1
|
Li L, Roy PG, Liu Y, Zhang Z, Xiong D, Savan R, Gokhale NS, Schang LM, Das J, Yu H. Comprehensive Atomic-Scale 3D Viral-Host Protein Interactomes Enable Dissection of Key Mechanisms and Evolutionary Processes Underlying Viral Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645946. [PMID: 40236211 PMCID: PMC11996397 DOI: 10.1101/2025.03.28.645946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Viral-human protein interactions are critical for viral replication and modulation of the host immune response. Structural modeling of these interactions is vital for developing effective antiviral therapies and vaccines. However, 99% of experimentally determined binary host-viral interactions currently lack structural information. We aimed to address this gap by leveraging computational protein structure prediction methods. Using extensive benchmarking, we found AlphaFold to be the most accurate structure prediction model for host-pathogen protein interactions. We then predicted the structures of 11,666 binary protein interactions across 33 viral families and created the most comprehensive atomic-scale 3D viral-host protein interactomes till date ( https://3d-viralhuman.yulab.org ). By integrating these interactomes with genetic variation data, we identified population-specific signatures of selection on variants coding for interfaces of viral-human interactions. We also found that viral interaction interfaces were less conserved than non-interface regions, a striking trend that is opposite to what is observed for host interfaces, suggesting different evolutionary pressures. Systematic analyses of interface sharing between host and viral proteins binding to the same host protein revealed mutation rate-dependent differences in interface mimicry. Similar mutation rate-dependent differences were seen in the interface sharing between viral proteins binding to a host protein. We also found that the patterns of E6 protein binding to KPNA2 differed between high- and low-risk oncogenic human papillomaviruses (HPVs), and clustering based on these binding patterns allowed the classification of HPVs with unknown oncogenic risk. Our interface mimicry analyses also unveiled a novel mechanism by which herpes simplex virus-1 UL37 suppresses the antiviral immune response through disruption of the TRAF6-MAVS signalosome interaction. Overall, our comprehensive 3D viral interactomes provide a resource at unprecedented scale and resolution that will enable researchers to explore how variation and signatures of selection influence viral interactions and disease progression. This tool also facilitates the identification of conserved and unique interaction patterns across viruses, empowering researchers to generate testable hypotheses and ultimately accelerate the discovery of novel therapeutic targets and intervention strategies.
Collapse
|
2
|
Emmanuel I, Akpa P, Kwaghe B, Ibeanu C, Atiku J, Othman I, Bahaushe N, Ben J, Emmanuel J, Amaike C, Winnie S, Leslie T, Fadok T. PATHOMORPHOLOGY OF VERRUCAE: A CLINICOPATHOLOGIC STUDY. Ann Ib Postgrad Med 2024; 22:84-89. [PMID: 40385707 PMCID: PMC12082670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/25/2024] [Indexed: 05/20/2025] Open
Abstract
Introduction Verrucae are benign squamous epithelial lesions affecting the skin and mucous membranes, as a result of infection with low-risk Human Papilloma virus, with an estimated 10% of the world's population affected. This work studies the clinicopathology of all histologically diagnosed warts at the Jos University Teaching Hospital between 1st January 2013 and 31st December 2022. Methodology The study was a descriptive study of all histologically diagnosed cases of verrucae during the study period. Patients with histological diagnosis of verrucae were included, while those with inadequate biodata (age and sex), inadequate clinical information, and missing archival slides and tissue blocks were excluded from the study. Patients' age, gender, clinical characteristics (site and symptoms) and histological diagnosis were obtained from the records. Results All 61 cases are of histologically diagnosed verrucae met the criteria for the study. These consisted of males 28 (45.9%), and 33 (54.1%) females. The age range, mean, median and modal age of the study were 1-70 years, 34.81+19.28years, 35.0 years, and 13.0 years, respectively. As much as 28 (45.9%) warts were seen between 30years and 49years of age. According to the anatomical site of occurrence, the lesions were broadly classified into cutaneous warts, 23 (37.7%) and anogenital warts, 38 (62.3%). Specifically, the vulva, penis, and other parts of the perineum were the sites with the highest frequency of wart accounting for 17 (27.9%), 6(9.8%), and 6 (9.8%) cases respectively. Bleeding, pain, itching, and cosmesis as a direct consequence of the lesion were reasons for clinical presentation, with cosmesis predominating (84.4%). Conclusion Warts in our environment is commoner in the anogenital region, the third and fourth decade of life, and in the female gender. Bleeding, pain, itching, and cosmesis were reasons for clinical presentation. Vaccination against the etiological agent of the disease is advised on a wide scale to reduce the incidence of this disturbing and distressing pathology.
Collapse
Affiliation(s)
- I. Emmanuel
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
- Department of Pathology, University of Jos, Jos, Plateau State, Nigeria
| | - P.O. Akpa
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
- Department of Pathology, University of Jos, Jos, Plateau State, Nigeria
| | - B.V. Kwaghe
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - C.N. Ibeanu
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - J.B. Atiku
- Department of Public Health Sciences, Adeleke University. Ede, Osun State, Nigeria
| | - I.A. Othman
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - N.Z. Bahaushe
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - J.E. Ben
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - J.A. Emmanuel
- Department of Anatomic Pathology and Forensic Medicine, Jos University Teaching Hospital, Nigeria, Jos, Plateau State, Nigeria
| | - C. Amaike
- Department of Community Medicine, Babcock University and Babcock University Teaching Hospital, Illishan Remo, Ogun State, Nigeria
| | - S.J. Winnie
- Department of Nursing Science, Babcock University and Babcock University Teaching Hospital, Illishan Remo, Ogun State, Nigeria
| | - T. Leslie
- Department of Nursing Science, Babcock University and Babcock University Teaching Hospital, Illishan Remo, Ogun State, Nigeria
| | - T.N. Fadok
- Department of Histopathology, Federal Medical Center Jalingo, Taraba State, Nigeria
| |
Collapse
|
3
|
Chong JS, Doorbar J. Modulation of epithelial homeostasis by HPV using Notch and Wnt. Tumour Virus Res 2024; 18:200297. [PMID: 39542216 PMCID: PMC11617312 DOI: 10.1016/j.tvr.2024.200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Highly conserved signalling pathways such as Notch and Wnt are essential in the regulation of differentiation and proliferation processes during adult tissue homeostasis. Human papillomaviruses (HPVs) have evolved with humans to manipulate these signalling pathways to establish a basal reservoir of infected cells by limiting HPV-infected keratinocyte differentiation whilst ensuring that differentiating cells are in a replication-competent state. Here, we focus on the canonical Notch and Wnt signalling pathways and their crosstalk to ensure cell-fate lineage determination during epithelial homeostasis. We then examine how HPVs use their E6 and E7 proteins to inhibit differentiation and maintain stem-like characteristics using Notch and Wnt in HPV-infected cells. Determining the functions of E6 and E7 in the maintenance of the infected cell reservoir, and the molecular crosstalk between Notch and Wnt is vital for our understanding of HPV persistence, and may represent an important factor in the development of therapeutic agents for HPV-associated disease.
Collapse
Affiliation(s)
- June See Chong
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
4
|
Atani ZR, Hosseini SS, Goudarzi H, Faghihloo E. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Glob Med Genet 2024; 11:285-296. [PMID: 39224462 PMCID: PMC11368560 DOI: 10.1055/s-0044-1790210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.
Collapse
Affiliation(s)
- Zahra Rafiei Atani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sareh Sadat Hosseini
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gazzini S, Cerullo R, Soloperto D. VEGF as a Key Actor in Recurrent Respiratory Papillomatosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:6757-6768. [PMID: 39057045 PMCID: PMC11275356 DOI: 10.3390/cimb46070403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a benign disease of the upper aerodigestive tract caused by human papillomavirus (HPV) types 6 and 11. The clinical course is unpredictable and some patients, especially younger children, experience a high rate of recurrence with a significant impact on their quality of life. The molecular mechanisms of HPV infection in keratinocytes have been extensively studied throughout the years, with particular regard to its role in causing malignant tumors, like cervical cancer and head and neck carcinomas. A minor but not negligible amount of the literature has investigated the molecular landscape of RRP patients, and some papers have studied the role of angiogenesis (the growth of blood vessels from pre-existing vasculature) in this disease. A central role in this process is played by vascular endothelial growth factor (VEGF), which activates different signaling cascades on multiple levels. The increased knowledge has led to the introduction of the VEGF inhibitor bevacizumab in recent years as an adjuvant treatment in some patients, with good results. This review summarizes the current evidence about the role of VEGF in the pathophysiology of RRP, the molecular pathways activated by binding with its receptors, and the current and future roles of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Sandra Gazzini
- Division of Otolaryngology, Head and Neck Surgery Department, University Hospital of Verona, 37134 Verona, Italy
| | - Raffaele Cerullo
- Division of Otolaryngology, Hospital of Treviso, 31100 Treviso, Italy
| | - Davide Soloperto
- Department of Otorhinolaryngology, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
6
|
Xie B, Wu Y, Wang S, Ruan L, Liu X. Expression profile of long noncoding RNAs and comprehensive analysis of lncRNA-cisTF-DGE regulation in condyloma acuminatum. BMC Med Genomics 2024; 17:167. [PMID: 38902760 PMCID: PMC11188504 DOI: 10.1186/s12920-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To identify differentially expressed long noncoding RNAs (lncRNAs) in condyloma acuminatum (CA) and to explore their probable regulatory mechanisms by establishing coexpression networks. METHODS High-throughput RNA sequencing was performed to assess genome-wide lncRNA expression in CA and paired adjacent mucosal tissue. The expression of candidate lncRNAs and their target genes in larger CA specimens was validated using real-time quantitative reverse transcriptase polymerase chain reaction (RT‒qPCR). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for the functional enrichment analysis of these candidate lncRNAs and differential mRNAs. The coexpressed mRNAs of the candidate lncRNAs, calculated by Pearson's correlation coefficient, were also analysed using GO and KEGG analysis. In addition, the interactions among differentially expressed lncRNAs (DElncRNAs)-cis-regulatory transcription factors (cisTFs)-differentially expressed genes (DEGs) were analysed and their network was constructed. RESULTS A total of 546 lncRNAs and 2553 mRNAs were found to be differentially expressed in CA compared to the paired control. Functional enrichment analysis revealed that the DEGs coexpressed with DElncRNAs were enriched in the terms of cell adhesion and keratinocyte differentiation, and the pathways of ECM-receptor interaction, local adhesion, PI3K/AKT and TGF-ß signaling. We further constructed the network among DElncRNAs-cisTFs-DEGs and found that these 95 DEGs were mainly enriched in GO terms of epithelial development, regulation of transcription or gene expression. Furthermore, the expression of 3 pairs of DElncRNAs and cisTFs, EVX1-AS and HOXA13, HOXA11-AS and EVX1, and DLX6-AS and DLX5, was validated with a larger number of specimens using RT‒qPCR. CONCLUSION CA has a specific lncRNA profile, and the differentially expressed lncRNAs play regulatory roles in mRNA expression through cis-acting TFs, which provides insight into their regulatory networks. It will be useful to understand the pathogenesis of CA to provide new directions for the prevention, clinical treatment and efficacy evaluation of CA.
Collapse
Affiliation(s)
- Bo Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Yinhua Wu
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Su Wang
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Liming Ruan
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
- Department of Dermatology, Beilun People's Hospital of Ningbo City, 1288# Lushan East Road, Ningbo, Zhejiang Province, 310058, China.
| | - Xiaoyan Liu
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
7
|
Lepine C, Leboulanger N, Badoual C. Juvenile onset recurrent respiratory papillomatosis: What do we know in 2024 ? Tumour Virus Res 2024; 17:200281. [PMID: 38685530 PMCID: PMC11088349 DOI: 10.1016/j.tvr.2024.200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Juvenile onset recurrent respiratory papillomatosis is a lifelong benign squamous lesion associated with HPV infection, particularly HPV6 and HPV11 genotypes. These lesions are rare, but can lead to laryngeal obturations, which can cause disabling dyspnea, or transform into squamous cell carcinoma. The aim here is to provide an epidemiological, biological and clinical overview of this pathology, particularly in children, in order to understand the issues at stake in terms of research and the development of medical and therapeutic management tools.
Collapse
Affiliation(s)
- Charles Lepine
- Pathology Department, CHU de Nantes, F-44000 Nantes, France; Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nicolas Leboulanger
- Otolaryngology - Head and Necker Surgery Department, Necker Enfants Malades University Hospital, 149 Rue de Sèvres 75015 Paris, France; Université Paris Cité, France
| | - Cécile Badoual
- Université Paris Cité, France; Pathology Department, European George Pompidou Hospital, APHP, 20 Rue Leblanc 75015 Paris, France.
| |
Collapse
|
8
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
HPV and Recurrent Respiratory Papillomatosis: A Brief Review. Life (Basel) 2021; 11:life11111279. [PMID: 34833157 PMCID: PMC8618609 DOI: 10.3390/life11111279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Recurrent Respiratory Papillomatosis (RRP) is a rare but severe manifestation of human papillomavirus (HPV). As our knowledge about HPV infections has expanded, it has become possible to understand the course of RRP disease and unravel plausible efficient methods to manage the disease. However, the surge in reports on HPV has not been accompanied by a similar increase in research about RRP specifically. In this paper, we review the clinical manifestation and typical presentation of the illness. In addition, the pathogenesis and progression of the disease are described. On the other hand, we discuss the types of treatments currently available and future treatment strategies. The role of vaccination in both the prevention and treatment of RRP will also be reviewed. We believe this review is essential to update the general knowledge on RRP with the latest information available to date to enhance our understanding of RRP and its management.
Collapse
|
11
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
12
|
Aarthy M, Singh SK. Interpretations on the Interaction between Protein Tyrosine Phosphatase and E7 Oncoproteins of High and Low-Risk HPV: A Computational Perception. ACS OMEGA 2021; 6:16472-16487. [PMID: 34235319 PMCID: PMC8246469 DOI: 10.1021/acsomega.1c01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
The most prevalent and common sexually transmitted infection is caused by human papillomavirus (HPV) among sexually active women. Numerous genotypes of HPV are available, among which the major oncoproteins E6 and E7 lead to the progression of cervical cancer. The E7 oncoprotein interacts with cytoplasmic tumor suppressor protein PTPN14, which is the key regulator of cellular growth control pathways effecting the reduction of steady-state level. Disrupting the interaction between the tumor suppressor and the oncoprotein is vital to cease the development of cancer. Hence, the mechanism of interaction between E7 and tumor suppressor is explored through protein-protein and protein-ligand binding along with the conformational stability studies. The obtained results state that the LXCXE domain of HPV E7 of high and low risks binds with the tumor suppressor protein. Also, the small molecules bind in the interface of E7-PTPN14 that disrupts the interaction between the tumor suppressor and oncoprotein. These results were further supported by the dynamics simulation stating the stability over the bounded complex and the energy maintained during postdocking as well as postdynamics calculations. These observations possess an avenue in the drug discovery that leads to further validation and also proposes a potent drug candidate to treat cervical cancer caused by HPV.
Collapse
|
13
|
Mahoney KE, Shabanowitz J, Hunt DF. MHC Phosphopeptides: Promising Targets for Immunotherapy of Cancer and Other Chronic Diseases. Mol Cell Proteomics 2021; 20:100112. [PMID: 34129940 PMCID: PMC8724925 DOI: 10.1016/j.mcpro.2021.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Major histocompatibility complex-associated peptides have been considered as potential immunotherapeutic targets for many years. MHC class I phosphopeptides result from dysregulated cell signaling pathways that are common across cancers and both viral and bacterial infections. These antigens are recognized by central memory T cells from healthy donors, indicating that they are considered antigenic by the immune system and that they are presented across different individuals and diseases. Based on these responses and the similar dysregulation, phosphorylated antigens are promising candidates for prevention or treatment of different cancers as well as a number of other chronic diseases.
Collapse
Affiliation(s)
- Keira E Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA; Department of Pathology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
14
|
Medda A, Duca D, Chiocca S. Human Papillomavirus and Cellular Pathways: Hits and Targets. Pathogens 2021; 10:262. [PMID: 33668730 PMCID: PMC7996217 DOI: 10.3390/pathogens10030262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Human Papillomavirus (HPV) is the causative agent of different kinds of tumors, including cervical cancers, non-melanoma skin cancers, anogenital cancers, and head and neck cancers. Despite the vaccination campaigns implemented over the last decades, we are far from eradicating HPV-driven malignancies. Moreover, the lack of targeted therapies to tackle HPV-related tumors exacerbates this problem. Biomarkers for early detection of the pathology and more tailored therapeutic approaches are needed, and a complete understanding of HPV-driven tumorigenesis is essential to reach this goal. In this review, we overview the molecular pathways implicated in HPV infection and carcinogenesis, emphasizing the potential targets for new therapeutic strategies as well as new biomarkers.
Collapse
Affiliation(s)
| | | | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (A.M.); (D.D.)
| |
Collapse
|
15
|
Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses 2021; 13:v13020321. [PMID: 33672465 PMCID: PMC7923415 DOI: 10.3390/v13020321] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The success of HPV as an infectious agent lies not within its ability to cause disease, but rather in the adeptness of the virus to establish long-term persistent infection. The ability of HPV to replicate and maintain its genome in a stratified epithelium is contingent on the manipulation of many host pathways. HPVs must abrogate host anti-viral defense programs, perturb the balance of cellular proliferation and differentiation, and hijack DNA damage signaling and repair pathways to replicate viral DNA in a stratified epithelium. Together, these characteristics contribute to the ability of HPV to achieve long-term and persistent infection and to its evolutionary success as an infectious agent. Abstract Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.
Collapse
|
16
|
Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 2021; 22:ijms22031400. [PMID: 33573298 PMCID: PMC7866783 DOI: 10.3390/ijms22031400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023] Open
Abstract
The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.
Collapse
|
17
|
Lépine C, Voron T, Berrebi D, Mandavit M, Nervo M, Outh-Gauer S, Péré H, Tournier L, Teissier N, Tartour E, Leboulanger N, Galmiche L, Badoual C. Juvenile-Onset Recurrent Respiratory Papillomatosis Aggressiveness: In Situ Study of the Level of Transcription of HPV E6 and E7. Cancers (Basel) 2020; 12:cancers12102836. [PMID: 33019611 PMCID: PMC7601884 DOI: 10.3390/cancers12102836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is a condition related to HPV 6 and 11 infection which is characterized by the repeated growth of benign exophytic papilloma in the respiratory tract of children. Disease progression is unpredictable leading sometimes to airway compromise and death. The aim of this study was to explore p16INK4a and expression of the RNA of HPV genes E6 and E7 with a chromogenic in situ hybridization (CISH) as biomarkers of JoRRP aggressiveness on a bicentric cohort of forty-eight children. CISH was scored semi-quantitatively as high (2+ score) and low (1+ score) levels of transcription of E6 and E7. Patients with a 2+ score had a more aggressive disease compared to those with a 1+ score. These data are a first step towards the use of biomarkers predictive of disease severity in JoRRP, this could improve the disease management, for example, by implementing adjuvant treatment at the early stages. Abstract Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is a condition related to HPV 6 and 11 infection which is characterized by the repeated growth of benign exophytic papilloma in the respiratory tract. Disease progression is unpredictable: some children experience minor symptoms, while others require multiple interventions due to florid growth. The aim of this study was to explore the biomarkers of JoRRP severity on a bicentric cohort of forty-eight children. We performed a CISH on the most recent sample of papilloma with a probe targeting the mRNA of the E6 and E7 genes of HPV 6 and 11 and an immunostaining with p16INK4a antibody. For each patient HPV RNA CISH staining was assessed semi-quantitatively to define two scores: 1+, defined as a low staining extent, and 2+, defined as a high staining extent. This series contained 19 patients with a score of 1+ and 29 with a score of 2+. Patients with a score of 2+ had a median of surgical excision (SE) per year that was twice that of patients with a score of 1+ (respectively 6.1 versus 2.8, p = 0.036). We found similar results with the median number of SE the first year. Regarding p16INK4a, all patients were negative. To conclude, HPV RNA CISH might be a biomarker which is predictive of disease aggressiveness in JoRRP, and might help in patient care management.
Collapse
Affiliation(s)
- Charles Lépine
- Department of Pathology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France; (C.L.); (M.N.); (S.O.-G.)
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
| | - Thibault Voron
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
| | - Dominique Berrebi
- Department of Pathology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France; (D.B.); (L.T.)
| | - Marion Mandavit
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
| | - Marine Nervo
- Department of Pathology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France; (C.L.); (M.N.); (S.O.-G.)
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
| | - Sophie Outh-Gauer
- Department of Pathology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France; (C.L.); (M.N.); (S.O.-G.)
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
| | - Hélène Péré
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
- Department of Virology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
| | - Louis Tournier
- Department of Pathology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France; (D.B.); (L.T.)
| | - Natacha Teissier
- Department of Pediatric ENT Surgery, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France;
| | - Eric Tartour
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
- Department of Immunology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
| | - Nicolas Leboulanger
- Department of Pediatric ENT Surgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France;
| | - Louise Galmiche
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France;
| | - Cécile Badoual
- Department of Pathology, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France; (C.L.); (M.N.); (S.O.-G.)
- Université de Paris, PARCC, INSERM-U970, F-75015 Paris, France; (T.V.); (M.M.); (H.P.); (E.T.)
- Correspondence: ; Tel.: +33-156-093-888
| |
Collapse
|
18
|
Augustin JG, Lepine C, Morini A, Brunet A, Veyer D, Brochard C, Mirghani H, Péré H, Badoual C. HPV Detection in Head and Neck Squamous Cell Carcinomas: What Is the Issue? Front Oncol 2020; 10:1751. [PMID: 33042820 PMCID: PMC7523032 DOI: 10.3389/fonc.2020.01751] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Besides classic tobacco and alcohol risk factors, human papillomavirus (HPV) plays a role in the development of a subset of head and neck squamous cell carcinomas (HNSCCs), and notably oropharynx squamous cell carcinomas (OPSCCs). HPV-induced OPSCCs have a different biological behavior and a better prognosis compared to non-HPV-induced OPSCCs and the eighth-edition TNM classification now separates these two entities. Therefore, determining the HPV status of patients with OPSCC is now essential for treatment, prognosis, and development of clinical trials. In this review, after reminding essential steps of HPV implication in the cell cycle, we describe the existing tools that are currently feasible in routine practice according to facilities available in health structures, with their benefits and drawbacks: HPV PCR, E6/E7 mRNA RT-PCR, E6/E7 mRNA in situ hybridization, HPV DNA in situ hybridization, and P16 immunochemistry. Besides these traditional HPV detection tools, novel diagnostic approaches are being evaluated for HPV-induced OPSCC “ultrastaging.” E6 humoral response and ddPCR-detecting HPVct DNA are two techniques performed on blood and are therefore non-invasive. Baseline E6 humoral levels could have a prognostic value, and HPVct DNA could be helpful for HPV OPSCC recurrence monitoring. At last, next-generation sequencing (NGS)-based “capture HPV” is a technique feasible on biopsies and circulating DNA material. It helps characterize HPV integration status and sites, and it could define prognostic subgroups in HPV-induced OPSCC. These novel precision detection tools could be further integrated in the care of patients with HPV-induced OPSCC.
Collapse
Affiliation(s)
| | - Charles Lepine
- Department of Pathology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France.,INSERM U970, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aurelien Morini
- Department of Pathology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - Anais Brunet
- Department of Pathology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - David Veyer
- Department of Virology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - Camille Brochard
- Department of Pathology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - Haitham Mirghani
- Department of Head and Neck Surgery, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - Hélène Péré
- INSERM U970, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Virology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France
| | - Cécile Badoual
- Department of Pathology, European Georges Pompidou Hospital, APHP, Université de Paris, Paris, France.,INSERM U970, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
19
|
Greenwood S, Chow-Lockerbie B, Epp T, Knight C, Wachoski-Dark G, MacDonald-Dickinson V, Wobeser B. Prevalence and Prognostic Impact of Equus caballus Papillomavirus Type 2 Infection in Equine Squamous Cell Carcinomas in Western Canadian Horses. Vet Pathol 2020; 57:623-631. [PMID: 32812522 DOI: 10.1177/0300985820941266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Equus caballus papillomavirus type-2 (EcPV-2) has been proposed as a causal factor in equine genital squamous cell carcinoma (SCC). This study had 2 objectives: first, calculate the frequency of papillomavirus (PV) and EcPV-2 infection in papillomas, carcinomas in situ (CIS), and SCCs in Western Canadian horses; and second, determine if EcPV-2 status of equine SCCs is associated with overall survival (OS). EcPV-2 status of 115 archived tissue samples, spanning 6 years, was determined using broad spectrum (MY09/11) and EcPV-2-specific polymerase chain reaction (PCR) assays, EcPV-2-E6/E7 chromogenic RNA in situ hybridization (R-ISH), and amplicon sequencing. A retrospective survey gathered data on history, outcome, breeding, treatment, and rationales of referring veterinarians when managing PV-associated diseases. Histologic grade and completeness of surgical margins of SCCs were also considered. EcPV-2 DNA was identified in 10/58 (17%) SCC, 8/27 (30%) papillomas, 0/5 CIS, and 0/11 lesions identified as "other." Overall, 18/101 (18%) of these lesions were positive for EcPV-2. EcPV-2 was identified in 10/35 (29%) SCCs arising from genital tissues but in 0/22 SCCs from other locations. There was no association between breeding history and EcPV-2 status of genital SCCs. EcPV-2 status of genital SCCs was not associated with OS (P = .76). The strongest negative predictors of OS were a lack of treatment (P < .01) and recurrence post-treatment (P < .01). Weaker predictors of OS included older age at time of diagnosis (P = .02). Completeness of margins at surgical excision, concurrent disease, treatment type, anatomic location of the SCC (anogenital vs other), and histologic grade of the SCC did not influence OS (P > .1).
Collapse
Affiliation(s)
- Sarah Greenwood
- 70399University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Tasha Epp
- 70399University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | - Bruce Wobeser
- 70399University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Human Papillomavirus E6/ E7 Expression in Preeclampsia-Affected Placentae. Pathogens 2020; 9:pathogens9030239. [PMID: 32209998 PMCID: PMC7157573 DOI: 10.3390/pathogens9030239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022] Open
Abstract
Whether HPV is causative of pregnancy complications is uncertain. E6 and E7 affect functions underling preeclampsia (PET) in cultured trophoblasts, but whether E6 and E7 is produced in the placenta is uncertain. Here, we investigated whether E6/E7 was expressed in the placentae from pregnancies with PET, other pregnancy complications (fetal growth restriction (FGR) and diabetes mellitus), and uncomplicated pregnancies. Placental tissues collected from two geographical locations were subjected to RNAscope analyses of high- and low- risk E6/E7, and individual HPV types identified using an HPV array. High-risk E6/E7 expression was increased in both PET cohorts, (81% and 86% of patients positive for high-risk HPV DNA compared to 13% of control patients). Various HPV types were identified. Although HPV 18 was the most frequent in all cohorts, the majority of individuals had multiple HPV types (55% of the PET compared to 25% of the control cohort). Further evidence that E6 and E7 is present early when placental pathology underlying preeclampsia is established, is provided with the finding of high-risk E6/E7 in the first-trimester placenta anchoring trophoblast. In conclusion, E6/E7 expression and multiple HPV types were frequent in placentae from preeclampsia-complicated pregnancies.
Collapse
|
21
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
22
|
Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer 2020; 122:306-314. [PMID: 31708575 PMCID: PMC7000688 DOI: 10.1038/s41416-019-0602-7] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The human papillomavirus (HPV) family includes more than 170 different types of virus that infect stratified epithelium. High-risk HPV is well established as the primary cause of cervical cancer, but in recent years, a clear role for this virus in other malignancies is also emerging. Indeed, HPV plays a pathogenic role in a subset of head and neck cancers-mostly cancers of the oropharynx-with distinct epidemiological, clinical and molecular characteristics compared with head and neck cancers not caused by HPV. This review summarises our current understanding of HPV in these cancers, specifically detailing HPV infection in head and neck cancers within different racial/ethnic subpopulations, and the differences in various aspects of these diseases between women and men. Finally, we provide an outlook for this disease, in terms of clinical management, and consider the issues of 'diagnostic biomarkers' and targeted therapies.
Collapse
Affiliation(s)
- Maria Elisa Sabatini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
23
|
Human Papillomavirus 11 Early Protein E6 Activates Autophagy by Repressing AKT/mTOR and Erk/mTOR. J Virol 2019; 93:JVI.00172-19. [PMID: 30971468 DOI: 10.1128/jvi.00172-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022] Open
Abstract
Low-risk human papillomaviruses (LR-HPVs) are the causative agents of genital warts, which are a widespread sexually transmitted disease. How LR-HPVs affect autophagy and the specific proteins involved are unknown. In the current study, we investigated the impact of LR-HPV11 early protein 6 (E6) on the activity of the autophagy pathway. We transfected an HPV11 E6 (11E6) plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. The differences in autophagy activity and upstream regulatory pathways compared with those in the parent cell lines were investigated using a Western blot analysis of the total and phosphorylated protein levels and confocal microscopy of immunostained cells and cells transfected with an mCherry-green fluorescent protein-LC3 expression plasmid. We used short hairpin RNA (shRNA) to knock down 11E6 and showed that these effects require continued 11E6 expression. Compared with its expression in the control cells, the expression of HPV11 E6 in the cells activated the autophagy pathway. The increased autophagy activity was the result of the decreased phosphorylation levels of the canonical autophagy repressor mammalian target of rapamycin (mTOR) at its Ser2448 position (the mTOR complex 1 [mTORC1] phosphorylation site) and decreased AKT and Erk phosphorylation. Therefore, these results indicate that HPV11 E6 activates autophagy through the AKT/mTOR and Erk/mTOR pathways. Our findings provide novel insight into the relationship between LR-HPV infections and autophagy and could help elucidate the pathogenic mechanisms of LR-HPV.IMPORTANCE We transfected an HPV11 E6 plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. Then, we confirmed that HPV11 E6 induces autophagy by suppressing the AKT/mTOR and Erk/mTOR pathways. In contrast to the high-risk HPV E6 genes, HPV11 E6 did not affect the expression of p53. To the best of our knowledge, this study represents the first direct in-depth investigation of the relationship between the LR-HPV E6 gene and autophagy, which may help to reveal the pathogenesis of LR-HPV infection.
Collapse
|
24
|
Murakami I, Egawa N, Griffin H, Yin W, Kranjec C, Nakahara T, Kiyono T, Doorbar J. Roles for E1-independent replication and E6-mediated p53 degradation during low-risk and high-risk human papillomavirus genome maintenance. PLoS Pathog 2019; 15:e1007755. [PMID: 31083694 PMCID: PMC6544336 DOI: 10.1371/journal.ppat.1007755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/31/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Human papillomaviruses (HPV) have genotype-specific disease associations, with high-risk alpha types causing at least 5% of all human cancers. Despite these conspicuous differences, our data show that high- and low- risk HPV types use similar approaches for genome maintenance and persistence. During the maintenance phase, viral episomes and the host cell genome are replicated synchronously, and for both the high- and low-risk HPV types, the E1 viral helicase is non-essential. During virus genome amplification, replication switches from an E1-independent to an E1-dependent mode, which can uncouple viral DNA replication from that of the host cell. It appears that the viral E2 protein, but not E6 and E7, is required for the synchronous maintenance-replication of both the high and the low-risk HPV types. Interestingly, the ability of the high-risk E6 protein to mediate the proteosomal degradation of p53 and to inhibit keratinocyte differentiation, was also seen with low-risk HPV E6, but in this case was regulated by cell density and the level of viral gene expression. This allows low-risk E6 to support genome amplification, while limiting the extent of E6-mediated cell proliferation during synchronous genome maintenance. Both high and low-risk E7s could facilitate cell cycle re-entry in differentiating cells and support E1-dependent replication. Despite the well-established differences in the viral pathogenesis and cancer risk, it appears that low- and high-risk HPV types use fundamentally similar molecular strategies to maintain their genomes, albeit with important differences in their regulatory control. Our results provide new insights into the regulation of high and low-risk HPV genome replication and persistence in the epithelial basal and parabasal cells layers. Understanding the minimum requirement for viral genome persistence will facilitate the development of therapeutic strategies for clearance.
Collapse
Affiliation(s)
- Isao Murakami
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Christian Kranjec
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
25
|
Gregório AC, Lacerda M, Figueiredo P, Simões S, Dias S, Moreira JN. Meeting the needs of breast cancer: A nucleolin's perspective. Crit Rev Oncol Hematol 2018; 125:89-101. [PMID: 29650282 DOI: 10.1016/j.critrevonc.2018.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
A major challenge in the management of breast cancer disease has been the development of metastases. Finding new molecular targets and the design of targeted therapeutic approaches to improve the overall survival and quality of life of these patients is, therefore, of great importance. Nucleolin, which is overexpressed in cancer cells and tumor-associated blood vessels, have been implicated in various processes supporting tumorigenesis and angiogenesis. Additionally, its overexpression has been demonstrated in a variety of human neoplasias as an unfavorable prognostic factor, associated with a high risk of relapse and low overall survival. Hence, nucleolin has emerged as a relevant target for therapeutic intervention in cancer malignancy, including breast cancer. This review focus on the contribution of nucleolin for cancer disease and on the development of therapeutic strategies targeting this protein. In this respect, it also provides a critical analysis about the potential and pitfalls of nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Ana C Gregório
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Manuela Lacerda
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Paulo Figueiredo
- IPOFG-EPE - Portuguese Institute of Oncology Francisco Gentil, 3000-075 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Sérgio Dias
- IMM - Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
26
|
Mwapagha LM, Tiffin N, Parker MI. Delineation of the HPV11E6 and HPV18E6 Pathways in Initiating Cellular Transformation. Front Oncol 2017; 7:258. [PMID: 29164058 PMCID: PMC5672010 DOI: 10.3389/fonc.2017.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are the major risk factors for cervical cancer they have been associated with several other cancers, such as head and neck and oral cancers. Since integration of low-risk HPV11 DNA has been demonstrated in esophageal tumor genomes, this study compared the effects of low-risk HPV11E6 and high-risk HPV18E6 on cellular gene expression. The HPV11E6 and HPV18E6 genes were cloned into an adenoviral vector and expressed in human keratinocytes (HaCaT) in order to investigate early events and to eliminate possible artifacts introduced by selective survival of fast growing cells in stable transfection experiments. HPV11E6 had very little effect on p21 and p53 gene expression, while HPV18E6 resulted in a marked reduction in both these proteins. Both HPV11E6 and HPV18E6 enabled growth of colonies in soft agar, but the level of colony formation was higher in HPV18E6 infected cells. DNA microarray analysis identified significantly differentially regulated genes involved in the cellular transformation signaling pathways. These findings suggest that HPV11E6 and HPV18E6 are important in initiating cellular transformation via deregulation of signaling pathways such as PI3K/AKT and pathways that are directly involved in DNA damage repair, cell survival, and cell proliferation. This study shows that the low-risk HPV11E6 may have similar effects as the high-risk HPV18E6 during the initial stages of infection, but at a much reduced level.
Collapse
Affiliation(s)
- Lamech M. Mwapagha
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Nicki Tiffin
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - M. Iqbal Parker
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| |
Collapse
|
27
|
Deng Z, Ikegami T, Kiyuna A, Zhang C, Zhang T, Matayoshi S, Uehara T, Maeda H, Suzuki M, Ganaha A. Methylation of CpG sites in the upstream regulatory region, physical status and mRNA expression of HPV-6 in adult-onset laryngeal papilloma. Oncotarget 2017; 8:85368-85377. [PMID: 29156725 PMCID: PMC5689615 DOI: 10.18632/oncotarget.19898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/13/2017] [Indexed: 12/14/2022] Open
Abstract
The methylation status of HPV-6 upstream regulatory region (URR) in adult-onset laryngeal papillomatosis (AO-LP) remains unclear. The purpose of this study was to investigate the methylation status of URR and the physical status of HPV-6, as well as the dynamic variations of viral load and mRNA expression in AO-LP. We examined 18 specimens from 11 patients with AO-LP by real-time polymerase chain reaction (PCR), bisulfite-sequencing PCR, and amplification of papilloma oncogene transcripts. HPV-6 was identified in 9 of 11 patients (81.8%), and all the 15 specimens derived from 9 HPV-6-positive cases contained only episomal HPV-6 transcripts with intact E2. Three HPV-6-positive patients developed recurrent lesions, and HPV-6 copy numbers and mRNA expression decreased after surgical treatment. Among the 96 CpG sites (16/case), 67 (69.8%) were unmethylated, while 23 (30.2%) were heterogeneous (≥ 1 methylated CpG clone). High viral loads and episomal status of HPV-6 were frequently observed in AO-LP; thus, persistent E6/E7 mRNA expression of LR-HPV-6 may be associated with AO-LP recurrences. Hypomethylation and scattered patterns of methylated CpGs at the URR of HPV-6 were identified in AO-LP.
Collapse
Affiliation(s)
- Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taro Ikegami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Asanori Kiyuna
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Tao Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sen Matayoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Maeda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akira Ganaha
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
28
|
Cortés Gutiérrez EI, García-Vielma C, Aguilar-Lemarroy A, Vallejo-Ruíz V, Piña-Sánchez P, Zapata-Benavides P, Gosalvez J. Expression of the HPV18/E6 oncoprotein induces DNA damage. Eur J Histochem 2017; 61:2773. [PMID: 28735519 PMCID: PMC5475411 DOI: 10.4081/ejh.2017.2773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022] Open
Abstract
This study investigated possible variations in DNA damage in HeLa cells with silenced expression of the HPV/E6 oncogene compared with HeLa cells with normal expression of the E6 oncogene using the DNA breakage detection–fluorescence in situ hybridization (DBD–FISH) technique and a whole human genome DNA probe. The variable levels of DNA breaks present were measured quantitatively using image analysis after whole-genome DNA hybridization. HeLa cells with silenced expression of the HPV18/E6 oncogene showed a significant decrease in DNA damage compared with parental cells with normal expression of the E6 oncogene. These results were confirmed by alkaline comet assay. In conclusion, we demonstrated a decrease in DNA damage in HeLa clones associated with low expression of the HPV/E6 oncogene. The significance of this decrease regarding the HPV life cycle and carcinogenesis requires further exploration.
Collapse
|
29
|
Wang J, Dupuis C, Tyring SK, Underbrink MP. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins. PLoS One 2016; 11:e0149859. [PMID: 26901061 PMCID: PMC4764768 DOI: 10.1371/journal.pone.0149859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein.
Collapse
Affiliation(s)
- Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Crystal Dupuis
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stephen K. Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael P. Underbrink
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol 2015; 238:166-79. [DOI: 10.1002/path.4656] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Affiliation(s)
- John Doorbar
- Department of Pathology; University of Cambridge; Tennis Court Road Cambridge UK
| |
Collapse
|
31
|
Papillomavirus E6 Oncoproteins Take Common Structural Approaches to Solve Different Biological Problems. PLoS Pathog 2015; 11:e1005138. [PMID: 26470018 PMCID: PMC4607424 DOI: 10.1371/journal.ppat.1005138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
32
|
Xiao Y, Wang J, Ma L, Ren J, Yang M. Nucleotide and phylogenetic analysis of human papillomavirus type 11 isolated from juvenile-onset recurrent respiratory papillomatosis in China. J Med Virol 2015; 88:686-94. [PMID: 26369639 DOI: 10.1002/jmv.24381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Xiao
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jun Wang
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Lijing Ma
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jiaming Ren
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Molei Yang
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
33
|
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25 Suppl 1:2-23. [PMID: 25752814 PMCID: PMC5024016 DOI: 10.1002/rmv.1822] [Citation(s) in RCA: 582] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
34
|
Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer 2015; 14:87. [PMID: 26022660 PMCID: PMC4498560 DOI: 10.1186/s12943-015-0361-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/06/2015] [Indexed: 01/08/2023] Open
Abstract
Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.
Collapse
Affiliation(s)
- Lifang Zhang
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
| | - Jianhong Wu
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
- Current address: Department of Gastric Cancer and Soft Tissue Sarcomas Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
| | - Ming Tat Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| | - Liang Zhao
- The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
- Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
35
|
Bodily JM. Genetic methods for studying the role of viral oncogenes in the HPV life cycle. Methods Mol Biol 2014; 1249:81-91. [PMID: 25348299 DOI: 10.1007/978-1-4939-2013-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Human papillomaviruses are the causative agents of several cancers, but only a minority of HPV infections progress to malignancy. In order to better understand HPV biology during the normal, differentiation-dependent life cycle, a cell culture model that maintains the complete episomal genome and permits host cell differentiation is critical. Furthermore, the use of cloned DNA as a starting material is important to facilitate genetic analyses. In this chapter, procedures for isolating human keratinocytes, establishing cell lines maintaining HPV16 genomes, and inducing cellular differentiation, which permits analysis of both early and late stages in the viral life cycle, are described.
Collapse
Affiliation(s)
- Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University, Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA,
| |
Collapse
|
36
|
Sakakibara N, Chen D, Jang MK, Kang DW, Luecke HF, Wu SY, Chiang CM, McBride AA. Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA. PLoS Pathog 2013; 9:e1003777. [PMID: 24278023 PMCID: PMC3836737 DOI: 10.1371/journal.ppat.1003777] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022] Open
Abstract
Replication foci are generated by many viruses to concentrate and localize viral DNA synthesis to specific regions of the cell. Expression of the HPV16 E1 and E2 replication proteins in keratinocytes results in nuclear foci that recruit proteins associated with the host DNA damage response. We show that the Brd4 protein localizes to these foci and is essential for their formation. However, when E1 and E2 begin amplifying viral DNA, Brd4 is displaced from the foci and cellular factors associated with DNA synthesis and homologous recombination are recruited. Differentiated HPV-infected keratinocytes form similar nuclear foci that contain amplifying viral DNA. We compare the different foci and show that, while they have many characteristics in common, there is a switch between early Brd4-dependent foci and mature Brd4-independent replication foci. However, HPV genomes encoding mutated E2 proteins that are unable to bind Brd4 can replicate and amplify the viral genome. We propose that, while E1, E2 and Brd4 might bind host chromatin at early stages of infection, there is a temporal and functional switch at later stages and increased E1 and E2 levels promote viral DNA amplification, displacement of Brd4 and growth of a replication factory. The concomitant DNA damage response recruits proteins required for DNA synthesis and repair, which could then be utilized for viral DNA replication. Hence, while Brd4 can enhance replication by concentrating viral processes in specific regions of the host nucleus, this interaction is not absolutely essential for HPV replication. Papillomaviruses have a remarkable infection cycle that depends on the development of a stratified epithelium. The virus infects the lower, dividing layers of the epithelium and viral genomes replicate at low copy number, and are maintained in these cells, for long periods of time. As infected cells differentiate and move to the surface of the epithelium, they switch on high level viral DNA replication, synthesize capsid proteins and form new viral particles. Viral replication takes place in nuclear foci and is dependent on the E1 and E2 replication proteins. Brd4 is a cellular chromatin binding protein that interacts with E2 and is important for transcriptional regulation of papillomaviruses. In this study we examine the role of Brd4 at different stages in the formation of viral replication foci. In the absence of viral DNA replication, Brd4 links the viral proteins to host chromatin. However, when viral genomes begin to amplify to high levels, Brd4 is displaced from nuclear foci and is not required for replication.
Collapse
Affiliation(s)
- Nozomi Sakakibara
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lorenz LD, Rivera Cardona J, Lambert PF. Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6. PLoS Pathog 2013; 9:e1003717. [PMID: 24204267 PMCID: PMC3812038 DOI: 10.1371/journal.ppat.1003717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/03/2013] [Indexed: 01/28/2023] Open
Abstract
The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections. Human papillomaviruses (HPVs) infect epithelial tissues. HPVs that infect mucosal epithelia cause infectious lesions in the anogenital tract and oral cavity. HPV infections are normally cleared by the immune system; however, in rare cases, infections can persist for years. Persistent infections by certain HPVs place one at a high risk of developing carcinomas of the cervix, other anogenital tissues, and the head/neck region. These HPVs are responsible for over 5% of all human cancers. For an HPV infection to persist, the viral circular genome must be maintained, i.e. replicated and inherited during cell division. In this study we define the mechanism by which the viral gene E6 contributes to the maintenance of the HPV genome. We demonstrate that E6 must inactivate the cellular factor, p53, for the viral genome to be maintained. Significantly, p53, is inactivated in many types of human cancers and because much research has been done on p53, promising new drugs have been identified that can re-activate p53. If such drugs can re-activate the p53 that has been inactivated by E6, then we hypothesize that these drugs could be used to cure patients with persistent HPV infections and thereby reduce their risk of developing HPV associated cancers.
Collapse
Affiliation(s)
- Laurel D. Lorenz
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jessenia Rivera Cardona
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
38
|
Doorbar J. The E4 protein; structure, function and patterns of expression. Virology 2013; 445:80-98. [PMID: 24016539 DOI: 10.1016/j.virol.2013.07.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023]
Abstract
The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of the E1^E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom.
| |
Collapse
|
39
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
40
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
41
|
Seedat RY, Combrinck CE, Burt FJ. HPV associated with recurrent respiratory papillomatosis. Future Virol 2013. [DOI: 10.2217/fvl.13.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Papillomaviruses are members of the Papillomaviridae family. Over 150 HPV types have been identified. Recurrent respiratory papillomatosis (RRP) is a chronic condition caused by HPV characterized by recurrent papillomas of the respiratory tract, mainly the larynx. During the early stages, the condition presents with hoarseness, while more advanced disease presents with stridor and respiratory distress. There is no specific cure and treatment consists of repeated surgical procedures to remove the papillomas. Most patients eventually go into remission, but some suffer for many years with this condition, which may be fatal. HPV-6 and HPV-11 are the HPV types most commonly associated with RRP. Although most studies have found RRP due to HPV-11 to be more aggressive than disease due to HPV-6, the variability in disease aggressiveness is probably multifactorial. Information regarding the current epidemiology, molecular diversity and host immune responses is important for strategizing ways to reduce disease. Data on HPV genotypes associated with RRP would provide valuable information for vaccination programs to reduce the incidence of these genotypes in mothers and, in the long term, reduce the incidence of RRP in children. This review focuses on HPV-6 and HPV-11 as the HPV types that cause RRP, and discusses the viral genome and replication, clinical presentation of RRP, current techniques of diagnosis and genotyping, and the molecular diversity of HPV-6 and HPV-11.
Collapse
Affiliation(s)
- Riaz Y Seedat
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Otorhinolaryngology, Universitas Academic Hospital, Bloemfontein, South Africa
| | - Catharina E Combrinck
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Felicity J Burt
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Medical Microbiology & Virology, National Health Laboratory Service Universitas, Bloemfontein, South Africa
| |
Collapse
|
42
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
43
|
Kocjan BJ, Jelen MM, Maver PJ, Seme K, Poljak M. Pre-vaccination genomic diversity of human papillomavirus genotype 6 (HPV 6): A comparative analysis of 21 full-length genome sequences. INFECTION GENETICS AND EVOLUTION 2011; 11:1805-10. [DOI: 10.1016/j.meegid.2011.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/08/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
|
44
|
In Inverted Papillomas HPV more likely represents incidental colonization than an etiological factor. Virchows Arch 2011; 459:529-38. [DOI: 10.1007/s00428-011-1139-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
45
|
Nicolaides L, Davy C, Raj K, Kranjec C, Banks L, Doorbar J. Stabilization of HPV16 E6 protein by PDZ proteins, and potential implications for genome maintenance. Virology 2011; 414:137-45. [PMID: 21489588 DOI: 10.1016/j.virol.2011.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/14/2011] [Accepted: 03/17/2011] [Indexed: 01/25/2023]
Abstract
The E6 protein from high-risk human papillomaviruses appears necessary for persistence of viral episomes in cells but the underlying mechanism is unclear. E6 has many activities, including its ability to bind and degrade PDZ domain-containing proteins, such as hScrib. However little is known about the role of these interactions for E6 function and the viral life cycle. We now show that the levels of expression of wild-type E6 are increased in the presence of hScrib whilst a mutant E6 protein lacking the PDZ-binding motif is found at lower levels as it is turned over more rapidly by the proteasome. This correlates with an inability of genomes containing this mutation to be maintained as episomes. These results show that E6 association with certain PDZ domain-containing proteins can stabilize the levels of E6 expression and provides one explanation as to how the PDZ-binding capacity of E6 might contribute to genome episomal maintenance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cell Adhesion Molecules
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line
- Discs Large Homolog 1 Protein
- Genome, Viral
- Guanylate Kinases
- Human papillomavirus 16/chemistry
- Human papillomavirus 16/genetics
- Human papillomavirus 16/metabolism
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- PDZ Domains
- Papillomavirus Infections/metabolism
- Papillomavirus Infections/virology
- Protein Binding
- Protein Stability
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tumor Suppressor Proteins/chemistry
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Lietta Nicolaides
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
46
|
Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 2011; 414:153-63. [PMID: 21492895 PMCID: PMC3101335 DOI: 10.1016/j.virol.2011.03.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 03/17/2011] [Indexed: 11/24/2022]
Abstract
Rabbit oral papillomavirus (ROPV) causes benign and spontaneously regressing oral lesions in rabbits, and is a useful model of disease associated with low-risk human papillomavirus types. Here we have adapted the ROPV system to study papillomavirus latency. Following lesion regression, ROPV DNA persists at the majority of regressed sites at levels substantially lower than those found in productive papillomas. Spliced viral transcripts were also detected. ROPV persistence in the absence of disease could be demonstrated for a year following infection and lesion-regression. This was not associated with completion of the virus life-cycle or new virion production, indicating that ROPV persists in a latent state. Using novel laser capture microdissection techniques, we could show that the site of latency is a subset of basal epithelial cells at sites of previous experimental infection. We hypothesize that these cells are epithelial stem cells and that reactivation of latency may be a source of recurrent disease.
Collapse
Affiliation(s)
| | | | - John Doorbar
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
47
|
Nonconserved lysine residues attenuate the biological function of the low-risk human papillomavirus E7 protein. J Virol 2011; 85:5546-54. [PMID: 21411531 DOI: 10.1128/jvi.02166-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mucosotrophic human papillomaviruses (HPVs) are classified as high-risk (HR) or low-risk (LR) genotypes based on their neoplastic properties. We have demonstrated previously that the E7 protein destabilizes p130, a pRb-related pocket protein, thereby promoting S-phase reentry in postmitotic, differentiated keratinocytes of squamous epithelia, and that HR HPV E7 does so more efficiently than LR HPV E7. The E7 proteins of LR HPV-11 and -6b uniquely possess lysine residues following a casein kinase II phosphorylation motif which is critical for the biological function of E7. We now show that mutations of these lysine residues elevated the efficiency of S-phase reentry, independent of their charge. An 11E7 K39,42R mutation moderately increased the association with and the destabilization of p130. Unexpectedly, polyubiquitination on these lysine residues did not attenuate E7 activity, as their mutation caused elevated proteasomal degradation and decreased protein stability. In this regard, the biologically more potent HR HPV E7 proteins were also less stable than the LR HPV E7 proteins. We infer that these lysine residues impede functional protein-protein interactions. A G22D mutation of 11E7 at the pocket protein binding motif possessed augmented efficiency in promoting S-phase reentry and strongly enhanced association with p130 and pRb. The combined effects of these two classes of 11E7 mutations exhibited an efficiency of S-phase reentry comparable to that of HR HPV E7. Thus, these nonconserved residues are primarily responsible for the differential abilities of LR and HR HPV E7 proteins to promote unscheduled DNA replication in organotypic raft cultures.
Collapse
|
48
|
Maver PJ, Kocjan BJ, Seme K, Potočnik M, Gale N, Poljak M. Prevaccination genomic diversity of human papillomavirus genotype 11: A study on 63 clinical isolates and 10 full-length genome sequences. J Med Virol 2011; 83:461-70. [DOI: 10.1002/jmv.21994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Abstract
Human papillomaviruses (HPVs), members of a very large family of small DNA viruses, cause both benign papillomas and malignant tumors. While most research on these viruses over the past 30 years has focused on their oncogenic properties in the genital tract, they also play an important role in diseases of the upper aerodigestive tract. Rapidly accelerating advances in knowledge have increased our understanding of the biology of these viruses and this knowledge, in turn, is being applied to new approaches to prevent, diagnose, and treat HPV-induced diseases. In this introductory article, we provide an overview of the structure and life cycle of the mucosal HPVs and their interactions with their target tissues and cells. Finally, we provide our thoughts about treatments for HPV-induced diseases, present and future.
Collapse
|
50
|
Barrow-Laing L, Chen W, Roman A. Low- and high-risk human papillomavirus E7 proteins regulate p130 differently. Virology 2010; 400:233-9. [PMID: 20189212 PMCID: PMC2861914 DOI: 10.1016/j.virol.2010.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/17/2009] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
Abstract
The E7 protein of high-risk human papillomaviruses (HR HPVs) targets pRb family members (pRb, p107 and p130) for degradation; low-risk (LR) HPV E7 only targets p130 for degradation. The effect of HR HPV 16 E7 and LR HPV 6 E7 on p130 intracellular localization and half-life was examined. Nuclear/cytoplasmic fractionation and immunofluorescence showed that, in contrast to control and HPV 6 E7-expressing cells, a greater amount of p130 was present in the cytoplasm in the presence of HPV 16 E7. The half-life of p130, relative to control cells, was decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation extended the half-life of p130, regardless of intracellular localization. These results suggest that there may be divergent mechanisms by which LR and HR HPV E7 target p130 for degradation.
Collapse
Affiliation(s)
- Lisa Barrow-Laing
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|