1
|
Aguayo F, Tapia JC, Calaf GM, Muñoz JP, Osorio JC, Guzmán-Venegas M, Moreno-León C, Levican J, Andrade-Madrigal C. The Role of Xenobiotics and Anelloviruses in Colorectal Cancer: Mechanisms and Perspectives. Int J Mol Sci 2025; 26:4354. [PMID: 40362591 PMCID: PMC12072659 DOI: 10.3390/ijms26094354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Xenobiotics are non-natural chemical compounds to which the human population is exposed. Chronic exposure to certain xenobiotics is associated with various diseases, including cancer development. Anelloviruses (AVs), including Torque Teno Virus (TTV), Torque Teno Mini Virus (TTMV), and Torque Teno Midi Virus (TTMDV), are ubiquitous viruses found in the general population. As no disease has been definitively associated with AVs, they are sometimes referred to as "viruses awaiting a disease". This review explores the potential roles of xenobiotics and AVs in colorectal cancer (CRC) development and suggests a potential interplay between them. Evidence suggests an association between certain xenobiotics (like pesticides, cigarette smoke components, and dietary factors) and CRC, while such an association is less clear for AVs. The high prevalence of AVs suggests these infections alone may be insufficient to disrupt homeostasis; thus, additional factors might be required to promote disease, potentially including cancer.
Collapse
Affiliation(s)
- Francisco Aguayo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Julio C. Osorio
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Matías Guzmán-Venegas
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Carolina Moreno-León
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Jorge Levican
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Cristian Andrade-Madrigal
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| |
Collapse
|
2
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Timmerman AL, Schönert ALM, van der Hoek L. Anelloviruses versus human immunity: how do we control these viruses? FEMS Microbiol Rev 2024; 48:fuae005. [PMID: 38337179 PMCID: PMC10883694 DOI: 10.1093/femsre/fuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.
Collapse
Affiliation(s)
- Anne L Timmerman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Antonia L M Schönert
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 2023; 9:vead035. [PMID: 37325085 PMCID: PMC10266747 DOI: 10.1093/ve/vead035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Zoe Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Darren P Martin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E, Tudor Road, Anchorage, AK 99503, USA
| | - Maketalena Aleamotu’a
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 1 Anzio Road, Cape Town 7925, South Africa
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
5
|
Timmerman AL, Kaczorowska J, Deijs M, Bakker M, van der Hoek L. Control of Human Anelloviruses by Cytosine to Uracil Genome Editing. mSphere 2022; 7:e0050622. [PMID: 36374042 PMCID: PMC9769745 DOI: 10.1128/msphere.00506-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Anelloviruses are the most common viruses infecting humans. Every human carries a nonpathogenic personal anellovirus virome (anellome), yet it is unknown which mechanisms contribute to its stability. Here, we assessed the dynamics and impact of a host antiviral defense mechanism-cytidine deaminase activity leading to C to U editing in anelloviruses-on the stability of the anellome. We investigated anellome sequence data obtained from serum samples collected every 6 months from two healthy subjects followed for more than 30 years. The subjects were infected by a total of 64 anellovirus lineages. Minus-stranded C to U editing was observed in lineages belonging to the Alpha-, Beta-, and Gammatorquevirus genera. The edited genomes were present within virus particles, therefore editing must have occurred at the late stages of the virus life cycle. Editing was favored by 5'-TC contexts in the virus genome, indicating that apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like, catalytic subunit 3 or A3 (APOBEC3) proteins are involved. Within a lineage, mutational dynamics varied over time and few fixations of mutations were detected, indicating that C to U editing is a dead end for a virus genome. We detected an editing coldspot in the GC-rich regions, suggesting that the GC-rich region is crucial for genome packaging, since only packaged virus particles were included in the analysis. Finally, we noticed a lineage-specific reduced concentration after an editing event, yet no clearance. In conclusion, cytidine deaminase activity does not clear anelloviruses, nor does it play a major role in virus evolution, but it does contribute to the stability of the anellome. IMPORTANCE Despite significant attention on anellovirus research, the interaction between the anellovirus virome and the human host remains unknown. We show the dynamics of APOBEC3-mediated cytidine deaminase activity on anelloviruses during a 30-year period of chronic infection and postulate that this antiviral mechanism controls anelloviruses. These results expand our knowledge of anellovirus-host interactions, which may be important for the design of gene therapies.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Joanna Kaczorowska
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Comprehensive profiling of antibody responses to the human anellome using programmable phage display. Cell Rep 2022; 41:111754. [PMID: 36543141 DOI: 10.1016/j.celrep.2022.111754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Anelloviruses represent a major constituent of the commensal human virome; however, little is known about their immunobiology. Here, we present "AnelloScan," a T7 phage library representing the open reading frame 1 (ORF1), ORF2, ORF3, and torque teno virus (TTV)-derived apoptosis-inducing protein (TAIP) sequences of more than 800 human anelloviruses and profile the antibody reactivities of serum samples from a cross-sectional cohort of 156 subjects by using phage-immunoprecipitation sequencing (PhIP-Seq). A majority of anellovirus peptides are not reactive in any of the subjects tested (n = ∼28,000; ∼85% of the library). Antibody-reactive peptides are largely restricted to the C-terminal region of the capsid protein ORF1. Moreover, using a longitudinal cohort of matched blood-transfusion donors and recipients, we find that most transmitted anelloviruses do not elicit a detectable antibody reactivity in the recipient and that the remainder elicit delayed responses appearing ∼100-150 days after transfusion.
Collapse
|
7
|
Desingu PA, Nagarajan K, Dhama K. Can a Torque Teno Virus (TTV) Be a Naked DNA Particle Without a Virion Structure? FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.821298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Kyathanahalli C, Snedden M, Hirsch E. Human Anelloviruses: Prevalence and Clinical Significance During Pregnancy. FRONTIERS IN VIROLOGY 2021; 1. [DOI: 10.3389/fviro.2021.782886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Although the bacterial microbiota of various compartments (e.g. vagina, amniotic fluid, and placenta) have been studied in pregnancy, there has been far less emphasis on normal and pathological viral communities. Cumulative evidence shows the presence of a number of apathogenic viruses in various tissues of healthy people, including pregnant individuals. What role, if any, these viruses play in human physiology is unknown. Anelloviruses (family Anelloviridae) are circular, single-stranded DNA viruses commonly detected with high prevalence in vertebrate hosts, including primates. Humans are nearly always colonized with at least 1 of 3 anellovirus subtypes, namely Alphatorquevirus (torque teno virus, TTV), Betatorquevirus (torque teno midi virus, TTMDV), and Gammatorquevirus (torque teno mini virus, TTMV). In healthy pregnant people, the prototype anellovirus, TTV, has been found in maternal and (variably) fetal blood, amniotic fluid, cervical and vaginal secretions, breast milk, and saliva. Nonetheless, the relevance of human anelloviruses in pregnancy and labor is unclear. There is evidence suggesting a link between anellovirus colonization and preterm birth. In this review, we discuss what is known about this family of commensal viruses in health and disease, and specifically the roles they might play during pregnancy and in the timing of delivery.
Collapse
|
9
|
Hsiao KL, Wang LY, Cheng JC, Cheng YJ, Lin CL, Liu HF. Detection and genetic characterization of the novel torque teno virus group 6 in Taiwanese general population. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210938. [PMID: 34737877 PMCID: PMC8564604 DOI: 10.1098/rsos.210938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Torque teno virus (TTV) is one of the most common human viruses and can infect an individual with multiple genotypes chronically and persistently. TTV group 6 is a recently discovered phylogenetic group first isolated from eastern Taiwan indigenes, but whether the TTV group 6 was also prevalent in the general population still unknown. One hundred and three randomly collected blood samples from general population and 66 TTV positive DNA samples extracted from Taiwan indigenes were included. A group-6-specific PCR was developed for re-screen over TTV positive samples. Two TTV group 6 positive samples from general population were cloned and sequenced for identifying mix-infected TTVs and confirming their classification by maximum-likelihood and Bayesian inference phylogeny. TTV group 6 can be detected in 4.5% (4/89) and 7.6% (5/66) of TTV positive samples from Taiwanese general population and eastern Taiwan indigenes, respectively. Sample VC09 was mix-infected with TTV groups 3 and 6. Sample VC99 was mix-infected with TTV groups 3, 4 and 6. A highly diverse triple overlapping region was observed, which may represent a unique phenomenon of TTV. The group-6-specific PCR can successfully detect TTV group 6. TTV group 6 may be prevalent worldwide regardless of the geographic region and/or ethnic groups.
Collapse
Affiliation(s)
- Kuang-Liang Hsiao
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Li-Yu Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Jung Cheng
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chiung-Ling Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
10
|
Abstract
Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.
Collapse
|
11
|
Arze CA, Springer S, Dudas G, Patel S, Bhattacharyya A, Swaminathan H, Brugnara C, Delagrave S, Ong T, Kahvejian A, Echelard Y, Weinstein EG, Hajjar RJ, Andersen KG, Yozwiak NL. Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome. Cell Host Microbe 2021; 29:1305-1315.e6. [PMID: 34320399 DOI: 10.1016/j.chom.2021.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Anelloviruses are a ubiquitous component of healthy human viromes and remain highly prevalent after being acquired early in life. The full extent of "anellome" diversity and its evolutionary dynamics remain unexplored. We employed in-depth sequencing of blood-transfusion donor(s)-recipient pairs coupled with public genomic resources for a large-scale assembly of anellovirus genomes and used the data to characterize global and personal anellovirus diversity through time. The breadth of the anellome is much greater than previously appreciated, and individuals harbor unique anellomes and transmit lineages that can persist for several months within a diverse milieu of endemic host lineages. Anellovirus sequence diversity is shaped by extensive recombination at all levels of divergence, hindering traditional phylogenetic analyses. Our findings illuminate the transmission dynamics and vast diversity of anelloviruses and set the foundation for future studies to characterize their biology.
Collapse
Affiliation(s)
| | | | - Gytis Dudas
- Gothenburg Global Biodiversity Centre, Gothenburg 413 19, Sweden
| | | | | | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tuyen Ong
- Ring Therapeutics, Cambridge, MA 02139, USA
| | - Avak Kahvejian
- Ring Therapeutics, Cambridge, MA 02139, USA; Flagship Pioneering, Cambridge, MA 02142, USA
| | - Yann Echelard
- Ring Therapeutics, Cambridge, MA 02139, USA; Flagship Pioneering, Cambridge, MA 02142, USA
| | - Erica G Weinstein
- Ring Therapeutics, Cambridge, MA 02139, USA; Flagship Pioneering, Cambridge, MA 02142, USA
| | - Roger J Hajjar
- Ring Therapeutics, Cambridge, MA 02139, USA; Flagship Pioneering, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
12
|
Kaczorowska J, van der Hoek L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol Rev 2021; 44:305-313. [PMID: 32188999 PMCID: PMC7326371 DOI: 10.1093/femsre/fuaa007] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Anelloviruses are small, single stranded circular DNA viruses. They are extremely diverse and have not been associated with any disease so far. Strikingly, these small entities infect most probably the complete human population, and there are no convincing examples demonstrating viral clearance from infected individuals. The main transmission could be via fecal-oral or airway route, as infections occur at an early age. However, due to the lack of an appropriate culture system, the virus–host interactions remain enigmatic. Anelloviruses are obviously mysterious viruses, and their impact on human life is not yet known, but, with no evidence of a disease association, a potential beneficial effect on human health should also be investigated.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Maev IV, Karlovich TI, Burmistrov AI, Chekmazov IA, Andreev DN, Reshetnyak VI. Current Views of Torque Teno Virus (TTV) in Liver Diseases. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:7-22. [DOI: 10.22416/1382-4376-2020-30-4-7-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- I. V. Maev
- Moscow State University of Medicine and Dentistry
| | - T. I. Karlovich
- Central Clinical Hospital with Outpatient Care of the Russian President Administration
| | | | - I. A. Chekmazov
- Central Clinical Hospital with Outpatient Care of the Russian President Administration
| | | | | |
Collapse
|
14
|
Webb B, Rakibuzzaman A, Ramamoorthy S. Torque teno viruses in health and disease. Virus Res 2020; 285:198013. [PMID: 32404273 DOI: 10.1016/j.virusres.2020.198013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Torque teno viruses (TTVs) are small, ubiquitous, viruses with a highly diverse, single-stranded, negative sense DNA genome and wide host range. They are detected at high rates in both healthy and diseased individuals and are considered a significant part of the mammalian virome. Similar to human TTVs, swine TTVs (TTSuVs) are epidemiologically linked to several coinfections including porcine circovirus types 2 and 3 and the porcine reproductive and respiratory disease syndrome virus. Experimental infection of gnotobiotic pigs with TTSuVs resulted in lesions in multiple organs and exacerbation of coinfections, making TTSuVs the only members of the Anelloviridae family with experimental evidence for pathogenicity. However, due to the lack of reliable cell culture and animal models, mechanistic studies on viral immunity and pathogenesis are limited. The objective of this review is to summarize the current status of knowledge regarding the biology, detection, pathogenesis and public health significance of TTSuVs, while identifying gaps in knowledge which limit the field.
Collapse
Affiliation(s)
- Brett Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States
| | - Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
15
|
Reshetnyak VI, Maev IV, Burmistrov AI, Chekmazov IA, Karlovich TI. Torque teno virus in liver diseases: On the way towards unity of view. World J Gastroenterol 2020; 26:1691-1707. [PMID: 32351287 PMCID: PMC7183866 DOI: 10.3748/wjg.v26.i15.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The review presents the data accumulated for more than 20 years of research of torque teno virus (TTV). Its molecular genetic structure, immunobiology, epidemiology, diagnostic methods, possible replication sites, and pathogenicity factors are described. TTV is a virus that is frequently detectable in patients with different viral hepatitides, in cases of hepatitis without an obvious viral agent, as well as in a healthy population. There is evidence suggesting that biochemical and histological changes occur in liver tissue and bile duct epithelium in TTV monoinfection. There are sufficient histological signs of liver damage, which confirm that the virus can undergo a replicative cycle in hepatocytes. Along with this, cytological hybridization in TTV-infected cells has shown no substantial cytopathic (cell-damaging) effects that are characteristic of pathogenic hepatotropic viruses. Studying TTV has led to the evolution of views on its role in the development of human pathology. The first ideas about the hepatotropism of the virus were gradually reformed as new data became available on the prevalence of the virus and its co-infection with other viruses, including the viruses of the known types of hepatitides. The high prevalence of TTV in the human population indicates its persistence in the body as a virome and a non-pathogenic virus. It has recently been proposed that the level of TTV DNA in the blood of patients undergoing organ transplantation should be used as an endogenous marker of the body's immune status. The available data show the polytropism of the virus and deny the fact that TTV can be assigned exclusively to hepatitis viruses. Fortunately, the rare detection of the damaging effect of TTV on hepatic and bile duct epithelial cells may be indirect evidence of its conditionally pathogenic properties. The ubiquity of the virus and the variability of its existence in humans cannot put an end to its study.
Collapse
Affiliation(s)
- Vasiliy I Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor V Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr I Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor A Chekmazov
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| | - Tatiana I Karlovich
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| |
Collapse
|
16
|
Abstract
This chapter is the first one to introduce the detection of viral RNA splicing as a new tool for clinical diagnosis of virus infections. These include various infections caused by influenza viruses, human immunodeficiency viruses (HIV), human T-cell leukemia viruses (HTLV), Torque teno viruses (TTV), parvoviruses, adenoviruses, hepatitis B virus, polyomaviruses, herpesviruses, and papillomaviruses. Detection of viral RNA splicing for active viral gene expression in a clinical sample is a nucleic acid-based detection. The interpretation of the detected viral RNA splicing results is straightforward without concern for carry-over DNA contamination, because the spliced RNA is smaller than its corresponding DNA template. Although many methods can be used, a simple method to detect viral RNA splicing is reverse transcription-polymerase chain reaction (RT-PCR). In principle, the detection of spliced RNA transcripts by RT-PCR depends on amplicon selection and primer design. The most common approach is the amplification over the intron regions by a set of primers in flanking exons. A larger product than the predicted size of smaller, spliced RNA is in general an unspliced RNA or contaminating viral genomic DNA. A spliced mRNA always gives a smaller RT-PCR product than its unspliced RNA due to removal of intron sequences by RNA splicing. The contaminating viral DNA can be determined by a minus RT amplification (PCR). Alternatively, specific amplification of a spliced RNA can be obtained by using an exon-exon junction primer because the sequence at exon-exon junction is not present in the unspliced RNA nor in viral genomic DNA.
Collapse
|
17
|
Detection of a new species of torque teno mini virus from the gingival epithelium of patients with periodontitis. Virus Genes 2017; 53:823-830. [PMID: 28866831 DOI: 10.1007/s11262-017-1505-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
We describe a novel species of torque teno mini virus called TTMV-204, which was isolated from the gingival epithelium of patients with periodontitis and characterized using viral metagenomics. The sequence of the full genome is 2824 nt in length. Phylogenetic analysis and genetic analyses show classic Betatorquevirus species organization with less than 40% amino acid similarity in ORF1. The prevalence of TTMV-204 in the periodontitis patient population was 18.75% (15/80), which was higher than in periodontally healthy individuals (10.00%, 10/80). However, the difference of the TTMV-204 prevalence between two groups was not statistically significant (p = 0.115). Further investigation is required to determine whether this new virus is associated with inflammation.
Collapse
|
18
|
Hrazdilová K, Slaninková E, Brožová K, Modrý D, Vodička R, Celer V. New species of Torque Teno miniviruses infecting gorillas and chimpanzees. Virology 2015; 487:207-14. [PMID: 26547037 DOI: 10.1016/j.virol.2015.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Anelloviridae family is comprised of small, non-enveloped viruses of various genome lengths, high sequence diversity, sharing the same genome organization. Infections and co-infections by different genotypes in humans are ubiquitous. Related viruses were described in number of mammalian hosts, but very limited data are available from the closest human relatives - great apes and non-human primates. Here we report the 100% prevalence determined by semi-nested PCR from fecal samples of 16 captive primate species. Only the Mandrillus sphinx, showed the prevalence only 8%. We describe three new species of gorillas׳ and four new species of chimpanzees׳ Betatorqueviruses and their co-infections in one individual. This study is also first report and analysis of nearly full length TTMV genomes infecting gorillas. Our attempts to sequence the complete genomes of anelloviruses from host feces invariably failed. Broader usage of blood /tissue material is necessary to understand the diversity and interspecies transmission of anelloviruses.
Collapse
Affiliation(s)
- Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic.
| | - Eva Slaninková
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| | - Kristýna Brožová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| | - David Modrý
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Roman Vodička
- The Prague Zoological Garden, Prague 171 00, Czech Republic
| | - Vladimír Celer
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| |
Collapse
|
19
|
Nieto D, Martínez-Guinó L, Jiménez-Melsió A, Segalés J, Kekarainen T. Development of an indirect ELISA assay for the detection of IgG antibodies against the ORF1 of Torque teno sus viruses 1 and 2 in conventional pigs. Vet Microbiol 2015; 180:22-7. [PMID: 26358897 DOI: 10.1016/j.vetmic.2015.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022]
Abstract
Torque teno sus viruses (TTSuV, family Anelloviridae) cause long lasting and persistent infection in pigs under subclinical scenarios, and are potentially linked to several economically important swine diseases. Currently, little is known about swine immune response against TTSuV infections. In this study, an ELISA assay was developed based on the ORF1-A recombinant protein of two known TTSuVs, namely TTSuV1 (genus Iotatorquevirus) and TTSuV2 (genus Kappatorquevirus). The assay was used to study the development of the humoral immune response against TTSuV1 and TTSuV2 in longitudinally sampled clinically healthy pigs and their dams. Anti ORF1-A IgG was found in serum of pigs and sows for both TTSuVs. From 15 sows, 15 (100%) and 13 (83%) had anti ORF1-A IgG against TTSuV1 and TTSuV2, respectively. Pig sero-prevalences at the first sampling (4 weeks of age) were 65% (24/37) and 5% (2/37) for TTSuV1 and TTSuV2, respectively. For TTSuV1, the highest anti ORF1-A IgG prevalence was observed at weeks 21 and 25, with 68% (25/37) sero-positive pigs. Quantitative PCR (qPCR) results at week 21 revealed that 26 out of 32 (81%) pigs were positive for TTSuV1. In the case of TTSuV2, the highest anti ORF1-A IgG prevalence was observed at week 21, with 84% (31/37) pigs being sero-positive. At the same week, 92% (34/37) of pigs were qPCR positive. In summary, anti ORF1-A IgGs were detected in both sows and piglets at different ages, indicating that these animals could mount a humoral immune response against both TTSuVs. However, the high percentage of viremic pigs in presence of anti ORF1-A IgG suggests that these antibodies are not able to remove TTSuVs from circulation.
Collapse
Affiliation(s)
- David Nieto
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Martínez-Guinó
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexandra Jiménez-Melsió
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Deparment de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
20
|
Jiménez-Melsió A, Rodriguez F, Darji A, Segalés J, Cornelissen-Keijsers V, van den Born E, Kekarainen T. Vaccination of pigs reduces Torque teno sus virus viremia during natural infection. Vaccine 2015; 33:3497-503. [DOI: 10.1016/j.vaccine.2015.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
21
|
Genome sequence of two novel species of torque teno minivirus from the human oral cavity. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00868-14. [PMID: 25291759 PMCID: PMC4175194 DOI: 10.1128/genomea.00868-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anelloviridae is a family of circular, single-stranded DNA viruses highly prevalent among humans. We report the genome sequence of two torque teno miniviruses found in human oral mucosa samples. Genome organization, phylogenetic analysis, and pairwise comparisons reveal that they belong to novel species within the Betatorquevirus genus.
Collapse
|
22
|
Nonstructural proteins of Torque teno sus virus 2 from O2AUG: prediction to experimental validation. Virus Res 2013; 178:272-80. [PMID: 24091363 DOI: 10.1016/j.virusres.2013.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 11/24/2022]
Abstract
The expression profiles of nonstructural proteins (NSPs) in Torque teno sus virus 2 (TTSuV2) have not yet been characterized. Here, we determined the coding sequences of the TTSuV2 NSPs ORF2, ORF2/2, and ORF2/2/3 by overlapping polymerase chain reaction (PCR) and subsequent expression in bacterial and mammalian cells. We generated two monoclonal antibodies (mAbs), 2E5 and 6F8, from mice immunized with mixed Escherichia coli expressing His-tagged ORF2 and ORF2/2. Enzyme-linked immunosorbent assay (ELISA) and western blot analysis revealed that, 2E5 mAbs bound to the consensus sequences of ORF2, ORF2/2, and ORF2/2/3, while 6F8 recognized the common sequences of ORF2/2 and ORF2/2/3. Immunofluorescence assay (IFA) revealed that ORF2 was localized in the cytoplasm, ORF2/2, in the nucleus but not the nucleolus, and ORF2/2/3, in the peri-nuclear region. To identify the expression profiles of TTSuV NSPs, a circular TTSuV2_ZJ (GenBank: KF660540) genomic DNA clone was constructed and transfected into HEK293T and HeLa cells. Splicing mRNAs and the expression and localization of ORF2/2 and ORF2/2/3 were identified by RT-PCR, western blot analysis, and IFA, respectively. However, ORF2 was not detected either at the RNA or protein level. Our study is the first to provide experimental evidence of the existence of ORF2/2 and ORF2/2/3 at the protein level. Moreover, the mAbs have potential applications in future research on TTSuV2 viral protein function and diagnosis of related diseases.
Collapse
|
23
|
Jazaeri Farsani SM, Jebbink MF, Deijs M, Canuti M, van Dort KA, Bakker M, Grady BPX, Prins M, van Hemert FJ, Kootstra NA, van der Hoek L. Identification of a new genotype of Torque Teno Mini virus. Virol J 2013; 10:323. [PMID: 24171716 PMCID: PMC3819664 DOI: 10.1186/1743-422x-10-323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 11/27/2022] Open
Abstract
Background Although human torque teno viruses (TTVs) were first discovered in 1997, still many associated aspects are not clarified yet. The viruses reveal a remarkable heterogeneity and it is possible that some genotypes are more pathogenic than others. The identification of all genotypes is essential to confirm previous pathogenicity data, and an unbiased search for novel viruses is needed to identify TTVs that might be related to disease. Method The virus discovery technique VIDISCA-454 was used to screen serum of 55 HIV-1 positive injecting drug users, from the Amsterdam Cohort Studies, in search for novel blood-blood transmittable viruses which are undetectable via normal diagnostics or panvirus-primer PCRs. Results A novel torque teno mini virus (TTMV) was identified in two patients and the sequence of the full genomes were determined. The virus is significantly different from the known TTMVs (< 40% amino acid identity in ORF1), yet it contains conserved characteristics that are also present in other TTMVs. The virus is chronically present in both patients, and these patients both suffered from a pneumococcal pneumonia during follow up and had extremely low B-cells counts. Conclusion We describe a novel TTMV which we tentatively named TTMV-13. Further research is needed to address the epidemiology and pathogenicity of this novel virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Singh S, Singh A, Mankotia DS, Luthra K, Irshad M. Expression of TTV-ORF2 Protein for Detection of Anti-TTV IgG Antibodies in Human Sera. ADVANCES IN INFECTIOUS DISEASES 2013; 03:223-229. [DOI: 10.4236/aid.2013.33033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
25
|
Tang YW, Stratton CW. Detection of Viral RNA Splicing in Diagnostic Virology. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7120143 DOI: 10.1007/978-1-4614-3970-7_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, 10065 New York USA
| | - Charles W. Stratton
- Vanderbilt Clinic, Clinical Microbiology Laboratory, Vanderbilt University Medical Center, 22nd Avenue 1301, Nashville, 37232-5310 Tennessee USA
| |
Collapse
|
26
|
Hussain T, Manzoor S, Waheed Y, Tariq H, Hanif K. Phylogenetic analysis of Torque Teno Virus genome from Pakistani isolate and incidence of co-infection among HBV/HCV infected patients. Virol J 2012; 9:320. [PMID: 23270330 PMCID: PMC3573928 DOI: 10.1186/1743-422x-9-320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Torque Teno Virus (TTV) was the first single stranded circular DNA virus to be discovered that infects humans. Although there have been numerous reports regarding the prevalence of TTV from other countries of South Asia, there is severe lack of information regarding its prevalence in Pakistan. Thus the present study compiles the first indigenous report to comprehensively illustrate the incidence of the virus in uninfected and hepatitis infected population from Pakistan. Another aim of the study was to present the sequence of full length TTV genome from a local isolate and compare it with the already reported genome sequences from other parts of the world. METHODS TTV DNA was screened in the serum of 116, 100 and 40 HBV infected, HCV infected and uninfected individuals respectively. Nearly full length genome of TTV was cloned from a HBV patient. The genome sequence was subjected to in-silico analysis using CLC Workbench, ClustalW, ClustalX and TreeView. Statistical analysis was carried out in SPSS v17.0. RESULTS Our results report that 89.7%, 90.0% and 92.5% of HBV, HCV patients and healthy control population were positive for TTV infection. TTV genome of 3603 bp was also cloned from a local isolate and given the identity of TPK01. The TTV genome sequence mentioned in this paper is submitted in the GenBank/EMBL/DDBJ under the accession number JN980171. Phylogenetic analysis of TPK01 revealed that the Pakistani isolate has sequence similarities with genotype 23 and 22 (Genogroup 2). CONCLUSION The results of the current study indicate that the high frequency of TTV viremia in Pakistan conforms to the reports from other areas of the world, wherever screening of TTV DNA was performed against 5'-UTR of the genome. The high sequence diversity among TTV genome sequences and the high frequency of prevalence makes it harder to study this virus in cellular systems.
Collapse
Affiliation(s)
- Tabinda Hussain
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Yasir Waheed
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Huma Tariq
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Khushbakht Hanif
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
27
|
Chen T, Väisänen E, Mattila PS, Hedman K, Söderlund-Venermo M. Antigenic diversity and seroprevalences of Torque teno viruses in children and adults by ORF2-based immunoassays. J Gen Virol 2012; 94:409-417. [PMID: 23114629 DOI: 10.1099/vir.0.046862-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Torque teno viruses (TTVs) circulate widely among humans, causing persistent viraemia in healthy individuals. Numerous TTV isolates with high genetic variability have been identified and segregated into 29 species of five major phylogenetic groups. To date, the diversity of TTV sequences, challenges in protein expression and the subsequent lack of serological assays have hampered TTV seroprevalence studies. Moreover, the antigenic relationships of different TTVs and their specific seroprevalences in humans remain unknown. For five TTV strains--belonging to different species of four genogroups--we developed, using recombinant glutathione S-transferase (GST)-fused TTV ORF2 proteins, glutathione-GST capture enzyme immunoassays (EIAs) detecting antibodies towards conformational epitopes. We then analysed serum samples from 178 healthy adults and 108 children; IgG reactivities were observed either towards a single strain or towards multiple strains, which pointed to antigenic distinction of TTV species. The overall seroprevalence for the five TTVs peaked at 43 % (18 of 42) in children 2-4 years of age, subsequently declined, and again reached 42 % (74 of 178) among adults. TTV6 species-specific IgG predominated in children, whereas that for TTV13 predominated in adults. During a 3 year follow-up of the same children, both species-specific seroconversions and seroreversions occurred. This is the first EIA-based study of different TTVs, providing a new approach for seroepidemiology and diagnosis of TTV infections. Our data suggest that different TTVs in humans may differ in antiviral antibody profiles, infection patterns and epidemiology.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Elina Väisänen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Klaus Hedman
- Department of Virology and Immunology, Helsinki University Central Hospital Laboratory Division, Helsinki, Finland.,Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
28
|
Rescue of a porcine anellovirus (torque teno sus virus 2) from cloned genomic DNA in pigs. J Virol 2012; 86:6042-54. [PMID: 22491450 DOI: 10.1128/jvi.00175-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anelloviruses are a group of single-stranded circular DNA viruses infecting humans and other animal species. Animal models combined with reverse genetic systems of anellovirus have not been developed. We report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, torque teno sus virus 2 (TTSuV2), in vitro and in vivo. We first demonstrated that five cell lines, including PK-15 cells, are free of TTSuV1 or TTSuV2 contamination, as determined by a real-time PCR and an immunofluorescence assay (IFA) using anti-TTSuV antibodies. Recombinant plasmids harboring monomeric or tandem-dimerized genomic DNA of TTSuV2 from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific open reading frame 1 (ORF1) in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 protein, suggesting that the observed ORF1 expression is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized clones or circular genomic DNA of U.S. TTSuV2 developed viremia, and the introduced genetic markers were retained in viral DNA recovered from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology.
Collapse
|
29
|
Jinling C, Dandan Z, Pei S, Wei S, Gengfu X, Yinong D, Ying Z. Bioinformatics analysis on ORF1 protein of Torque teno virus (SANBAN isolate). ASIAN PAC J TROP MED 2012; 4:850-6. [PMID: 22078945 DOI: 10.1016/s1995-7645(11)60207-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/11/2011] [Accepted: 10/15/2011] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVE To analyze the sequence of ORF1 protein of Torque teno virus to prepare for the future hybrid experiments. METHODS The sequence of ORF1 protein of Torque teno virus was analyzed by bioinformatics using some web tools. RESULTS The most likely cleavage site was between position 14aa and 15aa and signal peptide may be position 1aa-14aa. Two possible transmembrane helices from inside to outside and three possible transmembrane helices from outside to inside were found. The position 509 (NKTN) was the potential N-glycosylation site. The speculative molecular weight of TTV ORF1 protein, which may be a kind of unstable protein was 88 705.7 Da. 1aa-91aa and 278aa-361aa were localized in non-regular secondary structure region. CONCLUSIONS TTV ORF1 protein may be a nuclear protein which contains two non-regular secondary structure region. 265aa to 486aa and 510aa to 679aa may be the two approciate fragments to construct the plasmids, which would be prepared for the future hybrid experiments to study the functional positions of the protein and the interactions between TTV and its hosts. Bioinformatics analysis would possibly make it easier to study the protein's function.
Collapse
Affiliation(s)
- Chen Jinling
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The newly established family Anelloviridae includes a number of viruses infecting humans (Torque teno viruses) and other animal species. The ones infecting domestic swine and wild boar are nowadays named Torque teno sus viruses (TTSuV), which are small circular single-stranded DNA viruses highly prevalent in the pig population. So far, two genetically distinct TTSuV species are infecting swine. Both TTSuVs appear to efficiently spread by vertical and horizontal transmission routes; in fact, foetuses may be infected and the prevalence and viral loads increase by age of the animals. Detailed immunological studies on TTSuVs are still lacking, but it seems that there are no efficient immunological responses limiting viraemia. These viruses are currently receiving more attention due to the latest results on disease association. Torque teno sus viruses have been circulating unnoticed in pigs for a long time, and even considered non-pathogenic by themselves; there is increasing evidence that points to influence the development of some diseases or even affect their outcome. Such link has been mainly established with porcine circovirus diseases.
Collapse
Affiliation(s)
- T Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
31
|
Martínez-Guinó L, Ballester M, Segalés J, Kekarainen T. Expression profile and subcellular localization of Torque teno sus virus proteins. J Gen Virol 2011; 92:2446-2457. [PMID: 21715596 DOI: 10.1099/vir.0.033134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the present study, the expression, generation and subcellular localization of Torque teno sus virus (TTSuV) proteins were characterized into two genetically distinct TTSuV species (TTSuV1 and TTSuV2). Following transfection of three TTSuV1 and TTSuV2 full-length ORF (ORF1, ORF2 and ORF3) expression constructs into porcine kidney cells, alternative splice variants encoding new TTSuV protein isoforms were identified for the first time. Proteins encoded from ORF1 and ORF3 were localized in the nucleoli of porcine kidney cells and that of ORF2 in the cytoplasm and nucleus excluding the nucleoli. The subcellular localization of the different protein isoforms was not only similar between distinct TTSuV species but also to the ones described in human Torque teno virus (TTV). Results of the present in vitro study were not based on full-length viral clones but suggested that alternative splicing strategy to generate TTSuV protein isoforms probably occurs in vivo. Obtained data provide new information on molecular biology of TTSuV and anelloviruses, which until now has been solely based on results obtained from human TTV.
Collapse
Affiliation(s)
- Laura Martínez-Guinó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Maria Ballester
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
32
|
The diversity of torque teno viruses: in vitro replication leads to the formation of additional replication-competent subviral molecules. J Virol 2011; 85:7284-95. [PMID: 21593173 DOI: 10.1128/jvi.02472-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The family Anelloviridae comprises torque teno viruses (TTVs) diverse in genome structure and organization. The isolation of a large number of TTV genomes (TTV Heidelberg [TTV-HD]) of 26 TTV types is reported. Several isolates from the same type indicate sequence variation within open reading frame 1 (ORF1), resulting in considerably modified open reading frames. We demonstrate in vitro replication of 12 full-length genomes of TTV-HD in 293TT cells. Propagation of virus was achieved by several rounds of infections using supernatant and frozen whole cells of initially infected cells. Replication of virus was measured by PCR amplification and transcription analyses. Subgenomic molecules (μTTV), arising early during propagation and ranging in size from 401 to 913 bases, were cloned and characterized. Propagation of these μTTV in in vitro cultures was demonstrated in the absence of full-length genomes.
Collapse
|
33
|
Development of SYBR green-based real-time PCR and duplex nested PCR assays for quantitation and differential detection of species- or type-specific porcine Torque teno viruses. J Virol Methods 2010; 170:140-6. [PMID: 20863859 DOI: 10.1016/j.jviromet.2010.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/03/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
Porcine Torque teno virus (TTV), a single-stranded circular DNA virus, has been incriminated in swine diseases recently. Multiple infection with porcine TTV species 1 (PTTV1) and species 2 (PTTV2), each consisting of two types (PTTV1a and 1b) or subtypes (PTTV2b and 2c), in a single pig had been reported by our group previously. The present study described three novel assays for quantitation and differential detection of porcine TTV. First, we developed two SYBR green-based real-time PCR assays to quantify viral loads of two porcine TTV species, respectively. The PTTV1- and PTTV2-specific real-time PCR primer sequences were selected to target conserved regions identified by multiple alignments of ten available porcine TTV full-length genomes. Furthermore, by coupling the two singleplex PCR assays, a duplex real-time PCR assay followed by melting curve analysis was established for simultaneous detection and differentiation of PTTV1 and PTTV2. In addition, a type-specific duplex nested PCR was also developed to simultaneously detect and distinguish between the two types, PTTV1a and 1b, in PTTV1 species. These assays provide rapid and practical tools for molecular diagnosis of species- or type-specific porcine TTV.
Collapse
|
34
|
Huang YW, Ni YY, Dryman BA, Meng XJ. Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: implication for genotyping of PTTV. Virology 2009; 396:289-97. [PMID: 19913866 DOI: 10.1016/j.virol.2009.10.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/23/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022]
Abstract
Porcine Torque teno virus (PTTV) was recently shown to partially contribute to the experimental induction of porcine dermatitis and nephropathy syndrome and postweaning multisystemic wasting syndrome in pigs in the United States. We report here the identification of four distinct full-length genomic sequences of PTTV strains from a single pig in Virginia. Detailed analyses of the genomic organization, the degree of variability and the characteristics of conserved nucleotide and amino acid motifs of PTTV were conducted. The results showed that these four prototype U.S. strains of PTTV identified from the same pig represent distinct genotypes or subtypes and a revised classification system for PPTV is subsequently proposed. This is the first study documenting multiple PTTV infections with distinct genotypes or subtypes in a single pig. The identification of novel PTTV strains from pigs in the United States also pave the way for future disease characterization and genotyping of PTTV.
Collapse
Affiliation(s)
- Y W Huang
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, 1981 Kraft Drive, Blacksburg, VA 24061-0913, USA
| | | | | | | |
Collapse
|
35
|
Kekarainen T, Segalés J. Torque teno virus infection in the pig and its potential role as a model of human infection. Vet J 2009; 180:163-8. [DOI: 10.1016/j.tvjl.2007.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/02/2007] [Accepted: 12/13/2007] [Indexed: 01/01/2023]
|
36
|
de Smit MH, Noteborn MHM. Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr Top Microbiol Immunol 2009; 331:131-49. [PMID: 19230562 DOI: 10.1007/978-3-540-70972-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Torque teno viruses (TTVs) share several genomic similarities with the chicken anemia virus (CAV). CAV encodes the protein apoptin that specifically induces apoptosis in (human) tumor cells. Functional studies reveal that apoptin induces apoptosis in a very broad range of (human) tumor cells. A putative TTV open reading frame (ORF) in TTV genotype 1, named TTV apoptosis inducing protein (TAIP), it induces, like apoptin, p53-independent apoptosis in various human hepatocarcinoma cell lines to a similar level as apoptin. In comparison to apoptin, TAIP action is less pronounced in several analyzed human non-hepatocarcinoma-derived cell lines. Detailed sequence analysis has revealed that the TAIP ORF is conserved within a limited group of the heterogeneous TTV population. However, its N-terminal half, N-TAIP, is rather well conserved in a much broader set of TTV isolates. The similarities between apoptin and TAIP, and their relevance for the development and treatment of diseases is discussed.
Collapse
Affiliation(s)
- M H de Smit
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | |
Collapse
|
37
|
Kakkola L, Hedman K, Qiu J, Pintel D, S”derlund-Venermo M. Replication of and Protein Synthesis by TT Viruses. Curr Top Microbiol Immunol 2009; 331:53-64. [DOI: 10.1007/978-3-540-70972-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
38
|
de Villiers EM, Kimmel R, Leppik L, Gunst K. Intragenomic rearrangement in TT viruses: a possible role in the pathogenesis of disease. Curr Top Microbiol Immunol 2009; 331:91-107. [PMID: 19230559 DOI: 10.1007/978-3-540-70972-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A role for the ubiquitous Torque teno (TT) viruses in the pathogenesis of disease has not been resolved. In vivo and in vitro intragenomic rearrangement of TT virus genomes has been demonstrated. Replication in cell culture of a subviral molecule (411 bp) occurs through oligomerisation of RNA transcripts. Although the functions of the respective TT viral genes, as well as the newly formed genes in the rearranged subviral molecules, are largely unknown, certain similarities to genes of plant viruses of the family Geminiviridae will be described. A degree of similarity to certain cellular genes poses the question as to a role of molecular mimicry in the pathogenesis of autoimmune disease and diabetes.
Collapse
Affiliation(s)
- E M de Villiers
- E.-M. de Villiers Division for the Characterisation of Tumour Viruses, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
Many features of the Torque teno virus and the other anelloviruses (AVs) that have been identified after this virus was discovered in 1997 remain elusive. The immunobiology of the AVs is no exception. However, evidence is progressively accumulating that at least some AVs have an interesting interplay with cells and soluble factors known to contribute to the homeostasis of innate and adaptive immunity. Evidence is also accumulating that this interplay can have a significant impact on how effectively an infected host can deal with superimposed infectious and non-infectious noxae. This review article discusses the scanty information available on these aspects and highlights the ones that would be more urgent to precisely understand in order to get an adequate assessment of how important for human health these extremely ubiquitous and pervasive viruses really are.
Collapse
|
40
|
Hino S, Prasetyo AA. Relationship of Torque teno virus to chicken anemia virus. Curr Top Microbiol Immunol 2009; 331:117-30. [PMID: 19230561 DOI: 10.1007/978-3-540-70972-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter examines the correlation between Torque teno virus (TTV) and chicken anemia virus (CAV). Each has a circular single-stranded (ss)DNA genome with every one of its known open reading frames (ORF) on its antigenomic strand. This structure is distinct from those of circoviruses. The genomic sizes of TTV and CAV are different, 3.8 kb and 2.3 kb, respectively. While the spectrum of the TTV genome is enormously diverse, that of the CAV genome is quite narrow. Although a 36-nt stretch near the replication origin of TA278 TTV possesses more than 80% similarity to that of CAV, the sequence of the other genomic regions does not exhibit a significant similarity. Nevertheless, the relative allocation of ORFs on each frame in these viruses mimics each other. Three or more messenger RNA (mRNAs) are generated by transcription in both of them. The structural protein with the replicase domain is coded for by frame 1 in each virus, and a nonstructural protein with a phosphatase domain is coded for by frame 2. A protein on frame 3 in each virus induces apoptosis in transformed cells. Recently, we confirmed that apoptin is necessary for the replication of CAV. TTV has been proposed to constitute a new family, Anelloviridae. Considering these similarities and dissimilarities between CAV and TTV, it seems more reasonable to place CAV, the only member of genus Gyrovirus, into Anelloviridae together with TTV, or into a new independent family.
Collapse
Affiliation(s)
- S Hino
- Division of Virology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| | | |
Collapse
|
41
|
Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol 2008; 83:2500-9. [PMID: 19116258 DOI: 10.1128/jvi.01946-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral metagenomics, consisting of viral particle purification and shotgun sequencing, is a powerful technique for discovering viruses associated with diseases with no definitive etiology, viruses that share limited homology with known viruses, or viruses that are not culturable. Here we used viral metagenomics to examine viruses associated with sea turtle fibropapillomatosis (FP), a debilitating neoplastic disease affecting sea turtles worldwide. By means of purifying and shotgun sequencing the viral community directly from the fibropapilloma of a Florida green sea turtle, a novel single-stranded DNA virus, sea turtle tornovirus 1 (STTV1), was discovered. The single-stranded, circular genome of STTV1 was approximately 1,800 nucleotides in length. STTV1 has only weak amino acid level identities (25%) to chicken anemia virus in short regions of its genome; hence, STTV1 may represent the first member of a novel virus family. A total of 35 healthy turtles and 27 turtles with FP were tested for STTV1 using PCR, and only 2 turtles severely afflicted with FP were positive. The affected turtles were systemically infected with STTV1, since STTV1 was found in blood and all major organs. STTV1 exists as a quasispecies, with several genome variants identified in the fibropapilloma of each positive turtle, suggesting rapid evolution of this virus. The STTV1 variants were identical over the majority of their genomes but contained a hypervariable region with extensive divergence. This study demonstrates the potential of viral metagenomics for discovering novel viruses directly from animal tissue, which can enhance our understanding of viral evolution and diversity.
Collapse
|
42
|
Prasetyo AA, Kamahora T, Kuroishi A, Murakami K, Hino S. Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV). Virology 2008; 385:85-92. [PMID: 19091368 DOI: 10.1016/j.virol.2008.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/18/2008] [Accepted: 10/27/2008] [Indexed: 11/17/2022]
Abstract
To test requirement for apoptin in the replication of chicken anemia virus (CAV), an apoptin-knockout clone, pCAV/Ap(-), was constructed. DNA replication was completely abolished in cells transfected with replicative form of CAV/Ap(-). A reverse mutant competent in apoptin production regained the full level of DNA replication. DNA replication and virus-like particle (VLP) production of CAV/Ap(-) was fully complemented by supplementation of the wild-type apoptin. The virus yield of a point mutant, CAV/ApT(108)I, was 1/40 that of the wild type, even though its DNA replication level was full. The infectious titer of CAV was fully complemented by supplementing apoptin. Progeny virus was free from reverse mutation for T(108)I. To localize the domain within apoptin molecule inevitable for CAV replication, apoptin-mutant expressing plasmids, pAp1, pAp2, pAp3, and pAp4, were constructed by deleting amino acids 10-36, 31-59, 59-88 and 80-112, respectively. While Ap1 and Ap2 were preferentially localized in nuclei, Ap3 and Ap4 were mainly present in cytoplasm. Although complementation capacity of Ap3 and Ap4 was 1/10 of the wild type, neither of them completely lost its activity. VP3 of TTV did fully complement the DNA replication and VLP of CAV/Ap(-). These data suggest that apoptin is inevitable not only for DNA replication but also VLP of CAV. The common feature of apoptin and TTV-VP3 presented another evidence for close relatedness of CAV and TTV.
Collapse
|
43
|
Les anellovirus (TTV et variants) : données actuelles dix ans après leur découverte. Transfus Clin Biol 2008; 15:406-15. [DOI: 10.1016/j.tracli.2008.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 10/10/2008] [Indexed: 11/21/2022]
|
44
|
Kakkola L, Bondén H, Hedman L, Kivi N, Moisala S, Julin J, Ylä-Liedenpohja J, Miettinen S, Kantola K, Hedman K, Söderlund-Venermo M. Expression of all six human Torque teno virus (TTV) proteins in bacteria and in insect cells, and analysis of their IgG responses. Virology 2008; 382:182-9. [PMID: 18947848 DOI: 10.1016/j.virol.2008.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/21/2008] [Accepted: 09/08/2008] [Indexed: 01/03/2023]
Abstract
Torque teno virus (TTV) is a non-enveloped human virus with a circular ( approximately 3800 nt) ssDNA genome. TTV transcription results in three viral mRNAs and six proteins, the function or antigenicity of which are unknown. The six open reading frames of TTV genotype 6 were expressed in bacteria and insect cells. Expression of the ORF1/1-encoded protein was inefficient, while expression of the others was successful, with ORF1 and ORF1/2 as arginine-rich region depleted. All six recombinant TTV proteins were antigenic. Of healthy adults, 11/25 (44%) showed strong IgG reactivity with one or more proteins. Four subjects, two of whom were genotype-6-DNA positive, were followed. One of the latter showed concurrently a strong IgG response against the ORF1 protein. The other showed appearance of IgG against the ORF2 protein concomitantly with resolution of the genotype-6 viremia. The genotype-6 sequences remained unaltered for years, suggesting that some mechanisms other than amino acid substitutions play a role in TTV immune evasion.
Collapse
Affiliation(s)
- Laura Kakkola
- Department of Virology, Haartman Institute and Helsinki University Central Hospital Laboratory, Haartmaninkatu 3, P.O. Box 21, University of Helsinki, FIN-00014, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Irshad M, Singh S, Irshad K, Agarwal SK, Joshi YK. Torque teno virus: its prevalence and isotypes in North India. World J Gastroenterol 2008; 14:6044-6051. [PMID: 18932284 PMCID: PMC2760200 DOI: 10.3748/wjg.14.6044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/11/2008] [Accepted: 08/18/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the prevalence and genotype distribution of Torque teno virus (TTV) in patients with different liver diseases and chronic renal failure treated at a referral hospital in North India. METHODS Whereas prevalence of TTV was based on amplification of conserved region of ORF2 of TTV genome, the genotyping of TTV was carried out using restriction fragment length polymorphism (RFLP) procedure on the N22 region of ORF1. RESULTS TTV-DNA was detected in 137 of 513 (26.7%) patients with liver diseases and 38 of 65 (58.5%) patients with chronic renal failure. TTV was also detected in 27% of healthy controls. The sequence analysis of the PCR product from 10 randomly selected cases failed to show a significant sequence divergence when compared with that of the TRM1 isolate of TTV genotype 1. The results of genotyping in 55 randomly selected patients showed the presence of genotype 1 (G1) in 53 (96.4%) and genotype 2 (G2) in 2 cases (3.6%), respectively. Other genotypes were not identified in this patient subgroup, suggesting that G1 is predominant in this area. The results of genotyping by RFLP were also supported by phylogenetic tree analysis, where G1 was found to be the major genotype. CONCLUSION These results indicate that TTV is moderately present in Indian patients, with G1 to be the major genotype in North India. The pathogenicity and etiological role of TTV in different diseases is still a question mark and warrant further studies.
Collapse
|
46
|
Mueller B, Maerz A, Doberstein K, Finsterbusch T, Mankertz A. Gene expression of the human Torque Teno Virus isolate P/1C1. Virology 2008; 381:36-45. [PMID: 18799180 DOI: 10.1016/j.virol.2008.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Torque Teno Virus (TTV) has been assigned to the floating genus Anellovirus. TTV ssDNA genomes have a size of 3.6 to 3.8 kb and display up to 30% nucleotide diversity. The pathogenic potential of TTV is under investigation. To address a putative link of pathogenicity with the observed sequence variations, the transcription profile of P/1C1 (genogroup 1) isolated from a patient diseased with a non A-G hepatitis was analysed. Four mRNAs were identified, which encoded the seven proteins ORF1, ORF1/1, ORF1/2, ORF2, ORF2/2, ORF3 and ORF4. Expression of the ORF1 protein and its splice variant ORF1/1 in cell culture was detected by an ORF1-specific antiserum. Analysis of N-terminal tagged P/1C1-encoded proteins revealed that ORF1, ORF1/1 and ORF1/2 were localised in the nucleoli, ORF3 and ORF4 resided in the nucleoplasm, ORF2/2 appeared either in the nucleoli or the whole nucleus while ORF2 was the only protein seen in the cytoplasm.
Collapse
Affiliation(s)
- Bettina Mueller
- Robert Koch-Institute, FG12 Division of Viral Infections, Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Davidson I, Shulman LM. Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 2008; 137:1-15. [PMID: 18656506 DOI: 10.1016/j.virusres.2008.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/15/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
Current clinical studies on human annelloviruses infections are directed towards finding an associated disease. In this review we have emphasized the many similarities between human anellovirus and avian circoviruses and the cell and tissue types infected by these pathogens. We have done this in order to explore whether knowledge acquired from natural and experimental avian infections could reflect and be extrapolated to the less well-characterized human annellovirus infections. The knowledge gained from the avian system may provide suggestions for decoding the enigmatic human anellovirus infections, and finding the specific disease or diseases caused by these human anellovirus infections. Each additional parallelism between chicken anemia virus (CAV) and Torque teno virus (TTV) further strengthens this premise. As we have seen information from human infections can also be used to better understand avian infections as well. Increased attention must be focused on the "hidden" or unrecognized, seemingly asymptomatic effects of circovirus and anellovirus infections. Understanding the facilitating effect of these infections on disease progression caused by other pathogens may help to explain differences in outcome of complicated poultry and human diseases. The final course of a pathogenic infection is determined by variations in the state of health of the host before, during and after contact with a pathogen, in addition to the phenotype of the pathogen and host. The health burden of circoviridae and anellovirus infections may be underestimated, due to lack of awareness of the need to search past the predominant clinical effect of identified pathogens and look for modulation of cellular-based immunity caused by co-infecting circoviruses, and by analogy, human anneloviruses.
Collapse
Affiliation(s)
- I Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | |
Collapse
|
48
|
Kakkola L, Tommiska J, Boele LCL, Miettinen S, Blom T, Kekarainen T, Qiu J, Pintel D, Hoeben RC, Hedman K, Söderlund-Venermo M. Construction and biological activity of a full-length molecular clone of human Torque teno virus (TTV) genotype 6. FEBS J 2007; 274:4719-30. [PMID: 17714512 DOI: 10.1111/j.1742-4658.2007.06020.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Torque teno virus (TTV) is a non-enveloped human virus with a circular negative-sense (approximately 3800 nucleotides) ssDNA genome. TTV resembles in genome organization the chicken anemia virus, the animal pathogen of the Circoviridae family, and is currently classified as a member of a new, floating genus, Anellovirus. Molecular and cell biological research on TTV has been restricted by the lack of permissive cell lines and functional, replication-competent plasmid clones. In order to examine the key biological activities (i.e. RNA transcription and DNA replication) of this still poorly characterized ssDNA virus, we cloned the full-length genome of TTV genotype 6 and transfected it into cells of several types. TTV mRNA transcription was detected by RT-PCR in all the cell types: KU812Ep6, Cos-1, 293, 293T, Chang liver, Huh7 and UT7/Epo-S1. Replicating TTV DNA was detected in the latter five cell types by a DpnI-based restriction enzyme method coupled with Southern analysis, a novel approach to assess TTV DNA replication. The replicating full-length clone, the cell lines found to support TTV replication, and the methods presented here will facilitate the elucidation of the molecular biology and the life cycle of this recently identified human virus.
Collapse
Affiliation(s)
- Laura Kakkola
- Department of Virology, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zheng H, Ye L, Fang X, Li B, Wang Y, Xiang X, Kong L, Wang W, Zeng Y, Ye L, Wu Z, She Y, Zhou X. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases. J Virol 2007; 81:11917-24. [PMID: 17686849 PMCID: PMC2168763 DOI: 10.1128/jvi.01101-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since the first discovery of Torque teno virus (TTV) in 1997, many researchers focused on its epidemiology and transcriptional regulation, but the function of TTV-encoded proteins remained unknown. The function of the TTV open reading frame (ORF) in the nuclear factor kappaB (NF-kappaB) pathway has not yet been established. In this study, we found for the first time that the TTV ORF2 protein could suppress NF-kappaB activity in a dose-dependent manner in the canonical NF-kappaB pathway. By Western blot analysis, we proved that the TTV ORF2 protein did not alter the level of NF-kappaB expression but prevented the p50 and p65 subunits from entering the nucleus due to the inhibition of IkappaBalpha protein degradation. Further immunoprecipitation assays showed that the TTV ORF2 protein could physically interact with IKKbeta as well as IKKalpha, but not IKKgamma. Luciferase assays and Western blot experiments showed that the TTV ORF2 protein could also suppress NF-kappaB activity in the noncanonical NF-kappaB pathway and block the activation and translocation of p52. Finally, we found that the TTV ORF2 protein inhibited the transcription of NF-kappaB-mediated downstream genes (interleukin 6 [IL-6], IL-8, and COX-2) through down-regulation of NF-kappaB. Together, these data indicate that the TTV ORF2 protein suppresses the canonical and noncanonical NF-kappaB pathways, suggesting that the TTV ORF2 protein may be involved in regulating the innate and adaptive immunity of organisms, contributing to TTV pathogenesis, and even be related to some diseases.
Collapse
Affiliation(s)
- Hong Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Leppik L, Gunst K, Lehtinen M, Dillner J, Streker K, de Villiers EM. In vivo and in vitro intragenomic rearrangement of TT viruses. J Virol 2007; 81:9346-56. [PMID: 17596318 PMCID: PMC1951432 DOI: 10.1128/jvi.00781-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The in vitro replication of the Torque teno virus (TT virus) tth8 full-length genome and particle formation in a Hodgkin's lymphoma-derived cell line after transfection with cloned viral DNA were demonstrated. Analyses of the transcription patterns of tth8 and tth7 TT virus isolates in a number of lymphoma and T-cell leukemia cell lines indicated differential additional splicing events and intragenomic rearrangement generating open reading frames which could not be deducted from the genomic sequence. We also demonstrated the presence of rearranged TT virus genomes in vivo in sera taken from pregnant mothers whose children later developed childhood leukemia, as well as sera from control mothers. Control experiments using religated cloned genomic tth8 DNA mixed with cellular DNA did not result in such subviral molecules. These subviral isolates ranged from 172 bp to full-length TT virus genomes. Possible in vivo selection for specific rearranged molecules was indicated by the presence of one isolate (561 bp) in 11 serum samples. It remains to be clarified whether selected rearranged subviral components resulting from specific TT virus types may contribute to the initiation of disease. These data demonstrate new features of TT viruses suggesting possible similarities to plant viruses of the family Geminiviridae, as well as raise questions about the documented plurality and diversity of anelloviruses.
Collapse
MESH Headings
- Cell Line, Tumor
- Child
- DNA Virus Infections/virology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Female
- Genome, Viral
- Humans
- Infant
- Molecular Sequence Data
- Mothers
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Serum/virology
- Torque teno virus/genetics
- Torque teno virus/isolation & purification
- Torque teno virus/physiology
- Transcription, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Ludmila Leppik
- Division for the Characterization of Tumor Viruses, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|