1
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential EBV protein-specific antibody response between responders and non-responders to EBVSTs immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607997. [PMID: 39211169 PMCID: PMC11361067 DOI: 10.1101/2024.08.14.607997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) immunotherapies have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas, but not all patients respond to treatment. To identify the set of EBV-directed antibody responses associated with clinical response in patients with EBV-associated lymphomas, we comprehensively characterized the immune response to the complete EBV proteome using a custom protein microarray in 56 EBV-associated lymphoma patients who were treated with EBVST infusions enrolled in Phase I clinical trials. Significant differences in antibody profiles between responders and non-responders emerged at 3 months post-EBVST infusion. Twenty-five IgG antibodies were present at significantly higher levels in non-responders compared to responders at 3 months post-EBVST infusion, and 10 of these IgG antibody associations remained after adjustment for sex, age, and cancer diagnosis type. Random forest prediction analysis further confirmed that these 10 antibodies were important for predicting clinical response. Differential IgG antibody responses were directed against LMP2A (four fragments), BGRF1/BDRF1 (two fragments), LMP1, BKRF2, BKRF4, and BALF5. Paired analyses using blood samples collected at both pre-infusion and 3 months post-EBVST infusion indicated an increase in the mean antibody level for six other anti-EBV antibodies (IgG: BGLF2, LF1, BGLF3; IgA: BGLF3, BALF2, BBLF2/3) in non-responders. Overall, our results indicate that EBV-directed antibodies can be biomarkers for predicting the clinical response of individuals with EBV-associated lymphomas treated with EBVST infusions.
Collapse
|
2
|
Xu H, Akinyemi IA, Haley J, McIntosh MT, Bhaduri-McIntosh S. ATM, KAP1 and the Epstein-Barr virus polymerase processivity factor direct traffic at the intersection of transcription and replication. Nucleic Acids Res 2023; 51:11104-11122. [PMID: 37852757 PMCID: PMC10639065 DOI: 10.1093/nar/gkad823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The timing of transcription and replication must be carefully regulated for heavily-transcribed genomes of double-stranded DNA viruses: transcription of immediate early/early genes must decline as replication ramps up from the same genome-ensuring efficient and timely replication of viral genomes followed by their packaging by structural proteins. To understand how the prototypic DNA virus Epstein-Barr virus tackles the logistical challenge of switching from transcription to DNA replication, we examined the proteome at viral replication forks. Specifically, to transition from transcription, the viral DNA polymerase-processivity factor EA-D is SUMOylated by the epigenetic regulator and E3 SUMO-ligase KAP1/TRIM28. KAP1's SUMO2-ligase function is triggered by phosphorylation via the PI3K-related kinase ATM and the RNA polymerase II-associated helicase RECQ5 at the transcription machinery. SUMO2-EA-D then recruits the histone loader CAF1 and the methyltransferase SETDB1 to silence the parental genome via H3K9 methylation, prioritizing replication. Thus, a key viral protein and host DNA repair, epigenetic and transcription-replication interference pathways orchestrate the handover from transcription-to-replication, a fundamental feature of DNA viruses.
Collapse
Affiliation(s)
- Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - John Haley
- Department of Pathology and Stony Brook Proteomics Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Pathogenic Role of Epstein-Barr Virus in Lung Cancers. Viruses 2021; 13:v13050877. [PMID: 34064727 PMCID: PMC8151745 DOI: 10.3390/v13050877] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Human oncogenic viruses account for at least 12% of total cancer cases worldwide. Epstein–Barr virus (EBV) is the first identified human oncogenic virus and it alone causes ~200,000 cancer cases and ~1.8% of total cancer-related death annually. Over the past 40 years, increasing lines of evidence have supported a causal link between EBV infection and a subgroup of lung cancers (LCs). In this article, we review the current understanding of the EBV-LC association and the etiological role of EBV in lung carcinogenesis. We also discuss the clinical impact of the knowledge gained from previous research, challenges, and future directions in this field. Given the high clinical relevance of EBV-LC association, there is an urgent need for further investigation on this topic.
Collapse
|
4
|
A Multifunctional Protein PolDIP2 in DNA Translesion Synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:35-45. [PMID: 32383114 DOI: 10.1007/978-3-030-41283-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Polymerase δ-interacting protein 2 (PolDIP2) is involved in the multiple protein-protein interactions and plays roles in many cellular processes including regulation of the nuclear redox environment, organization of the mitotic spindle and chromosome segregation, pre-mRNA processing, mitochondrial morphology and functions, cell migration and cellular adhesion. PolDIP2 is also a binding partner of high-fidelity DNA polymerase delta, PCNA and a number of translesion and repair DNA polymerases. The growing evidence suggests that PolDIP2 is a general regulatory protein in DNA damage response. However PolDIP2 functions in DNA translesion synthesis and repair are not fully understood. In this review, we address the functional interaction of PolDIP2 with human DNA polymerases and discuss the possible functions in DNA damage response.
Collapse
|
5
|
Bruno M, Mahgoub M, Macfarlan TS. The Arms Race Between KRAB–Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals. Annu Rev Genet 2019; 53:393-416. [DOI: 10.1146/annurev-genet-112618-043717] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.
Collapse
Affiliation(s)
- Melania Bruno
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mohamed Mahgoub
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Todd S. Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11060759. [PMID: 31159203 PMCID: PMC6627930 DOI: 10.3390/cancers11060759] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung cancer (LC), but the results are highly controversial largely due to the insufficient sample size and the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all exogenous agents within a cancer sample with high sensitivity and specificity. In our current study, we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics approaches in conjunction with traditional molecular methods to investigate the role of EBV in a total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts, indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the notion that EBV likely plays a pathological role in a subset of LC.
Collapse
|
7
|
KRAB-ZFP Repressors Enforce Quiescence of Oncogenic Human Herpesviruses. J Virol 2018; 92:JVI.00298-18. [PMID: 29695433 DOI: 10.1128/jvi.00298-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-causing herpesviruses infect nearly every human and persist indefinitely in B lymphocytes in a quiescent state known as latency. A hallmark of this quiescence or latency is the presence of extrachromosomal viral genomes with highly restricted expression of viral genes. Silencing of viral genes ensures both immune evasion by the virus and limited pathology to the host, yet how multiple genes on multiple copies of viral genomes are simultaneously silenced is a mystery. In a unifying theme, we report that both cancer-causing human herpesviruses, despite having evolved independently, are silenced through the activities of two members of the Krüppel-associated box (KRAB) domain-zinc finger protein (ZFP) (KRAB-ZFP) epigenetic silencing family, revealing a novel STAT3-KRAB-ZFP axis of virus latency. This dual-edged antiviral strategy restricts the destructive ability of the lytic phase while promoting the cancer-causing latent phase. These findings also unveil roles for KRAB-ZFPs in silencing of multicopy foreign genomes with the promise of evicting herpesviruses to kill viral cancers bearing clonal viral episomes.IMPORTANCE Despite robust immune responses, cancer-causing viruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist for life. This persistence is accomplished partly through a stealth mechanism that keeps extrachromosomal viral genomes quiescent. Quiescence, or latency, ensures that not every cell harboring viral genomes is killed directly through lytic activation or indirectly via the immune response, thereby evicting virus from host. For the host, quiescence limits pathology. Thus, both virus and host benefit from quiescence, yet how quiescence is maintained through silencing of a large set of viral genes on multiple viral genomes is not well understood. Our studies reveal that members of a gene-silencing family, the KRAB-ZFPs, promote quiescence of both cancer-causing human viruses through simultaneous silencing of multiple genes on multicopy extrachromosomal viral genomes.
Collapse
|
8
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
10
|
Timms RT, Tchasovnikarova IA, Lehner PJ. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 2016; 38:333-43. [DOI: 10.1002/bies.201500184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Richard T. Timms
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Iva A. Tchasovnikarova
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
11
|
Rauwel B, Jang SM, Cassano M, Kapopoulou A, Barde I, Trono D. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife 2015; 4. [PMID: 25846574 PMCID: PMC4384640 DOI: 10.7554/elife.06068] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent pathogen that induces life-long infections notably through the establishment of latency in hematopoietic stem cells (HSC). Bouts of reactivation are normally controlled by the immune system, but can be fatal in immuno-compromised individuals such as organ transplant recipients. Here, we reveal that HCMV latency in human CD34+ HSC reflects the recruitment on the viral genome of KAP1, a master co-repressor, together with HP1 and the SETDB1 histone methyltransferase, which results in transcriptional silencing. During lytic infection, KAP1 is still associated with the viral genome, but its heterochromatin-inducing activity is suppressed by mTOR-mediated phosphorylation. Correspondingly, HCMV can be forced out of latency by KAP1 knockdown or pharmacological induction of KAP1 phosphorylation, and this process can be potentiated by activating NFkB with TNF-α. These results suggest new approaches both to curtail CMV infection and to purge the virus from organ transplants. DOI:http://dx.doi.org/10.7554/eLife.06068.001 Human cytomegalovirus (HCMV) is an extremely common virus that causes life-long infections in humans. Most individuals are exposed to HCMV during childhood, and the infection rarely causes any symptoms of disease in healthy individuals. However, in people with weaker immune systems—for example, newborn babies, people with AIDS, or individuals who have received an organ transplant—HCMV can cause life-threatening illnesses. It is difficult for the immune system to fight the infection because HCMV is able to hide in cells within the bone marrow called hematopoietic stem cells. Inside these cells, the virus can survive in a ‘dormant’ state for many years, before being reactivated and starting to multiply again. In most people, the immune system manages to control this new outbreak of HCMV, and the virus becomes dormant again, but reactivation of the virus in individuals with weakened immune systems is much more likely to cause serious illness. The results of previous studies suggest that when HCMV infects the hematopoietic stem cells, human proteins switch off the expression of many virus genes, which makes the virus inactive. The virus can be reactivated when infected stem cells change into a type of immune cell called dendritic cells, but it is not clear how this is controlled. Here, Rauwel et al. reveal that a human protein called KAP1 is responsible for switching off the virus genes in the stem cells. It does so by interacting with two other proteins to alter the structure of the DNA in these genes. However, if the stem cells are stimulated to change into dendritic cells, KAP1 becomes inactive, which allows the virus genes to be switched on. Rauwel et al. also show that it is possible to force HCMV out of its dormant state by using drugs to block the activity of KAP1. This may aid the development of treatments that prevent the virus from causing serious illness in patients with weakened immune systems. For example, it could be used to remove dormant HCMV infections from bone marrow before it is transplanted into a new individual. DOI:http://dx.doi.org/10.7554/eLife.06068.002
Collapse
Affiliation(s)
- Benjamin Rauwel
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Cassano
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Barde
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
15
|
Calderon MR, Verway M, Benslama RO, Birlea M, Bouttier M, Dimitrov V, Mader S, White JH. Ligand-dependent corepressor contributes to transcriptional repression by C2H2 zinc-finger transcription factor ZBRK1 through association with KRAB-associated protein-1. Nucleic Acids Res 2014; 42:7012-27. [PMID: 24829459 PMCID: PMC4066800 DOI: 10.1093/nar/gku413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We identified a novel interaction between ligand-dependent corepressor (LCoR) and the corepressor KRAB-associated protein-1 (KAP-1). The two form a complex with C2H2 zinc-finger transcription factor ZBRK1 on an intronic binding site in the growth arrest and DNA-damage-inducible α (GADD45A) gene and a novel site in the fibroblast growth factor 2 (FGF2) gene. Chromatin at both sites is enriched for histone methyltransferase SETDB1 and histone 3 lysine 9 trimethylation, a repressive epigenetic mark. Depletion of ZBRK1, KAP-1 or LCoR led to elevated GADD45A and FGF2 expression in malignant and non-malignant breast epithelial cells, and caused apoptotic death. Loss of viability could be rescued by simultaneous knockdowns of FGF2 and transcriptional coregulators or by blocking FGF2 function. FGF2 was not concurrently expressed with any of the transcriptional coregulators in breast malignancies, suggesting an inverse correlation between their expression patterns. We propose that ZBRK1, KAP-1 and LCoR form a transcriptional complex that silences gene expression, in particular FGF2, which maintains breast cell viability. Given the broad expression patterns of both LCoR and KAP-1 during development and in the adult, this complex may have several regulatory functions that extend beyond cell survival, mediated by interactions with ZBRK1 or other C2H2 zinc-finger proteins.
Collapse
Affiliation(s)
- Mario R Calderon
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Mark Verway
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Radia Ouelaa Benslama
- Department of Biochemistry, Université de Montréal, Montreal, QC, Canada Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Mirela Birlea
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sylvie Mader
- Department of Biochemistry, Université de Montréal, Montreal, QC, Canada Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, QC, Canada Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Abstract
The ability of adaptive immune system to protect higher vertebrates from pathogens resides in the ability of B and T cells to express different antigen specific receptors and to respond to different threats by activating distinct differentiation and/or activation pathways. In the past 10 years, the major role of epigenetics in controlling molecular mechanisms responsible for these peculiar features and, more in general, for lymphocyte development has become evident. KRAB-ZFPs is the widest family of mammalian transcriptional repressors, which function through the recruitment of the co-factor KRAB-Associated Protein 1 (KAP1) that in turn engages histone modifiers inducing heterochromatin formation. Although most of the studies on KRAB proteins have been performed in embryonic cells, more recent reports highlighted a relevant role for these proteins also in adult tissues. This article will review the role of KRAB-ZFP and KAP1 in the epigenetic control of mouse and human adaptive immune cells.
Collapse
|
17
|
Inhibition of KAP1 enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus reactivation through RBP-Jκ. J Virol 2014; 88:6873-84. [PMID: 24696491 DOI: 10.1128/jvi.00283-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Hypoxia-inducible factor 1α (HIF-1α) has been frequently implicated in many cancers as well as viral pathogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. It can stabilize HIF-1α during latent infection and undergoes lytic replication in response to hypoxic stress. However, the mechanism by which KSHV controls its latent and lytic life cycle through the deregulation of HIF-1α is not fully understood. Our previous studies showed that the hypoxia-sensitive chromatin remodeler KAP1 was targeted by the KSHV-encoded latency-associated nuclear antigen (LANA) to repress expression of the major lytic replication and transcriptional activator (RTA). Here we further report that an RNA interference-based knockdown of KAP1 in KSHV-infected primary effusion lymphoma (PEL) cells disrupted viral episome stability and abrogated sub-G1/G1 arrest of the cell cycle while increasing the efficiency of KSHV lytic reactivation by hypoxia or using the chemical 12-O-tetradecanoylphorbol-13-acetate (TPA) or sodium butyrate (NaB). Moreover, KSHV genome-wide screening revealed that four hypoxia-responsive clusters have a high concurrence of both RBP-Jκ and HIF-1α binding sites (RBS+HRE) within the same gene promoter and are tightly associated with KAP1. Inhibition of KAP1 greatly enhanced the association of RBP-Jκ with the HIF-1α complex for driving RTA expression not only in normoxia but also in hypoxia. These results suggest that both KAP1 and the concurrence of RBS+HRE within the RTA promoter are essential for KSHV latency and hypoxia-induced lytic reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV), a DNA tumor virus, is an etiological agent linked to several human malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). HIF-1α, a key hypoxia-inducible factor, is frequently elevated in KSHV latently infected tumor cells and contributes to KSHV lytic replication in hypoxia. The molecular mechanisms of how KSHV controls the latent and lytic life cycle through deregulating HIF-1α remain unclear. In this study, we found that inhibition of hypoxia-sensitive chromatin remodeler KAP1 in KSHV-infected PEL cells leads to a loss of viral genome and increases its sensitivity to hypoxic stress, leading to KSHV lytic reactivation. Importantly, we also found that four hypoxia-responsive clusters within the KSHV genome contain a high concurrence of RBP-Jκ (a key cellular regulator involved in Notch signaling) and HIF-1α binding sites. These sites are also tightly associated with KAP1. This discovery implies that KAP1, RBP-Jκ, and HIF-1α play an essential role in KSHV pathogenesis through subtle cross talk which is dependent on the oxygen levels in the infected cells.
Collapse
|
18
|
Lin LF, Li CF, Wang WJ, Yang WM, Wang DDH, Chang WC, Lee WH, Wang JM. Loss of ZBRK1 contributes to the increase of KAP1 and promotes KAP1-mediated metastasis and invasion in cervical cancer. PLoS One 2013; 8:e73033. [PMID: 23991171 PMCID: PMC3749996 DOI: 10.1371/journal.pone.0073033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023] Open
Abstract
ZBRK1, a zinc finger protein that interacts with breast cancer 1 (BRCA1) and KRAB-ZFP-associated protein 1 (KAP1), has been suggested to serve as a tumor suppressor via repression of tumor metastasis/invasion. To date, the detailed molecular mechanisms for how BRCA1 and KAP1 participate in ZBRK1-mediated transcriptional repression, metastasis and invasion as well as the associated clinical relevance remain unclear. In this study, we demonstrated that both the N- and C-terminal domains of ZBRK1 are important for inhibiting cell proliferation and anchorage-independent growth in cervical cancer. Specifically, the N-terminal KRAB domain of ZBRK1 displayed a more crucial role in inhibiting metastasis and invasion through modulation of KAP1 function in a transcriptionally dependent manner. The loss of ZBRK1 results in an increase of KAP1 expression, which enhanced migration and invasion of cervical cancer cells both the in vitro and in vivo. Moreover, an inverse correlation of expression levels was observed between ZBRK1 and KAP1 following tumor progression from in situ carcinoma to invasive/metastatic cervical cancer specimens. Taken together, the current results indicate that a loss of ZBRK1 contributes to the increased expression of KAP1, potentiating its role to enhance metastasis and invasion.
Collapse
Affiliation(s)
- Li-Fang Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan City, Taiwan, Republic of China
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan, Republic of China
| | - Wei-Jan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan City, Taiwan, Republic of China
| | - Wen-Ming Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Dennis Ding-Hwa Wang
- Department of Biological Chemistry, Union Council Irvine School of Medicine, California, United States of America
| | - Wen-Chang Chang
- Infectious Disease and Signaling Research Center, National Cheng Kung University, National Cheng Kung University, Tainan City, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Wen-Hwa Lee
- Department of Biological Chemistry, Union Council Irvine School of Medicine, California, United States of America
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan City, Taiwan, Republic of China
- Molecular Inflammation Research Center, National Cheng Kung University, Tainan City, Taiwan, Republic of China
- Infectious Disease and Signaling Research Center, National Cheng Kung University, National Cheng Kung University, Tainan City, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
19
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
20
|
Abstract
Epstein-Barr virus (EBV) is a paradigm for human tumor viruses: it is the first virus recognized to cause cancer in people; it causes both lymphomas and carcinomas; yet these tumors arise infrequently given that most people in the world are infected with the virus. EBV is maintained extrachromosomally in infected normal and tumor cells. Eighty-four percent of these viral plasmids replicate each S phase, are licensed, require a single viral protein for their synthesis, and can use two functionally distinct origins of DNA replication, oriP, and Raji ori. Eighty-eight percent of newly synthesized plasmids are segregated faithfully to the daughter cells. Infectious viral particles are not synthesized under these conditions of latent infection. This plasmid replication is consistent with survival of EBV's host cells. Rare cells in an infected population either spontaneously or following exogenous induction support EBV's lytic cycle, which is lethal for the cell. In this case, the viral DNA replicates 100-fold or more, uses a third kind of viral origin of DNA replication, oriLyt, and many viral proteins. Here we shall describe the three modes of EBV's replication as a function of the viral origins used and the viral and cellular proteins that mediate the DNA synthesis from these origins focusing, where practical, on recent advances in our understanding.
Collapse
Affiliation(s)
- Wolfgang Hammerschmidt
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, D-81377 Munich, Germany
| | | |
Collapse
|
21
|
Abstract
Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in activation of viral DNA synthesis from the endogenous viral genome, a function that has not been established. Initially, we searched for a ZEBRA mutant that supports viral replication but not transcription. We found that Z(S186A), a mutant of ZEBRA unable to activate transcription of Rta or viral genes encoding replication proteins, is competent to bind to oriLyt and to function as an origin recognition protein. Ectopic expression of the six components of the EBV lytic replication machinery failed to rescue replication by Z(S186A). However, addition of Rta to Z(S186A) and the mixture of replication factors activated viral replication and late gene expression. Deletion mutagenesis of Rta indicated that the C-terminal 10 amino acids (aa) were essential for the function of Rta in replication. In vivo DNA binding studies revealed that Rta interacted with the enhancer region of oriLyt. In addition, expression of Rta and Z(S186A) together, but not individually, activated synthesis of the BHLF1 transcript, a lytic transcript required for the process of viral DNA replication. Our findings demonstrate that Rta plays an indispensable role in the process of lytic DNA replication.
Collapse
|
22
|
Satoh M, Chan JYF, Ross SJ, Li Y, Yamasaki Y, Yamada H, Vazquez-del Mercado M, Petri MH, Jara LJ, Saavedra MA, Cruz-Reyes C, Sobel ES, Reeves WH, Ceribelli A, Chan EKL. Autoantibodies to transcription intermediary factor TIF1β associated with dermatomyositis. Arthritis Res Ther 2012; 14:R79. [PMID: 22513056 PMCID: PMC3446453 DOI: 10.1186/ar3802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/12/2012] [Accepted: 04/18/2012] [Indexed: 12/14/2022] Open
Abstract
Introduction Myositis specific autoantibodies are associated with unique clinical subsets and are useful biomarkers in polymyositis/dermatomyositis (PM/DM). A 120 kD protein recognized by certain patients with DM was identified and clinical features of patients with this specificity were characterized. Methods The 120 kD protein recognized by a prototype serum was purified and identified by mass spectrometry and immunological methods. Autoantibody to this 120 kD protein was screened in sera from 2,356 patients with various diagnoses from four countries, including 254 PM/DM, by immunoprecipitation of 35S-methionine labeled K562 cell extracts. Clinical information of patients with this specificity was collected. Results The 120 kD protein, which exactly comigrated with PL-12, was identified as transcription intermediary factor TIF1β (TRIM28) by mass spectrometry and validated by immunoassays. By immunofluorescence, anti-TIF1β positivity showed a fine-speckled nuclear staining pattern. Four cases of anti-TIF1β were identified; all are women, one each in a Japanese, African American, Caucasian, and Mexican individual. Three had a diagnosis of DM and one case was classified as having an undifferentiated connective tissue disease with an elevated CPK but without significant muscle symptoms. This individual also had a history of colon cancer, cervical squamous metaplasia and fibroid tumors of the uterus. Myopathy was mild in all cases and resolved without treatment in one case. The anti-TIF1β specificity was not found in other conditions. Conclusions Anti-TIF1β is a new DM autoantibody associated with a mild form of myopathy. Whether it has an association with malignancy, as in the case of anti-TIF1γ, or other unique features will need to be evaluated in future studies.
Collapse
Affiliation(s)
- Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, P,O,Box 100221, 1600 SW Archer Rd, Gainesville, FL 32610-0221, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Narayan V, Halada P, Hernychová L, Chong YP, Žáková J, Hupp TR, Vojtesek B, Ball KL. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1. J Biol Chem 2011; 286:14291-303. [PMID: 21245151 DOI: 10.1074/jbc.m110.204602] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Collapse
Affiliation(s)
- Vikram Narayan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J Virol 2010; 85:2837-50. [PMID: 21191028 DOI: 10.1128/jvi.02175-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic elements of herpesvirus origins of lytic replication have been characterized in detail; however, much remains to be elucidated concerning their functional role in replication initiation. In the case of the Epstein-Barr virus (EBV), we have found that in addition to the two well-defined critical elements required for lytic replication (the upstream and downstream essential elements, UEE and DEE), the origin of lytic replication (OriLyt) also requires the presence of a GC-rich RNA in cis. The BHLF1 transcript is similar to the essential K5 transcript identified at the Kaposi's sarcoma-associated herpesvirus OriLyt. We have found that truncation of the BHLF1 transcript or deletion of the TATA box, but not the putative ATG initiation codon, reduce OriLyt function to background levels. By using an antibody specific for RNA-DNA hybrid molecules, we found the BHLF1 RNA stably annealed to its DNA template during the early steps of lytic reactivation. Furthermore, expression of human RNase H1, which degrades RNA in RNA-DNA hybrids, drastically reduces OriLyt-dependent DNA replication as well as recruitment of the viral single-stranded DNA binding protein BALF2 to OriLyt. These studies suggest that a GC-rich OriLyt transcript is an important component of gammaherpesvirus lytic origins and is required for initial strand separation and loading of core replication proteins.
Collapse
|
25
|
A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein. PLoS Pathog 2010; 6:e1001054. [PMID: 20808903 PMCID: PMC2924361 DOI: 10.1371/journal.ppat.1001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication. Epstein-Barr virus encodes a protein, ZEBRA, which plays an essential role in the switch between viral latency and the viral lytic cycle. ZEBRA activates transcription of early viral genes and also promotes lytic viral DNA replication. It is not understood how these two functions are discriminated. We studied five ZEBRA mutants that are impaired in activation of replication but are wild-type in the capacity to induce transcription of early viral genes. We demonstrate that these five mutants are impaired in binding to viral DNA regulatory sites. Therefore, replication required stronger interactions between ZEBRA and viral DNA than did transcription. Three components of the EBV-encoded replication machinery, including the single-stranded DNA binding protein, the polymerase processivity factor and the primase markedly enhanced the interaction of ZEBRA with viral DNA. These three components partially rescued the defect in ZEBRA mutants that were impaired in replication. The results suggest that through protein-protein interaction, replication proteins play a role in enhancing ZEBRA's association with the origin of DNA replication and other regulatory sites.
Collapse
|
26
|
Evidence for DNA hairpin recognition by Zta at the Epstein-Barr virus origin of lytic replication. J Virol 2010; 84:7073-82. [PMID: 20444899 DOI: 10.1128/jvi.02666-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.
Collapse
|
27
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
28
|
Chang PC, Fitzgerald LD, Van Geelen A, Izumiya Y, Ellison TJ, Wang DH, Ann DK, Luciw PA, Kung HJ. Kruppel-associated box domain-associated protein-1 as a latency regulator for Kaposi's sarcoma-associated herpesvirus and its modulation by the viral protein kinase. Cancer Res 2009; 69:5681-9. [PMID: 19584288 DOI: 10.1158/0008-5472.can-08-4570] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, a major AIDS-associated malignancy, and to hematologic malignancies, including primary effusion lymphoma and multicentric Castleman's disease. Like other herpesviruses, KSHV is capable of both latent and lytic replication. Understanding the molecular details associated with this transition from latency to lytic replication is key to controlling virus spread and can affect the development of intervention strategies. Here, we report that Kruppel-associated box domain-associated protein-1 (KAP-1)/transcriptional intermediary factor 1beta, a cellular transcriptional repressor that controls chromosomal remodeling, participates in the process of switching viral latency to lytic replication. Knockdown of KAP-1 by small interfering RNA leads to KSHV reactivation mediated by K-Rta, a key transcriptional regulator. In cells harboring latent KSHV, KAP-1 was associated with the majority of viral lytic-gene promoters. K-Rta overexpression induced the viral lytic cycle with concomitant reduction of KAP-1 binding to viral promoters. Association of KAP-1 with heterochromatin was modulated by both sumoylation and phosphorylation. During lytic replication of KSHV, KAP-1 was phosphorylated at Ser(824). Several lines of evidence directly linked the viral protein kinase to this post-translational modification. Additional studies showed that this phosphorylation of KAP-1 produced a decrease in its sumoylation, consequently decreasing the ability of KAP-1 to condense chromatin on viral promoters. In summary, the cellular transcriptional repressor KAP-1 plays a role in regulating KSHV latency, and viral protein kinase modulates the chromatin remodeling function of this repressor.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Department of Biological Chemistry and Molecular Medicine and University of California-Davis Cancer Center, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol 2009; 83:5574-80. [PMID: 19279087 DOI: 10.1128/jvi.00001-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KAP1 is an essential cofactor of KRAB zinc finger proteins, a family of vertebrate-specific epigenetic repressors of largely unknown functions encoded in the hundreds by the mouse and human genomes. So far, KRAB/KAP1-mediated gene regulation has been studied within the environment of chromosomal DNA. Here we demonstrate that KRAB/KAP1 regulation is fully functional within the context of episomal DNA, such as adeno-associated viral and nonintegrated lentiviral vectors, and is correlated with histone modifications typically associated with this epigenetic regulator.
Collapse
|
30
|
Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 2009; 83:3333-41. [PMID: 19144710 DOI: 10.1128/jvi.01689-08] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) represent a conserved class of small noncoding RNAs that are found in all higher eukaryotes as well as some DNA viruses. miRNAs are 20 to 25 nucleotides in length and have important regulatory functions in biological processes such as embryonic development, cell differentiation, hormone secretion, and metabolism. Furthermore, miRNAs have been implicated in the pathology of various diseases, including cancer. miRNA expression profiles not only classify different types of cancer but also may even help to characterize distinct tumor stages, therefore constituting a valuable tool for prognosis. Here we report the miRNA profile of Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (NPC) tissue samples characterized by cloning and sequencing. We found that all EBV miRNAs from the BART region are expressed in NPC tissues, whereas EBV miRNAs from the BHRF1 region are not found. Moreover, we identified two novel EBV miRNA genes originating from the BART region that have not been found in other tissues or cell lines before. We also identified three new human miRNAs which might be specific for nasopharyngeal tissues. We further show that a number of different cellular miRNAs, including miR-15a and miR-16, are up- or downregulated in NPC tissues compared to control tissues. We found that the tumor suppressor BRCA-1 is a target of miR-15a as well as miR-16, suggesting a miRNA role in NPC pathogenesis.
Collapse
|
31
|
Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 2008; 82:4647-55. [PMID: 18305033 DOI: 10.1128/jvi.02198-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of lytic replication, and inhibits cell cycle proliferation. To better understand these functions and identify cellular collaborators of Zta, we purified an epitope-tagged version of Zta in cells capable of supporting lytic replication. FLAG-tagged Zta was purified from a nuclear fraction using FLAG antibody immunopurification and peptide elution. Zta-associated proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. The Zta-associated proteins included members of the HSP70 family and various single-stranded DNA and RNA binding proteins. The nuclear replication protein A subunits (RPA70 and RPA32) and the human mitochondrial single-stranded DNA binding protein (mtSSB) were confirmed by Western blotting to be specifically enriched in the FLAG-Zta immunopurified complex. mtSSB coimmunoprecipitated with endogenous Zta during reactivation of EBV-positive Burkitt lymphoma and lymphoblastoid cell lines. Small interfering RNA depletion of mtSSB reduced Zta-induced lytic replication of EBV but had only a modest effect on transcription activation function. A point mutation in the Zta DNA binding domain (C189S), which is known to reduce lytic cycle replication, eliminated mtSSB association with Zta. The predominantly mitochondrial localization of mtSSB was shifted to partly nuclear localization in cells expressing Zta. Mitochondrial DNA synthesis and genome copy number were reduced by Zta-induced EBV lytic replication. We conclude that Zta interaction with mtSSB serves the dual function of facilitating viral and blocking mitochondrial DNA replication.
Collapse
|
32
|
Chen MJ, Ma SM, Dumitrache LC, Hasty P. Biochemical and cellular characteristics of the 3' -> 5' exonuclease TREX2. Nucleic Acids Res 2007; 35:2682-94. [PMID: 17426129 PMCID: PMC1885668 DOI: 10.1093/nar/gkm151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TREX2 is an autonomous nonprocessive 3' --> 5' exonuclease, suggesting that it maintains genome integrity. To investigate TREX2's biochemical and cellular properties, we show that endogenous TREX2 is expressed widely in mouse tissues and human cell lines. Unexpectedly, endogenous human TREX2 is predominantly expressed as a 30-kDa protein (not 26 kDa, as previously believed), which is likely encoded by longer isoforms (TREX2(L1) and/or TREX2(L2)) that possess similar capacity for self-association, DNA binding and catalytic activity. Site-directed mutagenesis analysis shows that the three functional activities of TREX2 are distinct, yet integrated. Mutation of amino acids putatively important for homodimerization significantly impairs both DNA binding and exonuclease activity, while mutation of amino acids (except R163) in the DNA binding and exonuclease domains affects their corresponding activities. Interestingly, however, DNA-binding domain mutations do not impact catalytic activity, while exonuclease domain mutations diminish DNA binding. To understand TREX2 cellular properties, we find endogenous TREX2 is down regulated during G2/M and nuclear TREX2 displays a punctate staining pattern. Furthermore, TREX2 knockdown reduces cell proliferation. Taken together, our results suggest that TREX2 plays an important function during DNA metabolism and cellular proliferation.
Collapse
Affiliation(s)
- Ming-Jiu Chen
- The Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, TX 78245-3207, USA.
| | | | | | | |
Collapse
|
33
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
34
|
Lee YK, Thomas SN, Yang AJ, Ann DK. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 2006; 282:1595-606. [PMID: 17079232 DOI: 10.1074/jbc.m606306200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The role of post-translational modification, such as sumoylation, in modulating the efficacy of doxorubicin (Dox) treatment remains unclear. Transcriptional cofactor KRAB domain-associated protein 1 (KAP1) has been shown to complex with the KRAB zinc finger protein, ZBRK1, to repress the transcription of target genes. Through a combination of proteomic screening and site-directed mutagenesis approaches, we have identified lysines 554, 779, and 804 as the major sumoylation sites in KAP1. We then present evidence that Dox-mediated induction of cell cycle regulator p21 expression is differentially regulated by KAP1 sumoylation status. Moreover, the KAP1 sumoylation level was transiently decreased upon Dox exposure, and transfection with the KAP1 sumoylation mimetic, SUMO-1-KAP1, desensitizes breast cancer MCF-7 cells to Dox-elicited cell death. The sumoylation-dependent stimulation of KAP1 function is achieved by enhancing the methylation of H3-K9 and attenuating the acetylation of H3-K9 and H3-K14 at the p21 core promoter. We also show that occupancy of ZBRK1 response elements located at the p21 promoter by ZBRK1.KAP1 is independent of KAP1 sumoylation. Hence, sumoylation of KAP1 represses p21 transcription via a chromatin-silencing process without affecting interaction between KAP1.ZBRK1 and DNA, thus providing a novel mechanistic basis for the understanding of Dox-induced de-repression of p21 transcription. Taken together, our results suggest that Dox-induced decrease in KAP1 sumoylation is essential for Dox to induce p21 expression and subsequent cell growth inhibition in MCF-7 cells.
Collapse
Affiliation(s)
- Yung-Kang Lee
- Departments of Molecular Pharmacology and Toxicology, Norris Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
35
|
Wang P, Day L, Lieberman PM. Multivalent sequence recognition by Epstein-Barr virus Zta requires cysteine 171 and an extension of the canonical B-ZIP domain. J Virol 2006; 80:10942-9. [PMID: 16971443 PMCID: PMC1642168 DOI: 10.1128/jvi.00907-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) immediate-early protein Zta is a member of the basic-leucine zipper (B-ZIP) family of DNA binding proteins that has an unusual capacity to recognize multiple DNA recognition sites, including AP-1 and C/EBP binding sites. To better understand the structure and function of Zta, we have mutagenized cysteine residues within or adjacent to the B-ZIP domain. We found that serine substitution for cysteine 171 (C171S), which lies outside and amino terminal to the B-ZIP basic region, completely abrogates Zta capacity to initiate lytic cycle replication. C171S disrupted Zta transcription activation function of several EBV lytic cycle promoters, including the BMRF1 gene (EA-D) and the other lytic activator, Rta. Overexpression of Rta could not rescue the C171S defect for transcription reactivation or viral DNA replication. Zta C171S was defective for binding to these promoters in vivo, as measured by chromatin immunoprecipitation assay. Purified Zta C171S bound AP-1 sites similar to wild-type Zta, but it was incapable of binding several degenerate Zta sites, including a consensus C/EBP site. Zta truncation mutations reveal that residues N terminal to the B-ZIP (amino acids 156 to 178) confer C/EBP binding capacity to the otherwise AP-1-restricted DNA recognition function. Comparison among viral orthologues of Zta suggest that a conserved N-terminal extension of the consensus B-ZIP domain is required for this multivalent DNA recognition capacity of Zta and is essential for viral reactivation.
Collapse
MESH Headings
- Amino Acid Substitution
- Chromatin Immunoprecipitation
- Cysteine/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Reporter
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Luciferases/analysis
- Luciferases/genetics
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Pu Wang
- The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104-4268, USA
| | | | | |
Collapse
|
36
|
Abstract
Epstein–Barr virus (EBV) is a gammaherpesvirus with a 172kb genome and many genes encoding enzymes for lytic viral DNA replication. Recent observations indicate that an S-phase-like environment and the activated DNA repair system are required for viral lytic DNA replication. The virally encoded DNA replication-associated enzymes are then expressed in two clusters, suggesting their participation at different stages of replication. Simultaneously, EBV-encoded regulatory proteins may modulate cell-cycle control to enhance virus replication efficiency. The interactions among proteins in the viral replication complex and cellular proteins may either generate structural specificities for replication proteins or stabilize the protein complexes. During infection, EBV has evolved several strategies to overcome the host defense mechanism, such as interfering with innate immunity and withdrawing into a latent state. This review discusses the latest progress in viral control of lytic replication and the interactions among viral lytic replication compartment and cellular machineries. The possible contribution of EBV lytic gene products to human malignancy is also discussed.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Wang P, Day L, Dheekollu J, Lieberman PM. A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication. J Virol 2005; 79:13298-309. [PMID: 16227252 PMCID: PMC1262569 DOI: 10.1128/jvi.79.21.13298-13309.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation from latency is known to be sensitive to redox regulation. The immediate-early protein Zta is a member of the basic-leucine zipper (bZIP) family of DNA binding proteins that stimulates viral and cellular transcription and nucleates a replication complex at the viral lytic origin. Zta shares with several members of the bZIP family a conserved cysteine residue (C189) that confers redox regulation of DNA binding. In this work, we show that replacement of C189 with serine (C189S) eliminated lytic cycle DNA replication function of Zta. The mechanistic basis for this replication defect was investigated. We show that C189S was not significantly altered for DNA binding activity in vitro or in vivo. We also show that C189S was not defective for transcription activation of EBV early gene promoters. C189S was deficient for transcription activation of several viral late genes that depend on lytic replication and therefore was consistent with a primary defect of C189S in activating lytic replication. C189S was not defective in binding methylated DNA binding sites and was capable of activating Rta from endogenous latent viral genomes, in contrast to the previously characterized S186A mutation. C189S was slightly impaired for its ability to form a stable complex with Rta, although this did not prevent Rta recruitment to OriLyt. C189S did provide some resistance to oxidation and nitrosylation, which potently inhibit Zta DNA binding activity in vitro. Interestingly, this redox sensitivity was not strictly dependent on C189S but involved additional cysteine residues in Zta. These results provide evidence that the conserved cysteine in the bZIP domain of Zta plays a primary role in EBV lytic cycle DNA replication.
Collapse
Affiliation(s)
- Pu Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
38
|
Xie B, Li H, Wang Q, Xie S, Rahmeh A, Dai W, Lee MYWT. Further Characterization of Human DNA Polymerase δ Interacting Protein 38. J Biol Chem 2005; 280:22375-84. [PMID: 15811854 DOI: 10.1074/jbc.m414597200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerase delta interacting protein 38 (PDIP38) was identified as a human DNA polymerase (pol) delta interacting protein through a direct interaction with p50, the small subunit of human pol delta. PDIP38 was also found to interact with proliferating cell nuclear antigen, which suggested that it might play a role in vivo in the processes of DNA replication and DNA repair in the nucleus. In order to characterize further this novel protein, we have examined its subcellular localization by the use of immunochemical and cellular fractionation techniques. These studies show that PDIP38 is a novel mitochondrial protein and is localized mainly to the mitochondria. PDIP38 was shown to possess a functional mitochondrial targeting sequence that is located within the first 35 N-terminal amino acid residues. The mature PDIP38 protein is about 50 amino acid residues smaller than the full-length precursor PDIP38 protein, consistent with it being processed by cleavage of the mitochondrial targeting sequence during entry into the mitochondria. His-tagged mature PDIP38 inhibited pol delta activity in vitro and interacted with human papillomavirus 16 E7 oncoprotein, suggesting that PDIP38 might play a role in the pol delta-mediated viral DNA replication. Although the localization of PDIP38 to the mitochondria suggests that it serves functions within the mitochondria, we cannot eliminate the possibility that it may be involved in pol delta-mediated DNA replication or DNA repair under certain conditions such as viral infection.
Collapse
Affiliation(s)
- Bin Xie
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|