1
|
Shin J, Meinke G, Bohm AA, Bullock PA. A model for polyomavirus helicase activity derived in part from the AlphaFold2 structure of SV40 T-antigen. J Virol 2024; 98:e0111924. [PMID: 39311578 PMCID: PMC11494911 DOI: 10.1128/jvi.01119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/27/2024] Open
Abstract
The mechanism used by polyomavirus and other viral SF3 helicases to unwind DNA at replication forks remains unknown. Using AlphaFold2, we have determined the structure of a representative SF3 helicase, the SV40 T-antigen (T-ag). This model has been analyzed in terms of the features of T-ag required for helicase activity, particularly the proximity of the T-ag origin binding domain (OBD) to the replication fork and the distribution of basic residues on the surface of the OBD that are known to play roles in DNA unwinding. These and related studies provide additional evidence that the T-ag OBDs have a role in the unwinding of DNA at the replication fork. Nuclear magnetic resonance and modeling experiments also indicate that protonated histidines on the surface of the T-ag OBD play an important role in the unwinding process, and additional modeling studies indicate that protonated histidines are essential in other SF3 and SF6 helicases. Finally, a model for T-ag's helicase activity is presented, which is a variant of the "rope climber." According to this model, the hands are the N-terminal OBD domains that interact with the replication fork, while the C-terminal helicase domains contain the feet that bind to single-stranded DNA. IMPORTANCE Enzymes termed helicases are essential for the replication of DNA tumor viruses. Unfortunately, much remains to be determined about this class of enzymes, including their structures and the mechanism(s) they employ to unwind DNA. Herein, we present the full-length structure of a model helicase encoded by a DNA tumor virus. Moreover, this AI-based structure has been analyzed in terms of its basic functional properties, such as the orientation of the helicase at replication forks and the relative locations of the amino acid residues that are critical for helicase activity. Obtaining this information is important because it permits proposals regarding how DNA is routed through these model helicases. Also presented is structural evidence that the conclusions drawn from our detailed analyses of one model helicase, encoded by one class of tumor viruses, are likely to apply to other viral and eukaryotic helicases.
Collapse
Affiliation(s)
- Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex A. Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol 2017; 91:JVI.00735-17. [PMID: 28768870 DOI: 10.1128/jvi.00735-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the central nervous system. PML results when oligodendrocytes within immunocompromised individuals are infected with the human JC virus (JCV). We have identified an oligodendrocyte precursor cell line, termed G144, that supports robust levels of JCV DNA replication, a central part of the JCV life cycle. In addition, we have determined that JC virus readily infects G144 cells. Furthermore, we have determined that JCV DNA replication in G144 cells is stimulated by myristoylated (i.e., constitutively active) Akt and reduced by the Akt-specific inhibitor MK2206. Thus, this oligodendrocyte-based model system will be useful for a number of purposes, such as studies of JCV infection, establishing key pathways needed for the regulation of JCV DNA replication, and identifying inhibitors of this process.IMPORTANCE The disease progressive multifocal leukoencephalopathy (PML) is caused by the infection of particular brain cells, termed oligodendrocytes, by the JC virus. Studies of PML, however, have been hampered by the lack of an immortalized human cell line derived from oligodendrocytes. Here, we report that the G144 oligodendrocyte cell line supports both infection by JC virus and robust levels of JCV DNA replication. Moreover, we have established that the Akt pathway regulates JCV DNA replication and that JCV DNA replication can be inhibited by MK2206, a compound that is specific for Akt. These and related findings suggest that we have established a powerful oligodendrocyte-based model system for studies of JCV-dependent PML.
Collapse
|
3
|
Meinke G, Phelan PJ, Shin J, Gagnon D, Archambault J, Bohm A, Bullock PA. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains. PLoS Pathog 2016; 12:e1005362. [PMID: 26735515 PMCID: PMC4703215 DOI: 10.1371/journal.ppat.1005362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 11/21/2022] Open
Abstract
The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, United States of America
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, Gagnon D, Gjoerup O, Archambault J, Bullock PA. Analysis of JC virus DNA replication using a quantitative and high-throughput assay. Virology 2014; 468-470:113-125. [PMID: 25155200 DOI: 10.1016/j.virol.2014.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
Collapse
Affiliation(s)
- Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Panharith Chhum
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nazym Bashkenova
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sung Yim
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert Parker
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. J Virol 2012; 87:2923-34. [PMID: 23269808 DOI: 10.1128/jvi.02549-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.
Collapse
|
6
|
Simmons DT. Modeling of the SV40 DNA Replication Machine. Genes (Basel) 2012; 3:742-58. [PMID: 24705083 PMCID: PMC3902795 DOI: 10.3390/genes3040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/24/2012] [Accepted: 11/04/2012] [Indexed: 12/04/2022] Open
Abstract
The mechanism of SV40 DNA replication is certainly not completely understood. The proteins that are necessary for replication have been known for quite some time, but how they work together to form a nanomachine capable of faithfully replicating the virus DNA is only partially understood. Some of the proteins involved have been crystallized and their 3D structures determined, and several EM reconstructions of SV40 T antigen have been generated. In addition, there is a fair amount of biochemical data that pinpoints the sites of interaction between various proteins. With this information, various models were assembled that show how the SV40 DNA replication nanomachine could be structured in three dimensional space. This process was aided by the use of a 3D docking program as well as fitting of structures. The advantage of the availability of these models is that they are experimentally testable and they provide an insight into how the replication machine could work. Another advantage is that it is possible to quickly compare newly published structures to the models in order to come up with improved models.
Collapse
Affiliation(s)
- Daniel T Simmons
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
Structure-based analysis of the interaction between the simian virus 40 T-antigen origin binding domain and single-stranded DNA. J Virol 2010; 85:818-27. [PMID: 20980496 DOI: 10.1128/jvi.01738-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)(12) is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.
Collapse
|
8
|
Simian virus 40 large T antigen can specifically unwind the central palindrome at the origin of DNA replication. J Virol 2009; 83:3312-22. [PMID: 19144705 DOI: 10.1128/jvi.01867-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hydrophilic channels between helicase domains of simian virus 40 (SV40) large T antigen play a critical role in DNA replication. Previous mutagenesis of residues in the channels identified one class of mutants (class A: D429A, N449S, and N515S) with normal DNA binding and ATPase and helicase activities but with a severely reduced ability to unwind origin DNA and to support SV40 DNA replication in vitro. Here, we further studied these mutants to gain insights into how T antigen unwinds the origin. We found that the mutants were compromised in melting the imperfect palindrome (EP) but normal in untwisting the AT-rich track. However, the mutants' defect in EP melting was not the major reason they failed to unwind the origin because supplying an EP region as a mismatched bubble, or deleting the EP region altogether, did not rescue their unwinding deficiency. These results suggested that specific separation of the central palindrome of the origin (site II) is an essential step in unwinding origin DNA by T antigen. In support of this, wild-type T antigen was able to specifically unwind a 31-bp DNA containing only site II in an ATPase-dependent reaction, whereas D429A and N515S failed to do so. By performing a systematic mutagenesis of 31-bp site II DNA, we identified discrete regions in each pentanucleotide necessary for normal origin unwinding. These data indicate that T antigen has a mechanism to specifically unwind the central palindrome. Various models are proposed to illustrate how T antigen could separate the central origin.
Collapse
|
9
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
10
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
11
|
Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA. J Virol 2007; 81:9162-74. [PMID: 17596312 PMCID: PMC1951407 DOI: 10.1128/jvi.00384-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Wang W, Manna D, Simmons DT. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication. J Virol 2007; 81:4510-9. [PMID: 17301125 PMCID: PMC1900167 DOI: 10.1128/jvi.00003-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
13
|
Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, Archambault J, Bohm A, Bullock PA. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81:4808-18. [PMID: 17287270 PMCID: PMC1900137 DOI: 10.1128/jvi.02451-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.
Collapse
Affiliation(s)
- Anuradha Kumar
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meinke G, Phelan P, Moine S, Bochkareva E, Bochkarev A, Bullock PA, Bohm A. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA. PLoS Biol 2007; 5:e23. [PMID: 17253903 PMCID: PMC1779811 DOI: 10.1371/journal.pbio.0050023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/17/2006] [Indexed: 01/07/2023] Open
Abstract
DNA replication is initiated upon binding of "initiators" to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul Phelan
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Stephanie Moine
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elena Bochkareva
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter A Bullock
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Andrew Bohm
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Reese DK, Meinke G, Kumar A, Moine S, Chen K, Sudmeier JL, Bachovchin W, Bohm A, Bullock PA. Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication. J Virol 2006; 80:12248-59. [PMID: 17005644 PMCID: PMC1676264 DOI: 10.1128/jvi.01201-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication.
Collapse
Affiliation(s)
- Danielle K Reese
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Meinke G, Bullock PA, Bohm A. Crystal structure of the simian virus 40 large T-antigen origin-binding domain. J Virol 2006; 80:4304-12. [PMID: 16611889 PMCID: PMC1472039 DOI: 10.1128/jvi.80.9.4304-4312.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45-angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral, Tumor/chemistry
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Replication Origin/genetics
- Simian virus 40/chemistry
- Simian virus 40/genetics
Collapse
Affiliation(s)
- Gretchen Meinke
- Tufts University School of Medicine, Department of Biochemistry, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
17
|
Schuck S, Stenlund A. Assembly of a double hexameric helicase. Mol Cell 2005; 20:377-89. [PMID: 16285920 DOI: 10.1016/j.molcel.2005.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/02/2005] [Accepted: 09/23/2005] [Indexed: 11/21/2022]
Abstract
Viral initiators perform multiple functions in initiation of DNA replication including ori binding, melting, and unwinding, culminating in the formation of a double hexameric (DH) helicase. We have recapitulated the assembly of the papillomavirus E1 initiator DH helicase, providing the first description of how such a complex is formed. We have identified an intermediate, a double trimer (DT), which relies on two cooperating DNA binding activities to melt double-stranded DNA and generate a substrate for formation of the DH helicase. The formation of the DT is dependent on nucleotide binding, while formation of the DH also requires hydrolysable ATP. The DNA binding properties of the DT explain how E1, which binds to DNA as a dimer, can effect a transition to ring structures, such as the double hexamer. These results provide new insight into the intricate machinery that initiates DNA replication.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
18
|
Shen J, Gai D, Patrick A, Greenleaf WB, Chen XS. The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci U S A 2005; 102:11248-53. [PMID: 16061814 PMCID: PMC1183535 DOI: 10.1073/pnas.0409646102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 large tumor antigen is required for DNA unwinding during viral replication. The helicase-active form of large tumor antigen is a ring-shaped hexamer/double hexamer, which has a positively charged hexameric channel for interacting with DNA. On the hexameric channel surface are six beta-hairpin structures and loops, emanating from each of the six subunits. At the tips of the beta-hairpin and the loop structures are two ring-shaped residues, H513 and F459, respectively. Additionally, two positively charged residues, K512 and K516, are near the tip of the beta-hairpin. The positions of these ring-shaped and positively charged residues suggest that they may play a role in binding DNA for helicase function. To understand the roles of these residues in helicase function, we obtained a set of mutants and examined various activities, including oligomerization, ATPase, DNA binding, and helicase activities. We found that substitution of these residues by Ala abolished helicase activity. Extensive mutagenesis showed that substitutions by ring-shaped residues (W and Y) at position F459 and by residues with hydrophobic or long aliphatic side chains (W, Y, F, L, M, and R) at position H513 supported helicase activity. Our study demonstrated that the four residues (F459, H513, K512, and K516) play a critical role in interacting with DNA for helicase function. The results suggest a possible mechanism to explain how these residues, as well as the beta-hairpin and the loop structures on which the residues reside, participate in binding and translocating DNA for origin melting and unwinding.
Collapse
Affiliation(s)
- Jingping Shen
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | |
Collapse
|
19
|
Colletti KS, Xu Y, Yamboliev I, Pari GS. Human cytomegalovirus UL84 is a phosphoprotein that exhibits UTPase activity and is a putative member of the DExD/H box family of proteins. J Biol Chem 2005; 280:11955-60. [PMID: 15778228 DOI: 10.1074/jbc.c400603200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL84 is required for lytic DNA replication and is proposed to be the key factor in initiation of viral DNA synthesis. We now show that UL84 has a high degree of homology to the DExD/H (where x can be any amino acid) box family of helicases, displays UTPase activity, and is phosphorylated at serine residues. Affinity column-purified UL84-FLAG fusion protein was used in an in vitro nucleoside triphosphatase (NTPase) assay to show that UL84 has NTPase activity, preferring UTP. This UTPase activity was linear with respect to enzyme concentration and slightly enhanced by the addition of nucleic acid substrates. UL84 UTPase was the highest at low salt concentrations, a pH of 7.5, and a temperature of 45 degrees C. The enzyme preferred Mg2+ as the divalent cation but was also able to catalyze the UTPase reaction in the presence of Mn2+, Ca2+, and Zn2+ albeit at lower levels. The evidence presented here suggests that the UL84 UTPase activity may be part of an energy-generating system for helicase activity associated with the initiation of HCMV DNA replication.
Collapse
Affiliation(s)
- Kelly S Colletti
- University of Nevada-Reno, Department of Microbiology & Immunology and the Cell and Molecular Biology Program, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
20
|
Eichman BF, Fanning E. The power of pumping together; deconstructing the engine of a DNA replication machine. Cell 2004; 119:3-4. [PMID: 15454074 DOI: 10.1016/j.cell.2004.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replicative DNA helicase lies at the heart of the eukaryotic replication machine, yet how it works remains puzzling. New structures of the viral replicative helicase SV40 T antigen suggest that a novel concerted mode of nucleotide binding and hydrolysis powers conformation changes and DNA unwinding.
Collapse
Affiliation(s)
- Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
21
|
Sclafani RA, Fletcher RJ, Chen XS. Two heads are better than one: regulation of DNA replication by hexameric helicases. Genes Dev 2004; 18:2039-45. [PMID: 15342486 PMCID: PMC2292464 DOI: 10.1101/gad.1240604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Robert. A. Sclafani
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | - Ryan J. Fletcher
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Xiaojiang S. Chen
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
- Corresponding author: E-MAIL or ; FAX (303) 315-8113
| |
Collapse
|
22
|
Abbate EA, Berger JM, Botchan MR. The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 2004; 18:1981-96. [PMID: 15289463 PMCID: PMC514179 DOI: 10.1101/gad.1220104] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA replication of the papillomaviruses is specified by cooperative binding of two proteins to the ori site: the enhancer E2 and the viral initiator E1, a distant member of the AAA+ family of proteins. Formation of this prereplication complex is an essential step toward the construction of a functional, multimeric E1 helicase and DNA melting. To understand how E2 interacts with E1 to regulate this process, we have solved the X-ray structure of a complex containing the HPV18 E2 activation domain bound to the helicase domain of E1. Modeling the monomers of E1 to a hexameric helicase shows that E2 blocks hexamerization of E1 by shielding a region of the E1 oligomerization surface and stabilizing a conformation of E1 that is incompatible with ATP binding. Further biochemical experiments and structural analysis show that ATP is an allosteric effector of the dissociation of E2 from E1. Our data provide the first molecular insights into how a protein can regulate the assembly of an oligomeric AAA+ complex and explain at a structural level why E2, after playing a matchmaker role by guiding E1 to the DNA, must dissociate for subsequent steps of initiation to occur. Building on previously proposed ideas, we discuss how our data advance current models for the conversion of E1 in the prereplication complex to a hexameric helicase assembly.
Collapse
Affiliation(s)
- Eric A Abbate
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, 94720-3204, USA
| | | | | |
Collapse
|
23
|
Weisshart K, Friedl S, Taneja P, Nasheuer HP, Schlott B, Grosse F, Fanning E. Partial proteolysis of simian virus 40 T antigen reveals intramolecular contacts between domains and conformation changes upon hexamer assembly. J Biol Chem 2004; 279:38943-51. [PMID: 15247253 DOI: 10.1074/jbc.m406159200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Simian virus 40 large tumor antigen (Tag) is a multi-functional viral protein that binds specifically to SV40 origin DNA, serves as the replicative DNA helicase, and orchestrates the assembly and operation of the viral replisome. Tag associated with Mg-ATP forms hexamers and, in the presence of SV40 origin DNA, double hexamers. Limited tryptic digestion of monomeric Tag revealed three major stable structural domains. The N-terminal domain spans amino acids 1-130, the central domain comprises amino acids 131-476, and the C-terminal domain extends from amino acid 513 to amino acid 698. Co-immunoprecipitation of digestion products of monomeric Tag suggests that the N-terminal domain associates stably with sequences located in the central region of the same Tag molecule. Hexamer formation protected the tryptic cleavage sites in the exposed region between the central and C-terminal domains. Upon hexamerization, this exposed region also became less accessible to a monoclonal antibody whose epitope maps in that region. The tryptic digestion products of the soluble hexamer and the DNA-bound double hexamer were indistinguishable. A low-resolution model of the intramolecular and intermolecular interactions among Tag domains in the double hexamer is proposed.
Collapse
Affiliation(s)
- Klaus Weisshart
- Institute for Molecular Biotechnology, Beutenbergstrasse 11, 07745 Jena, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|