are scattered over the whole of gp120, with remarkable clusters of higher density in regions flanking the variable loops. We identify a significant statistical association of glycosylation sites and codons with increased k a /k s values.
Collapse
Affiliation(s)
- Stefan Dang
- Research Group Bioinformatics, Center of Medical Biotechnology and Faculty of Biology, University of Duisburg-Essen, Essen, 45117 Germany
| | - Yan Wang
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Bettina Budeus
- Research Group Bioinformatics, Center of Medical Biotechnology and Faculty of Biology, University of Duisburg-Essen, Essen, 45117 Germany
| | - Jens Verheyen
- Institute of Virology, University of Duisburg-Essen, Essen, 45117 Germany
| | - Rongge Yang
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Daniel Hoffmann
- Research Group Bioinformatics, Center of Medical Biotechnology and Faculty of Biology, University of Duisburg-Essen, Essen, 45117 Germany
| |
Collapse
|
19
|
Li Y, Yang D, Wang JY, Yao Y, Zhang WZ, Wang LJ, Cheng DC, Yang FK, Zhang FM, Zhuang M, Ling H. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry. PLoS One 2014; 9:e86083. [PMID: 24465884 PMCID: PMC3897638 DOI: 10.1371/journal.pone.0086083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
The importance of the fourth variable (V4) region of the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein (Env) in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS). In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS), greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain) resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Yuan Yao
- Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, China
| | - Wei-Zhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Lu-Jing Wang
- Department of Biochemistry, Harbin Medical University, Harbin, China
| | - De-Chun Cheng
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Kun Yang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| |
Collapse
|
20
|
Xu Z, Wu G, Li F, Bai J, Xing W, Zhang D, Zeng C. Positive selection signals of hepatitis B virus and their association with disease stages and viral genotypes. INFECTION GENETICS AND EVOLUTION 2013; 19:176-87. [PMID: 23871771 DOI: 10.1016/j.meegid.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 07/06/2013] [Indexed: 12/18/2022]
|
21
|
Araújo LAL, Almeida SEM. HIV-1 diversity in the envelope glycoproteins: implications for viral entry inhibition. Viruses 2013; 5:595-604. [PMID: 23389465 PMCID: PMC3640516 DOI: 10.3390/v5020595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 11/16/2022] Open
Abstract
Entry of HIV-1 into a host cell is a multi-step process, with the viral envelope gp120 and gp41 acting sequentially to mediate the viral attachment, CD4 binding, coreceptor binding, and fusion of the viral and host membranes. The emerging class of antiretroviral agents, collectively known as entry inhibitors, interfere in some of these steps. However, viral diversity has implications for possible differential responses to entry inhibitors, since envelope is the most variable of all HIV genes. Different HIV genetic forms carry in their genomes genetic signatures and polymorphisms that could alter the structure of viral proteins which are targeted by drugs, thus impairing antiretroviral binding and efficacy. This review will examine current research that describes subtype differences in envelope at the genetic level and the effects of mutations on the efficacy of current entry inhibitors.
Collapse
Affiliation(s)
- Leonardo Augusto Luvison Araújo
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, 90610-000, Brazil.
| | | |
Collapse
|
22
|
Dimonte S, Babakir-Mina M, Mercurio F, Di Pinto D, Ceccherini-Silberstein F, Svicher V, Perno CF. Selected amino acid changes in HIV-1 subtype-C gp41 are associated with specific gp120(V3) signatures in the regulation of co-receptor usage. Virus Res 2012; 168:73-83. [PMID: 22732432 DOI: 10.1016/j.virusres.2012.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022]
Abstract
The majority of studies have characterized the tropism of HIV-1 subtype-B isolates, but little is known about the determinants of tropism in other subtypes. So, the goal of the present study was to genetically characterize the envelope of viral proteins in terms of co-receptor usage by analyzing 356 full-length env sequences derived from HIV-1 subtype-C infected individuals. The co-receptor usage of V3 sequences was inferred by using the Geno2Pheno and PSSM algorithms, and also analyzed to the "11/25 rule". All reported env sequences were also analyzed with regard to N-linked glycosylation sites, net charge and hydrophilicity, as well as the binomial correlation phi coefficient to assess covariation among gp120(V3) and gp41 signatures and the average linkage hierarchical agglomerative clustering were also performed. Among env sequences present in Los Alamos Database, 255 and 101 sequences predicted as CCR5 and CXCR4 were selected, respectively. The classical V3 signatures at positions 11 and 25, and other specific V3 and gp41 amino acid changes were found statistically associated with different co-receptor usage. Furthermore, several statistically significant associations between V3 and gp41 signatures were also observed. The dendrogram topology showed a cluster associated with CCR5-usage composed by five gp41 mutated positions, A22V, R133M, E136G, N140L, and N166Q that clustered with T2V(V3) and G24T(V3) (bootstrap=1). Conversely, a heterogeneous cluster with CXCR4-usage, involving S11GR(V3), 13-14insIG/LG(V3), P16RQ(V3), Q18KR(V3), F20ILV(V3), D25KRQ(V3), Q32KR(V3) along with A30T(gp41), S107N(gp41), D148E(gp41), A189S(gp41) was identified (bootstrap=0.86). Our results show that as observed for HIV-1 subtype-B, also in subtype-C specific and different gp41 and gp120V3 amino acid changes are associated individually or together with CXCR4 and/or CCR5 usage. These findings strengthen previous observations that determinants of tropism may also reside in the gp41 protein.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Costa RL, Voloch CM, Schrago CG. Comparative evolutionary epidemiology of dengue virus serotypes. INFECTION GENETICS AND EVOLUTION 2011; 12:309-14. [PMID: 22226705 DOI: 10.1016/j.meegid.2011.12.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/29/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Evolutionary studies on dengue virus have frequently focused on intra-serotype diversity or on specific epidemics. In this study, we compiled a comprehensive data set of the envelope gene of dengue virus serotypes and conducted an extensive comparative study of evolutionary molecular epidemiology. We found that substitution rates are homogeneous among dengue serotypes, although their population dynamics have differed over the past few years as inferred by Bayesian coalescent methods. On a global scale, DENV-2 is the serotype with the highest effective population size. The genealogies also showed geographical structure within the serotypes. Finally, we also explored the causes of dengue virus serotype diversification by investigating the plausibility that it was driven by adaptive changes. Our results suggest that the envelope gene is under significant purifying selection and the hypothesis that dengue virus serotype diversification was the result of stochastic events cannot be ruled out.
Collapse
Affiliation(s)
- Raquel L Costa
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | |
Collapse
|
24
|
Pandit A, Sinha S. Differential trends in the codon usage patterns in HIV-1 genes. PLoS One 2011; 6:e28889. [PMID: 22216135 PMCID: PMC3245234 DOI: 10.1371/journal.pone.0028889] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/16/2011] [Indexed: 12/27/2022] Open
Abstract
Host-pathogen interactions underlie one of the most complex evolutionary phenomena resulting in continual adaptive genetic changes, where pathogens exploit the host's molecular resources for growth and survival, while hosts try to eliminate the pathogen. Deciphering the molecular basis of host-pathogen interactions is useful in understanding the factors governing pathogen evolution and disease propagation. In host-pathogen context, a balance between mutation, selection, and genetic drift is known to maintain codon bias in both organisms. Studies revealing determinants of the bias and its dynamics are central to the understanding of host-pathogen evolution. We considered the Human Immunodeficiency Virus (HIV) type 1 and its human host to search for evolutionary signatures in the viral genome. Positive selection is known to dominate intra-host evolution of HIV-1, whereas high genetic variability underlies the belief that neutral processes drive inter-host differences. In this study, we analyze the codon usage patterns of HIV-1 genomes across all subtypes and clades sequenced over a period of 23 years. We show presence of unique temporal correlations in the codon bias of three HIV-1 genes illustrating differential adaptation of the HIV-1 genes towards the host preferred codons. Our results point towards gene-specific translational selection to be an important force driving the evolution of HIV-1 at the population level.
Collapse
Affiliation(s)
- Aridaman Pandit
- Mathematical Modeling and Computational Biology Group, Centre for Cellular & Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Somdatta Sinha
- Mathematical Modeling and Computational Biology Group, Centre for Cellular & Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
25
|
Zembe L, Burgers WA, Jaspan HB, Bekker LG, Bredell H, Stevens G, Gilmour J, Cox JH, Fast P, Hayes P, Vardas E, Williamson C, Gray CM. Intra- and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: implications for current vaccine trials. PLoS One 2011; 6:e26096. [PMID: 22022524 PMCID: PMC3192159 DOI: 10.1371/journal.pone.0026096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.
Collapse
Affiliation(s)
- Lycias Zembe
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Heather B. Jaspan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Desmond Tutu HIV Centre, Cape Town, South Africa
| | | | - Helba Bredell
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gwynneth Stevens
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Jill Gilmour
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Josephine H. Cox
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Peter Hayes
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Eftyhia Vardas
- Department of Medical Virology, University of Stellenbosch, Stellenbosch, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
26
|
Williams SG, Madan R, Norris MGS, Archer J, Mizuguchi K, Robertson DL, Lovell SC. Using knowledge of protein structural constraints to predict the evolution of HIV-1. J Mol Biol 2011; 410:1023-34. [PMID: 21763504 DOI: 10.1016/j.jmb.2011.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
The high levels of sequence diversity and rapid rates of evolution of HIV-1 represent the main challenges for developing effective therapies. However, there are constraints imposed by the three-dimensional protein structure that affect the sequence space accessible to the evolution of HIV-1. Here, we present a strategy for predicting the set of possible amino acid replacements in HIV. Our approach is based on the identification of likely amino acid changes in the context of these structural constraints using environment-specific substitution matrices as well as considering the physical constraints imposed by local structure. Assessment of the power of various published algorithms in predicting the evolution of HIV-1 Gag P17 shows that it is possible to use these methods to make accurate predictions of the sequence diversity. Our own method, SubFit, uses knowledge of local structural constraints; it achieves similar prediction success with the best-performing methods. We also show that erroneous predictions are largely due to infrequently occurring amino acids that will probably have severe fitness costs for the protein. Future improvements; for example, incorporating covariation and immunological constraints will permit more reliable prediction of viral evolution.
Collapse
Affiliation(s)
- Simon G Williams
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Pérez-Losada M, Jobes DV, Sinangil F, Crandall KA, Arenas M, Posada D, Berman PW. Phylodynamics of HIV-1 from a phase III AIDS vaccine trial in Bangkok, Thailand. PLoS One 2011; 6:e16902. [PMID: 21423744 PMCID: PMC3053363 DOI: 10.1371/journal.pone.0016902] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/12/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand. METHODOLOGY AND FINDINGS Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL) and CD4(+) counts, to identify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections), subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02) in genetic diversity were observed in CRF01_AE IDU with different VL and CD4(+) counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986), 3-6 years before the first recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s. CONCLUSIONS Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.
| | | | | | | | | | | | | |
Collapse
|
28
|
Evolutionary and structural features of the C2, V3 and C3 envelope regions underlying the differences in HIV-1 and HIV-2 biology and infection. PLoS One 2011; 6:e14548. [PMID: 21283793 PMCID: PMC3024314 DOI: 10.1371/journal.pone.0014548] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022] Open
Abstract
Background Unlike in HIV-1 infection, the majority of HIV-2 patients produce broadly reactive neutralizing antibodies, control viral replication and survive as elite controllers. The identification of the molecular, structural and evolutionary footprints underlying these very distinct immunological and clinical outcomes may lead to the development of new strategies for the prevention and treatment of HIV infection. Methodology/Principal Findings We performed a side-by-side molecular, evolutionary and structural comparison of the C2, V3 and C3 envelope regions from HIV-1 and HIV-2. These regions contain major antigenic targets and are important for receptor binding. In HIV-2, these regions also have immune modulatory properties. We found that these regions are significantly more variable in HIV-1 than in HIV-2. Within each virus, C3 is the most entropic region followed by either C2 (HIV-2) or V3 (HIV-1). The C3 region is well exposed in the HIV-2 envelope and is under strong diversifying selection suggesting that, like in HIV-1, it may harbour neutralizing epitopes. Notably, however, extreme diversification of C2 and C3 seems to be deleterious for HIV-2 and prevent its transmission. Computer modelling simulations showed that in HIV-2 the V3 loop is much less exposed than C2 and C3 and has a retractile conformation due to a physical interaction with both C2 and C3. The concealed and conserved nature of V3 in the HIV-2 is consistent with its lack of immunodominancy in vivo and with its role in preventing immune activation. In contrast, HIV-1 had an extended and accessible V3 loop that is consistent with its immunodominant and neutralizing nature. Conclusions/Significance We identify significant structural and functional constrains to the diversification and evolution of C2, V3 and C3 in the HIV-2 envelope but not in HIV-1. These studies highlight fundamental differences in the biology and infection of HIV-1 and HIV-2 and in their mode of interaction with the human immune system and may inform new vaccine and therapeutic interventions against these viruses.
Collapse
|
29
|
Liang B, Luo M, Ball TB, Jones SJM, Plummer FA. QUASI analysis of host immune responses to Gag polyproteins of human immunodeficiency virus type 1 by a systematic bioinformatics approach. Biochem Cell Biol 2010; 88:671-81. [PMID: 20651839 DOI: 10.1139/o10-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is a consensus that Gag-specific cytotoxic T lymphocyte (CTL) response plays a key role in the immune control of human immunodeficiency virus type 1 (HIV-1) infection. In this study, we analyzed all currently available gag sequences in the Los Alamos HIV sequence database and identified positive selection (PS) sites likely restricted by the host immune responses. We found that between 23.4% and 47.4% of PS sites were shared by clades A, B, and C of Gag, indicating similar positive selection pressure on Gag in different subtypes of HIV-1. Furthermore, a significant correlation was observed between the combined CTL and antibody responses and PS sites. The Gag regions of free from PS contained 9 CTL epitopes restricted by 11 HLA class I alleles associated with disease progression to acquired immune deficiency syndrome (AIDS). These analyses provide information important for the identification of cross-clade epitopes and development of a global HIV-1 vaccine.
Collapse
Affiliation(s)
- Binhua Liang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
30
|
Zhang C, Ding N, Chen K, Yang R. Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1204-14. [PMID: 20953943 PMCID: PMC7089306 DOI: 10.1007/s11427-010-4066-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/01/2010] [Indexed: 11/26/2022]
Abstract
HIV-1 co-receptor tropism is central for understanding the transmission and pathogenesis of HIV-1 infection. We performed a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C. The results showed that R5 and X4 variants experienced differential evolutionary patterns and different HIV-1 genes encountered various positive selection pressures, suggesting that complex selection pressures are driving HIV-1 evolution. Compared with other hypervariable regions of Gp120, significantly more positively selected sites were detected in the V3 region of subtype B X4 variants, V2 region of subtype B R5 variants, and V1 and V4 regions of subtype C X4 variants, indicating an association of positive selection with co-receptor recognition/binding. Intriguingly, a significantly higher proportion (33.3% and 55.6%, P<0.05) of positively selected sites were identified in the C3 region than other conserved regions of Gp120 in all the analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously thought. Approximately half of the positively selected sites identified in the env gene were identical between R5 and X4 variants. There were three common positively selected sites (96, 113 and 281) identified in Gp41 of all X4 and R5 variants from subtypes B and C. These sites might not only suggest a functional importance in viral survival and adaptation, but also imply a potential cross-immunogenicity between HIV-1 R5 and X4 variants, which has important implications for AIDS vaccine development.
Collapse
Affiliation(s)
- ChiYu Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - KePing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - RongGe Yang
- HIV Molecular Epidemiology and Virology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| |
Collapse
|
31
|
Abstract
The high rate of HIV-1 evolution contributes to immune escape, enables the virus to escape drug therapy, and may underlie the difficulty of producing an effective vaccine. Identifying constraints on HIV evolution is therefore of prime importance. To investigate this problem, we examined the relationships between sequence diversity, selection, and protein structure. We found that while there was an increase in sequence diversity over time, this variation had a tendency to be limited to specific structural regions. When individual sites were analyzed, there was, in contrast, substantial and widespread evolutionary constraint over gag and env. This constraint was present even in the highly variable envelope proteins. The evolutionary significance of an individual site is indicated by the change in selection pressure along the time course: increasing entropy indicates that the site is evolving predominantly in a more "clock"-like manner, low entropy values with no increase indicate a high degree of constraint, and high entropy values indicate a lack of constraint. Few sites display high degrees of turnover. Mapping these sites onto the three-dimensional protein structure, we found a significant difference between evolutionary rates for regions buried in the core of the protein and those on the surface. This constraint did not change over the time period analyzed and was not subtype dependent, as similar results were found for subtypes B and C. This link between sequence and structure not only demonstrates the limits of recent HIV-1 evolution but also highlights the origins of evolutionary constraint on viral change.
Collapse
|
32
|
Perez-Sweeney B, DeSalle R, Ho JL. An introduction to a novel population genetic approach for HIV characterization. INFECTION GENETICS AND EVOLUTION 2010; 10:1155-64. [PMID: 20637314 DOI: 10.1016/j.meegid.2010.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 11/28/2022]
Abstract
The rapid evolution of the HIV genome is influenced in part by host selection pressure, which may cause parallel evolution among strains under shared selection pressures. To understand the mechanisms behind HIV-host immune escape across host populations, researchers have compared signatures of positive selection pressure on HIV codons across HIV subtypes and across phylogenetic groups of isolates within major subtypes, all relying on a criterion of phylogenetic separation. The HIV codon sites that retain diversity, evolve convergently among sets of hosts (cohorts) and diverge between cohorts may be phylogenetically undiagnostic (reveal little information about the relationship of the strains) and thus undetectable on a tree. We propose a new approach to characterizing genetic divergence among isolates using existing population genetic methods to better understand HIV response to host selection pressures. The approach combines population genetic statistical methods with codon analysis to identify putative amino acid sites evolving convergently. To illustrate the approach, we compared the C2-V3-C3 region of the envelope protein of HIV-1 clade B isolates between Haiti and USA hosts. This region showed no phylogenetic separation between host populations. Still, we identified codon sites in the C2-V3-C3 HIV-1 region that may have evolved differently between the two host populations. The sites are localized in human leukocyte antigen (HLA) class I binding epitopes, N-glycosylation motifs or both and are limited to the C2 and C3 regions. Our method provides a potential means to reveal candidate sites actively involved in HIV-1 immune escape that would otherwise be missed if a requisite for phylogenetic distinctiveness was made a priori. This strategy may prove to be a helpful way to characterize HIV genetic variation among hosts with suspected selection pressure differences, like progressors versus non-progressors.
Collapse
Affiliation(s)
- Beatriz Perez-Sweeney
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, USA.
| | | | | |
Collapse
|
33
|
Skar H, Borrego P, Wallstrom TC, Mild M, Marcelino JM, Barroso H, Taveira N, Leitner T, Albert J. HIV-2 genetic evolution in patients with advanced disease is faster than that in matched HIV-1 patients. J Virol 2010; 84:7412-5. [PMID: 20463072 PMCID: PMC2898231 DOI: 10.1128/jvi.02548-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/29/2010] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to estimate and compare the evolutionary rates of HIV-2 and HIV-1. Two HIV-2 data sets from patients with advanced disease were compared to matched HIV-1 data sets. The estimated mean evolutionary rate of HIV-2 was significantly higher than the estimated rate of HIV-1, both in the gp125 and in the V3 region of the env gene. In addition, the rate of synonymous substitutions in gp125 was significantly higher for HIV-2 than for HIV-1, possibly indicating a shorter generation time or higher mutation rate of HIV-2. Thus, the lower virulence of HIV-2 does not appear to translate into a lower rate of evolution.
Collapse
Affiliation(s)
- Helena Skar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels vag 16, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pond SLK, Scheffler K, Gravenor MB, Poon AFY, Frost SDW. Evolutionary fingerprinting of genes. Mol Biol Evol 2009; 27:520-36. [PMID: 19864470 DOI: 10.1093/molbev/msp260] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over time, natural selection molds every gene into a unique mosaic of sites evolving rapidly or resisting change-an "evolutionary fingerprint" of the gene. Aspects of this evolutionary fingerprint, such as the site-specific ratio of nonsynonymous to synonymous substitution rates (dN/dS), are commonly used to identify genetic features of potential biological interest; however, no framework exists for comparing evolutionary fingerprints between genes. We hypothesize that protein-coding genes with similar protein structure and/or function tend to have similar evolutionary fingerprints and that comparing evolutionary fingerprints can be useful for discovering similarities between genes in a way that is analogous to, but independent of, discovery of similarity via sequence-based comparison tools such as Blast. To test this hypothesis, we develop a novel model of coding sequence evolution that uses a general bivariate discrete parameterization of the evolutionary rates. We show that this approach provides a better fit to the data using a smaller number of parameters than existing models. Next, we use the model to represent evolutionary fingerprints as probability distributions and present a methodology for comparing these distributions in a way that is robust against variations in data set size and divergence. Finally, using sequences of three rapidly evolving RNA viruses (HIV-1, hepatitis C virus, and influenza A virus), we demonstrate that genes within the same functional group tend to have similar evolutionary fingerprints. Our framework provides a sound statistical foundation for efficient inference and comparison of evolutionary rate patterns in arbitrary collections of gene alignments, clustering homologous and nonhomologous genes, and investigation of biological and functional correlates of evolutionary rates.
Collapse
|
35
|
Ngandu NK, Seoighe C, Scheffler K. Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission. Virol J 2009; 6:164. [PMID: 19818146 PMCID: PMC2765438 DOI: 10.1186/1743-422x-6-164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness. RESULTS Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations. CONCLUSION Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.
Collapse
Affiliation(s)
- Nobubelo K Ngandu
- National Bioinformatics Node, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Ireland
| | - Konrad Scheffler
- Computer Science Division, Dept of Mathematical Sciences, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
36
|
Quantifying differences in the tempo of human immunodeficiency virus type 1 subtype evolution. J Virol 2009; 83:12917-24. [PMID: 19793809 DOI: 10.1128/jvi.01022-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genetic diversity, due to its high evolutionary rate, has long been identified as a main cause of problems in the development of an efficient HIV-1 vaccine. However, little is known about differences in evolutionary rate between different subtypes. In this study, we collected representative samples of the main epidemic subtypes and circulating recombinant forms (CRFs), namely, sub-subtype A1, subtypes B, C, D, and G, and CRFs 01_AE and 02_AG. We analyzed separate data sets for pol and env. We performed a Bayesian Markov chain Monte Carlo relaxed-clock phylogenetic analysis and applied a codon model to the resulting phylogenetic trees to estimate nonsynonymous (dN) and synonymous (dS) rates along each and every branch. We found important differences in the evolutionary rates of the different subtypes. These are due to differences not only in the dN rate but also in the dS rate, varying in roughly similar ways, indicating that these differences are caused by both different selective pressures (for dN rate) and the replication dynamics (for dS rate) (i.e., mutation rate or generation time) of the strains. CRF02_AG and subtype G had higher rates, while subtype D had lower dN and dS rates than the other subtypes. The dN/dS ratio estimates were also different, especially for the env gene, with subtype G showing the lowest dN/dS ratio of all subtypes.
Collapse
|
37
|
A comparative study of HIV-1 clade C env evolution in a Zambian infant with an infected rhesus macaque during disease progression. AIDS 2009; 23:1817-28. [PMID: 19609201 DOI: 10.1097/qad.0b013e32832f3da6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate whether HIV-1 clade C (HIV-C) envelope variations that arise during disease progression in rhesus macaque model reflect changes that occur naturally in human infection. DESIGN An infant macaque was infected with SHIV-1157i, an R5 tropic clade C SHIV, that expresses a primary HIV-C envelope derived from an infected human infant and monitored over a 5-year period. Genetic variation of the V1-V5 envelope region, which is the main target for humoral immune responses, derived from the infected macaque and infant was examined. METHODS The V1-V5 envelope region was cloned and sequenced from longitudinal peripheral blood mononuclear cell samples collected from the infected macaque and infant. Phylogenetic analysis [phylogenetic tree, diversity, divergence, ratio of nonsynonymous (dN) and synonymous substitution (dS) and dN distribution] was performed. Plasma RNA viral load, CD4(+) T-cell count, changes in the length of V1-V5 region, putative N-linked glycosylation site number and distribution were also measured. RESULTS Phylogenetic analysis revealed that changes in the macaque closely reflected those of the infant during disease progression. Similar distribution patterns of dN and hot spots were observed between the macaque and infant. Analysis of putative N-linked glycosylation sites revealed several common variations between the virus populations in the two host species. These variations correlate with decline of CD4 T-cell count in the macaque and might be linked with disease progression. CONCLUSION SHIV-C infection of macaque is a relevant animal model for studying variation of primary HIV-C envelope during disease progression and could be used to analyze the selection pressures that are associated with those changes.
Collapse
|
38
|
Human immunodeficiency virus type 1 V1-to-V5 envelope variants from the chronic phase of infection use CCR5 and fuse more efficiently than those from early after infection. J Virol 2009; 83:9694-708. [PMID: 19625411 DOI: 10.1128/jvi.00925-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early- and chronic-stage infection envelope V1-to V5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.
Collapse
|
39
|
Lynch RM, Shen T, Gnanakaran S, Derdeyn CA. Appreciating HIV type 1 diversity: subtype differences in Env. AIDS Res Hum Retroviruses 2009; 25:237-48. [PMID: 19327047 DOI: 10.1089/aid.2008.0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of intersubtype diversity. Recent studies have revealed that some of the HIV-1 subtypes exhibit phenotypic differences stemming from subtle changes in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtype differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most globally prevalent subtype.
Collapse
Affiliation(s)
- Rebecca M. Lynch
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia 30329
| | - Tongye Shen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - S. Gnanakaran
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
40
|
Canducci F, Marinozzi MC, Sampaolo M, Berrè S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M. Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 2009; 6:4. [PMID: 19146663 PMCID: PMC2639529 DOI: 10.1186/1742-4690-6-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/15/2009] [Indexed: 12/14/2022] Open
Abstract
The characteristics of intra-host human immunodeficiency virus type 1 (HIV-1) env evolution were evaluated in untreated HIV-1-infected subjects with different patterns of disease progression, including 2 normal progressor [NP], and 5 Long term non-progressor [LTNP] patients. High-resolution phylogenetic analysis of the C2-C5 env gene sequences of the replicating HIV-1 was performed in sequential samples collected over a 3–5 year period; overall, 301 HIV-1 genomic RNA sequences were amplified from plasma samples, cloned, sequenced and analyzed. Firstly, the evolutionary rate was calculated separately in the 3 codon positions. In all LTNPs, the 3rd codon mutation rate was equal or even lower than that observed at the 1st and 2nd positions (p = 0.016), thus suggesting strong ongoing positive selection. A Bayesian approach and a maximum-likelihood (ML) method were used to estimate the rate of virus evolution within each subject and to detect positively selected sites respectively. A great number of N-linked glycosylation sites under positive selection were identified in both NP and LTNP subjects. Viral sequences from 4 of the 5 LTNPs showed extensive positive selective pressure on the CD4-binding site (CD4bs). In addition, localized pressure in the area of the IgG-b12 epitope, a broad neutralizing human monoclonal antibody targeting the CD4bs, was documented in one LTNP subject, using a graphic colour grade 3-dimensional visualization. Overall, the data shown here documenting high selective pressure on the HIV-1 CD4bs of a group of LTNP subjects offers important insights for planning novel strategies for the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Filippo Canducci
- Laboratorio di Microbiologia e Virologa, Università Vita-Salute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ngandu NK, Scheffler K, Moore P, Woodman Z, Martin D, Seoighe C. Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences. Virol J 2008; 5:160. [PMID: 19105834 PMCID: PMC2666660 DOI: 10.1186/1743-422x-5-160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/23/2008] [Indexed: 11/26/2022] Open
Abstract
Background Positive selection pressure acting on protein-coding sequences is usually inferred when the rate of nonsynonymous substitution is greater than the synonymous rate. However, purifying selection acting directly on the nucleotide sequence can lower the synonymous substitution rate. This could result in false inference of positive selection because when synonymous changes at some sites are under purifying selection, the average synonymous rate is an underestimate of the neutral rate of evolution. Even though HIV-1 coding sequences contain a number of regions that function at the nucleotide level, and are thus likely to be affected by purifying selection, studies of positive selection assume that synonymous substitutions can be used to estimate the neutral rate of evolution. Results We modelled site-to-site variation in the synonymous substitution rate across coding regions of the HIV-1 genome. Synonymous substitution rates were found to vary significantly within and between genes. Surprisingly, regions of the genome that encode proteins in more than one frame had significantly higher synonymous substitution rates than regions coding in a single frame. We found evidence of strong purifying selection pressure affecting synonymous mutations in fourteen regions with known functions. These included an exonic splicing enhancer, the rev-responsive element, the poly-purine tract and a transcription factor binding site. A further five highly conserved regions were located within known functional domains. We also found four conserved regions located in env and vpu which have not been characterized previously. Conclusion We provide the coordinates of genomic regions with markedly lower synonymous substitution rates, which are putatively under the influence of strong purifying selection pressure at the nucleotide level as well as regions encoding proteins in more than one frame. These regions should be excluded from studies of positive selection acting on HIV-1 coding regions.
Collapse
Affiliation(s)
- Nobubelo K Ngandu
- National Bioinformatics Network Node, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| | | | | | | | | | | |
Collapse
|
42
|
Bandawe GP, Martin DP, Treurnicht F, Mlisana K, Karim SSA, Williamson C. Conserved positive selection signals in gp41 across multiple subtypes and difference in selection signals detectable in gp41 sequences sampled during acute and chronic HIV-1 subtype C infection. Virol J 2008; 5:141. [PMID: 19025632 PMCID: PMC2630941 DOI: 10.1186/1743-422x-5-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/24/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The high diversity of HIV variants driving the global AIDS epidemic has caused many to doubt whether an effective vaccine against the virus is possible. However, by identifying the selective forces that are driving the ongoing diversification of HIV and characterising their genetic consequences, it may be possible to design vaccines that pre-empt some of the virus' more common evasion tactics. One component of such vaccines might be the envelope protein, gp41. Besides being targeted by both the humoral and cellular arms of the immune system this protein mediates fusion between viral and target cell membranes and is likely to be a primary determinant of HIV transmissibility. RESULTS Using recombination aware analysis tools we compared site specific signals of selection in gp41 sequences from different HIV-1 M subtypes and circulating recombinant forms and identified twelve sites evolving under positive selection across multiple major HIV-1 lineages. To identify evidence of selection operating during transmission our analysis included two matched datasets sampled from patients with acute or chronic subtype C infections. We identified six gp41 sites apparently evolving under different selection pressures during acute and chronic HIV-1 infections. These sites mostly fell within functional gp41 domains, with one site located within the epitope recognised by the broadly neutralizing antibody, 4E10. CONCLUSION Whereas these six sites are potentially determinants of fitness and are therefore good candidate targets for subtype-C specific vaccines, the twelve sites evolving under diversifying selection across multiple subtypes might make good candidate targets for broadly protective vaccines.
Collapse
Affiliation(s)
- Gama P Bandawe
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Florette Treurnicht
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Koleka Mlisana
- Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, South Africa
| | - Salim S Abdool Karim
- Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | | |
Collapse
|
43
|
Evolution of proviral gp120 over the first year of HIV-1 subtype C infection. Virology 2008; 383:47-59. [PMID: 18973914 DOI: 10.1016/j.virol.2008.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 07/14/2008] [Accepted: 09/11/2008] [Indexed: 11/21/2022]
Abstract
The evolution of proviral gp120 during the first year after seroconversion in HIV-1 subtype C infection was addressed in a case series of eight subjects. Multiple viral variants were found in two out of eight cases. Slow rate of viral RNA decline and high early viral RNA set point were associated with a higher level of proviral diversity from 0 to 200 days after seroconversion. Proviral divergence from MRCA over the same period also differed between subjects with slow and fast decline of viral RNA, suggesting that evolution of proviral gp120 early in infection may be linked to the level of viral RNA replication. Changes in the length of variable loops were minimal, and length reduction was more common than length increase. Potential N-linked glycosylation sites ranged +/-one site, showing common fluctuations in the V4 and V5 loops. These results highlight the role of proviral gp120 diversity and diversification in the pathogenesis of acute HIV-1 subtype C infection.
Collapse
|
44
|
Archer J, Pinney JW, Fan J, Simon-Loriere E, Arts EJ, Negroni M, Robertson DL. Identifying the important HIV-1 recombination breakpoints. PLoS Comput Biol 2008; 4:e1000178. [PMID: 18787691 PMCID: PMC2522274 DOI: 10.1371/journal.pcbi.1000178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 08/04/2008] [Indexed: 11/19/2022] Open
Abstract
Recombinant HIV-1 genomes contribute significantly to the diversity of variants within the HIV/AIDS pandemic. It is assumed that some of these mosaic genomes may have novel properties that have led to their prevalence, particularly in the case of the circulating recombinant forms (CRFs). In regions of the HIV-1 genome where recombination has a tendency to convey a selective advantage to the virus, we predict that the distribution of breakpoints—the identifiable boundaries that delimit the mosaic structure—will deviate from the underlying null distribution. To test this hypothesis, we generate a probabilistic model of HIV-1 copy-choice recombination and compare the predicted breakpoint distribution to the distribution from the HIV/AIDS pandemic. Across much of the HIV-1 genome, we find that the observed frequencies of inter-subtype recombination are predicted accurately by our model. This observation strongly indicates that in these regions a probabilistic model, dependent on local sequence identity, is sufficient to explain breakpoint locations. In regions where there is a significant over- (either side of the env gene) or under- (short regions within gag, pol, and most of env) representation of breakpoints, we infer natural selection to be influencing the recombination pattern. The paucity of recombination breakpoints within most of the envelope gene indicates that recombinants generated in this region are less likely to be successful. The breakpoints at a higher frequency than predicted by our model are approximately at either side of env, indicating increased selection for these recombinants as a consequence of this region, or at least part of it, having a tendency to be recombined as an entire unit. Our findings thus provide the first clear indication of the existence of a specific portion of the genome that deviates from a probabilistic null model for recombination. This suggests that, despite the wide diversity of recombinant forms seen in the viral population, only a minority of recombination events appear to be of significance to the evolution of HIV-1. Multiple variants of HIV can infect the same cell, and because each viral particle contains two copies of the viral genomic RNA, RNAs from different viruses can occasionally be incorporated together within a viral particle. When this virus subsequently infects another cell, genetic exchange (recombination) may occur between these two divergent copies of genomic RNA as a result of a switch between the RNA molecules while they are copied into DNA. This process is very important to understand as it contributes to the generation of new HIV variants. In this study, we have analysed a set of recombinant HIV genomes generated in the laboratory to construct a probabilistic model of the propensity for the switch to take place in specific regions of the genome, dependent on the local similarity of the parental viral sequences. This model allows us to predict the locations where recombination should occur more frequently. By comparing these predictions to the patterns of recombination observed in the HIV-1 pandemic, we identify the genomic regions in which recombination has been more important, in that it has provided an evolutionary advantage to the virus.
Collapse
Affiliation(s)
- John Archer
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John W. Pinney
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jun Fan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Etienne Simon-Loriere
- Architecture et Réactivité des ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Eric J. Arts
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matteo Negroni
- Architecture et Réactivité des ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, Strasbourg, France
- Institut Pasteur, Paris, France
| | - David L. Robertson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Borrego P, Marcelino JM, Rocha C, Doroana M, Antunes F, Maltez F, Gomes P, Novo C, Barroso H, Taveira N. The role of the humoral immune response in the molecular evolution of the envelope C2, V3 and C3 regions in chronically HIV-2 infected patients. Retrovirology 2008; 5:78. [PMID: 18778482 PMCID: PMC2563025 DOI: 10.1186/1742-4690-5-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/08/2008] [Indexed: 12/12/2022] Open
Abstract
Background This study was designed to investigate, for the first time, the short-term molecular evolution of the HIV-2 C2, V3 and C3 envelope regions and its association with the immune response. Clonal sequences of the env C2V3C3 region were obtained from a cohort of eighteen HIV-2 chronically infected patients followed prospectively during 2–4 years. Genetic diversity, divergence, positive selection and glycosylation in the C2V3C3 region were analysed as a function of the number of CD4+ T cells and the anti-C2V3C3 IgG and IgA antibody reactivity Results The mean intra-host nucleotide diversity was 2.1% (SD, 1.1%), increasing along the course of infection in most patients. Diversity at the amino acid level was significantly lower for the V3 region and higher for the C2 region. The average divergence rate was 0.014 substitutions/site/year, which is similar to that reported in chronic HIV-1 infection. The number and position of positively selected sites was highly variable, except for codons 267 and 270 in C2 that were under strong and persistent positive selection in most patients. N-glycosylation sites located in C2 and V3 were conserved in all patients along the course of infection. Intra-host variation of C2V3C3-specific IgG response over time was inversely associated with the variation in nucleotide and amino acid diversity of the C2V3C3 region. Variation of the C2V3C3-specific IgA response was inversely associated with variation in the number of N-glycosylation sites. Conclusion The evolutionary dynamics of HIV-2 envelope during chronic aviremic infection is similar to HIV-1 implying that the virus should be actively replicating in cellular compartments. Convergent evolution of N-glycosylation in C2 and V3, and the limited diversification of V3, indicates that there are important functional constraints to the potential diversity of the HIV-2 envelope. C2V3C3-specific IgG antibodies are effective at reducing viral population size limiting the number of virus escape mutants. The C3 region seems to be a target for IgA antibodies and increasing N-linked glycosylation may prevent HIV-2 envelope recognition by these antibodies. Our results provide new insights into the biology of HIV-2 and its relation with the human host and may have important implications for vaccine design.
Collapse
Affiliation(s)
- Pedro Borrego
- URIA-CPM, Faculdade de Farmácia de Lisboa, Avenida das Forças Armadas, 1649-019 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soares AER, Soares MA, Schrago CG. Positive selection on HIV accessory proteins and the analysis of molecular adaptation after interspecies transmission. J Mol Evol 2008; 66:598-604. [PMID: 18465165 DOI: 10.1007/s00239-008-9112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Studies examining positive selection on accessory proteins of HIV are rare, although these proteins play an important role in pathogenesis in vivo. Moreover, despite the biological relevance of analyses of molecular adaptation after viral transmission between species, the issue is still poorly studied. Here we present evidence that accessory proteins are subjected to positive selective forces exclusively in HIV. This scenario suggests that accessory protein genes are under adaptive evolution in HIV clades, while in SIVcpz such a phenomenon could not be detected. As a result, we show that comparative studies are critical to carry out functional investigation of positively selected protein sites, as they might help to achieve a better comprehension of the biology of HIV pathogenesis.
Collapse
Affiliation(s)
- André E R Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ CEP 21.941-590, Brazil
| | | | | |
Collapse
|
47
|
Li H, McMahon BJ, McArdle S, Bruden D, Sullivan DG, Shelton D, Deubner H, Gretch DR. Hepatitis C virus envelope glycoprotein co-evolutionary dynamics during chronic hepatitis C. Virology 2008; 375:580-91. [PMID: 18343477 DOI: 10.1016/j.virol.2008.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 01/16/2008] [Accepted: 02/12/2008] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) envelope glycoprotein co-evolution was studied in 14 genotype 1-infected and treatment-naive subjects, including 7 with mild and 7 with severe liver disease. Cassettes encoding the envelope 1 gene (E1) and hypervariable region (HVR1) of the envelope 2 gene were isolated at 38 different time points over 81 follow-up years. There were no significant differences in age, gender, alcohol use, or viral load between the mild and severe disease groups. Virus from subjects with severe disease had significantly slower evolution in HVR1, and significant divergent evolution of E1 quasispecies, characterized by a preponderance of synonymous mutations, compared to virus from subjects with mild disease. Phylogenetic comparisons indicated higher similarity between amino acid sequences of the E1 and HVR1 regions with mild disease versus severe disease (r=0.44 versus r=0.17, respectively; P=0.01). In summary, HCV envelope quasispecies co-evolution differs during mild versus severe disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Implications of recombination for HIV diversity. Virus Res 2008; 134:64-73. [PMID: 18308413 DOI: 10.1016/j.virusres.2008.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 01/20/2023]
Abstract
The human immunodeficiency virus (HIV) population is characterised by extensive genetic variability that results from high error and recombination rates of the reverse transcription process, and from the fast turnover of virions in HIV-infected individuals. Among the viral variants encountered at the global scale, recombinant forms are extremely abundant. Some of these recombinants (known as circulating recombinant forms) become fixed and undergo rapid expansion in the population. The reasons underlying their epidemiological success remain at present poorly understood and constitute a fascinating area for future research to improve our understanding of immune escape, pathogenicity and transmission. Recombinant viruses are generated during reverse transcription as a consequence of template switching between the two genetically different genomic RNAs present in a heterozygous virus. Recombination can thereby generate shortcuts in evolution by producing mosaic reverse transcription products of parental genomes. Therefore, in a single infectious cycle multiple mutations that are positively selected can be combined or, conversely, negatively selected mutations can be removed. Recombination is therefore involved in different aspects of HIV evolution, adaptation to its host, and escape from antiviral treatments.
Collapse
|
49
|
Azizi A, Anderson DE, Torres JV, Ogrel A, Ghorbani M, Soare C, Sandstrom P, Fournier J, Diaz-Mitoma F. Induction of Broad Cross-Subtype-Specific HIV-1 Immune Responses by a Novel Multivalent HIV-1 Peptide Vaccine in Cynomolgus Macaques. THE JOURNAL OF IMMUNOLOGY 2008; 180:2174-86. [DOI: 10.4049/jimmunol.180.4.2174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Tang F, Pan Z, Zhang C. The selection pressure analysis of classical swine fever virus envelope protein genes Erns and E2. Virus Res 2008; 131:132-5. [DOI: 10.1016/j.virusres.2007.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/26/2007] [Accepted: 08/29/2007] [Indexed: 01/22/2023]
|