1
|
Badina AM, Ceyzériat K, Amossé Q, Tresh A, Abjean L, Guénat L, Vauthey E, Tsartsalis S, Millet P, Tournier BB. Non-linear microglial, inflammatory and oligodendrocyte dynamics across stages of Alzheimer's disease. Neurobiol Dis 2025; 211:106950. [PMID: 40348203 DOI: 10.1016/j.nbd.2025.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and neuropathological hallmarks including Aβ plaques and Tau tangles. Emerging evidence indicates oligodendrocyte (OL) dysfunction and demyelination also contribute to disease progression. Here, we analyzed OL markers and inflammatory gene expression in human hippocampal samples at early and late AD stages. In early AD, we observed OL and myelinating pathways downregulation, alongside microglial and astrocytic activation, as well as upregulated chemokine CCL2 and peripheral immune infiltration markers. In late stages, expression of OL-related genes and myelination pathways increase, with a higher NG2/MBP ratio, coinciding with decreased microglial coverage and peripheral immune markers. These findings indicate that early neuroinflammation may impair OL function, while attenuated immune activity in late AD allows partial OL recovery. This study provides insights into stage-specific inflammatory and myelin-related changes in AD, supporting the relevance of understanding oligodendrocyte dynamics and potential regenerative responses for future therapeutic strategies.
Collapse
Affiliation(s)
- Aurélien M Badina
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Quentin Amossé
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Alexandre Tresh
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurene Abjean
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Léa Guénat
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emilie Vauthey
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stergios Tsartsalis
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Boylan BT, Hwang M, Bergmann CC. The Impact of Innate Components on Viral Pathogenesis in the Neurotropic Coronavirus Encephalomyelitis Mouse Model. Viruses 2023; 15:2400. [PMID: 38140641 PMCID: PMC10747027 DOI: 10.3390/v15122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognition of viruses invading the central nervous system (CNS) by pattern recognition receptors (PRRs) is crucial to elicit early innate responses that stem dissemination. These innate responses comprise both type I interferon (IFN-I)-mediated defenses as well as signals recruiting leukocytes to control the infection. Focusing on insights from the neurotropic mouse CoV model, this review discusses how early IFN-I, fibroblast, and myeloid signals can influence protective anti-viral adaptive responses. Emphasis is placed on three main areas: the importance of coordinating the distinct capacities of resident CNS cells to induce and respond to IFN-I, the effects of select IFN-stimulated genes (ISGs) on host immune responses versus viral control, and the contribution of fibroblast activation and myeloid cells in aiding the access of T cells to the parenchyma. By unraveling how the dysregulation of early innate components influences adaptive immunity and viral control, this review illustrates the combined effort of resident CNS cells to achieve viral control.
Collapse
Affiliation(s)
- Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- School of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Hwang M, Savarin C, Kim J, Powers J, Towne N, Oh H, Bergmann CC. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J Neuroinflammation 2022; 19:267. [PMID: 36333761 PMCID: PMC9635103 DOI: 10.1186/s12974-022-02629-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. Methods Wild-type (WT) and Trem2 deficient (Trem2−/−) mice were infected with a sublethal glia tropic murine coronavirus (MHV–JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. Results BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2−/− mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. Conclusions Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02629-1.
Collapse
|
5
|
Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice. J Virol 2022; 96:e0196921. [PMID: 34935438 PMCID: PMC8865461 DOI: 10.1128/jvi.01969-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.
Collapse
|
6
|
Olivarria GM, Cheng Y, Furman S, Pachow C, Hohsfield LA, Smith-geater C, Miramontes R, Wu J, Burns MS, Tsourmas KI, Stocksdale J, Manlapaz C, Yong WH, Teijaro J, Edwards R, Green KN, Thompson LM, Lane TE. Microglia do not restrict SARS-CoV-2 replication following infection of the central nervous system of K18-hACE2 transgenic mice.. [PMID: 34816260 PMCID: PMC8609895 DOI: 10.1101/2021.11.15.468761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractUnlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited anti-viral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease.ImportanceUnderstanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.
Collapse
|
7
|
Hassan M, Ullah Khan N, Iqbal Chaudhary M, Jan Z, Majid Rajput H, Susan Dewey R, Badshah M. Neurological complications of SARS-CoV-2: a single-center case series. BRAIN HEMORRHAGES 2021; 2:161-164. [PMID: 34545348 PMCID: PMC8443530 DOI: 10.1016/j.hest.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
The neurological manifestations of SARS-CoV-2 are wide-ranging from simple headache to severe demyelinating brain disease. This is a review of collected case reports of patients with SARS-CoV-2 with neurological manifestations presenting to the Pakistan Institute of Medical Sciences (PIMS). Neurological manifestations associated with SARS-CoV-2 such as encephalitis, acute cerebrovascular disease, encephalitis with chorea, post-COVID myositis and Guillain-Barré Syndrome (GBS) are of great concern but are often overlooked in the presence of life-threatening abnormal vital signs in severely ill SARS-CoV-2 patients. There is a need to diagnose these manifestations at the earliest opportunity to limit long-term consequences and complications. Much research is needed to explore the role of SARS-CoV-2 in causing these neurological manifestations by isolating it either from the cerebrospinal fluid (CSF) or the brain tissue of the deceased on autopsy. We also recommend exploring the risk factors that lead to the development of these neurological manifestations.
Collapse
Affiliation(s)
- Muhammad Hassan
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Resident Neurologist, Department of Neurology, SZABMU
| | - Naveed Ullah Khan
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Resident Neurologist, Department of Neurology, SZABMU
| | - Mansoor Iqbal Chaudhary
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Assistant Professor, Department of Neurology, SZABMU
| | - Zakir Jan
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Assistant Professor, Department of Neurology, SZABMU
| | - Haris Majid Rajput
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Assistant Professor, Department of Neurology, SZABMU
| | - Rebecca Susan Dewey
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Research Fellow in Neuroimaging, University of Nottingham
| | - Mazhar Badshah
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Research Fellow in Neuroimaging, University of Nottingham.,Department of Neurology, SZABMU
| |
Collapse
|
8
|
Hu J, Jolkkonen J, Zhao C. Neurotropism of SARS-CoV-2 and its neuropathological alterations: Similarities with other coronaviruses. Neurosci Biobehav Rev 2020; 119:184-193. [PMID: 33091416 PMCID: PMC7571477 DOI: 10.1016/j.neubiorev.2020.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
A novel coronavirus (SARS-CoV-2) emerged from Wuhan, China, and spread quickly around the world. In addition to fever, cough and shortness of breath, it was confirmed that the patients also have manifestations towards the central nervous system (CNS), especially those critically ill ones. In this review, we will discuss how SARS-CoV-2 gain access to the CNS and the possible consequences. Both SARS-CoV-2 and SARS-CoV-1 in 2002 share the same receptor angiotensin-converting enzyme 2 (ACE2), which can be found in the brain and mediate the disease process. Both direct attack of SARS-CoV-2 and the abnormal immune response in the CNS would contribute to the disease. Also, there is a relationship between SARS-CoV-2 and the occurrence of acute cerebrovascular diseases.
Collapse
Affiliation(s)
- Jingman Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Yliopistonranta 1C (PO Box 1627), 70211, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1C (PO Box 1627), 70211, Kuopio, Finland
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China; Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
9
|
Syage AR, Ekiz HA, Skinner DD, Stone C, O'Connell RM, Lane TE. Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. J Virol 2020; 94:e01295-20. [PMID: 32999036 PMCID: PMC7925182 DOI: 10.1128/jvi.01295-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - H Atakan Ekiz
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020; 53:248-263. [PMID: 32717182 PMCID: PMC7359787 DOI: 10.1016/j.immuni.2020.07.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
Abstract
A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Alan Sariol
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
12
|
Pérez CA. Looking ahead: The risk of neurologic complications due to COVID-19. Neurol Clin Pract 2020; 10:371-374. [PMID: 32983618 PMCID: PMC7508336 DOI: 10.1212/cpj.0000000000000836] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
The rapid spread of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 has become a public health emergency of international concern. The outbreak was characterized as a pandemic by the World Health Organization (WHO) in March 2020. The most characteristic symptom of patients with COVID-19 is respiratory distress. Some patients may also show neurologic signs and symptoms ranging from headache, nausea, vomiting, and confusion to anosmia, ageusia, encephalitis, and stroke. Coronaviruses are known pathogens with neuroinvasive potential. There is increasing evidence that coronavirus infections are not always confined to the respiratory tract. CNS involvement can occur in susceptible individuals and may contribute overall morbidity and mortality in the acute setting. In addition, postinfectious, immune-mediated complications in the convalescent period are possible. Awareness and recognition of neurologic manifestations is essential to guide therapeutic decision-making because the current outbreak continues to unfold.
Collapse
Affiliation(s)
- Carlos A Pérez
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
13
|
Cheng Y, Skinner DD, Lane TE. Innate Immune Responses and Viral-Induced Neurologic Disease. J Clin Med 2018; 8:jcm8010003. [PMID: 30577473 PMCID: PMC6352557 DOI: 10.3390/jcm8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.
Collapse
Affiliation(s)
- Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Abstract
Neurotropic strains of the mouse hepatitis virus (MHV) cause a range of diseases in infected mice ranging from mild encephalitis with clearance of the virus followed by demyelination to rapidly fatal encephalitis. This chapter discusses the structure, life cycle, transmission, and pathology of neurotropic coronaviruses, as well as the immune response to coronavirus infection. Mice infected with neurotropic strains of MHV have provided useful systems in which to study processes of virus- and immune-mediated demyelination and virus clearance and/or persistence in the CNS, and the mechanisms of virus evasion of the immune system.
Collapse
|
15
|
Libbey JE, Lane TE, Fujinami RS. Axonal pathology and demyelination in viral models of multiple sclerosis. DISCOVERY MEDICINE 2014; 18:79-89. [PMID: 25091490 PMCID: PMC4371782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory demyelinating disease of the central nervous system (CNS). Monozygotic twin studies suggest that while there is a genetic contribution, genetics alone cannot be the sole determining factor in the development of MS. As the rates of MS are increasing, particularly among women, environmental factors such as viral infections are coming to the foreground as potential agents in triggering disease in genetically susceptible individuals. This review highlights pathological aspects related to two pre-clinical viral models for MS; data are consistent between these two models as experimental infection of susceptible mice can induce axonal degeneration associated with demyelination. These data are consistent with observations in MS that axonal damage or Wallerian degeneration is occurring within the CNS contributing to the disability and disease severity. Such early damage, where axonal damage is primary to secondary demyelination, could set the stage for more extensive immune mediated demyelination arising later.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, 15 North Medical Drive East, 2600A EEJMRB, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
16
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
17
|
Shriver LP, Plummer EM, Thomas DM, Ho S, Manchester M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J Mater Chem B 2013; 1:5256-5263. [DOI: 10.1039/c3tb20521e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection. J Virol 2012; 87:2376-89. [PMID: 23269787 DOI: 10.1128/jvi.03089-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokine (C-C motif) ligand 2 (CCL2), a chemoattractant for macrophages, T cells, and cells expressing CCR2, is upregulated during acute and chronic inflammation. CCL2 has been implicated in both proinflammatory and anti-inflammatory responses and has been suggested as a target for therapy in some inflammatory disorders. To examine the role of CCL2 during virus infection, we infected mice transgenically expressing CCL2 in the central nervous system (CCL2 Tg) with an attenuated neurotropic coronavirus (rJ2.2 strain of mouse hepatitis virus). Infection of wild-type mice with rJ2.2 results in mild acute encephalitis, followed by a nonlethal, chronic demyelinating disease. Proinflammatory innate and adaptive immune responses mediate virus clearance. In marked contrast, CCL2 Tg mice infected with rJ2.2 ineffectively cleared virus and rapidly succumbed to the infection. CCL2 Tg mice mounted a dysregulated immune response, characterized by augmented accumulation of regulatory Foxp3(+)CD4(+) T cells and of nitric-oxide- and YM-1-expressing macrophages and microglia, suggestive of mixed M1/M2 macrophage activation. Further, macrophages from infected CCL2 Tg brains relative to non-Tg controls were less activated/mature, expressing lower levels of major histocompatibility complex class II (MHC-II), CD86, and CD40. Collectively, these results show that persistent CCL2 overexpression establishes and sustains an immunological milieu that is both inflammatory and immunosuppressive and predisposes mice to a defective immune response to a minimally lethal virus.
Collapse
|
19
|
Phares TW, Stohlman SA, Hinton DR, Bergmann CC. Enhanced CD8 T-cell anti-viral function and clinical disease in B7-H1-deficient mice requires CD4 T cells during encephalomyelitis. J Neuroinflammation 2012; 9:269. [PMID: 23237504 PMCID: PMC3545890 DOI: 10.1186/1742-2094-9-269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022] Open
Abstract
Background Anti-viral CD8 T-cell activity is enhanced and prolonged by CD4 T-cell-mediated help, but negatively regulated by inhibitory B7-H1 interactions. During viral encephalomyelitis, the absence of CD4 T cells decreases CD8 T cell activity and impedes viral control in the central nervous system (CNS). By contrast, the absence of B7-H1 enhances CD8 T-cell function and accelerates viral control, but increases morbidity. However, the relative contribution of CD4 T cells to CD8 function in the CNS, in the absence of B7-H1, remains unclear. Methods Wild-type (WT) and B7-H1−/− mice were infected with a gliatropic coronavirus and CD4 T cells depleted to specifically block T helper function in the CNS. Flow cytometry and gene expression analysis of purified T-cell populations from lymph nodes and the CNS was used to directly monitor ex vivo T-cell effector function. The biological affects of altered T-cell responses were evaluated by analysis of viral control and spinal-cord pathology. Results Increased anti-viral activity by CD8 T cells in the CNS of B7-H1−/− mice was lost upon depletion of CD4 T cells; however, despite concomitant loss of viral control, the clinical disease was less severe. CD4 depletion in B7-H1−/− mice also decreased inducible nitric oxide synthase expression by microglia and macrophages, consistent with decreased microglia/macrophage activation and reduced interferon (IFN)-γ. Enhanced production of IFN-γ, interleukin (IL)-10 and IL-21 mRNA was seen in CD4 T cells from infected B7-H1−/− compared with WT mice, suggesting that over-activated CD4 T cells primarily contribute to the increased pathology. Conclusions The local requirement of CD4 T-cell help for CD8 T-cell function is not overcome if B7-H1 inhibitory signals are lost. Moreover, the increased effector activity by CD8 T cells in the CNS of B7-H1−/− mice is attributable not only to the absence of B7-H1 upregulation on major histocompatibility complex class I-presenting resident target cells, but also to enhanced local CD4 T-cell function. B7-H1-mediated restraint of CD4 T-cell activity is thus crucial to dampen both CD8 T-cell function and microglia/macrophage activation, thereby providing protection from T-cell-mediated bystander damage.
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
20
|
Marro BS, Hosking MP, Lane TE. CXCR2 signaling and host defense following coronavirus-induced encephalomyelitis. Future Virol 2012; 7:349-359. [PMID: 22582084 DOI: 10.2217/fvl.12.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of susceptible strains of mice results in wide-spread replication within glial cells accompanied by infiltration of virus-specific T lymphocytes that control virus through cytokine secretion and cytolytic activity. Virus persists within white matter tracts of surviving mice resulting in demyelination that is amplified by inflammatory T cells and macrophages. In response to infection, numerous cytokines/chemokines are secreted by resident cells of the CNS and inflammatory leukocytes that participate in both host defense and disease. Among these are the ELR-positive chemokines that are able to signal through CXC chemokine receptors including CXCR2. Early following JHMV infection, ELR-positive chemokines contribute to host defense by attracting CXCR2-expressing cells including polymorphonuclear cells to the CNS that aid in host defense through increasing the permeability the blood-brain-barrier (BBB). During chronic disease, CXCR2 signaling on oligodendroglia protects these cells from apoptosis and restricts the severity of demyelination. This review covers aspects related to host defense and disease in response to JHMV infection and highlights the different roles of CXCR2 signaling in these processes.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92697-3900
| | | | | |
Collapse
|
21
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
22
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
23
|
Virally expressed interleukin-10 ameliorates acute encephalomyelitis and chronic demyelination in coronavirus-infected mice. J Virol 2011; 85:6822-31. [PMID: 21593179 DOI: 10.1128/jvi.00510-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The absence of interleukin-10 (IL-10), a potent anti-inflammatory cytokine results in increased immune-mediated demyelination in mice infected with a neurotropic coronavirus (recombinant J2.2-V-1 [rJ2.2]). Here, we examined the therapeutic effects of increased levels of IL-10 at early times after infection by engineering a recombinant J2.2 virus to produce IL-10. We demonstrate that viral expression of IL-10, which occurs during the peak of virus replication and at the site of disease, enhanced survival and diminished morbidity in rJ2.2-infected wild-type B6 and IL-10(-/-) mice. The protective effects of increased IL-10 levels were associated with reductions in microglial activation, inflammatory cell infiltration into the brain, and proinflammatory cytokine and chemokine production. Additionally, IL-10 increased both the frequency and number of Foxp3(+) regulatory CD4 T cells in the infected central nervous system. Most strikingly, the ameliorating effects of IL-10 produced during the first 5 days after infection were long acting, resulting in decreased demyelination during the resolution phase of the infection. Collectively, these results suggest that the pathogenic processes that result in demyelination are initiated early during infection and that they can be diminished by exogenous IL-10 delivered soon after disease onset. IL-10 functions by dampening the innate or very early T cell immune response. Further, they suggest that early treatment with IL-10 may be useful adjunct therapy in some types of viral encephalitis.
Collapse
|
24
|
Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection. mBio 2010; 1. [PMID: 20978536 PMCID: PMC2957079 DOI: 10.1128/mbio.00219-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 09/20/2010] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC. Coronaviruses cause diseases with various degrees of severity in humans, including severe acute respiratory syndrome (SARS). In domestic and companion animals, coronaviruses induce interferon (IFN) in only a few cell types. In particular, macrophages, which are known to have both protective and pathogenic roles in coronavirus infections, express IFN while dendritic cells do not. Little is known about the basis of these cell-specific differences in IFN induction. Here, we show that an animal coronavirus, mouse hepatitis virus, induces IFN and other IFN-responsive molecules in macrophages, but not in dendritic cells, via a feedback loop that is dependent upon low-level IFN expression at early times after infection. This pathway of cellular activation may be a useful target for modulating macrophage function in order to selectively enhance the antivirus immune response and diminish the pathogenic role of these cells in SARS and other coronavirus infections.
Collapse
|
25
|
Trandem K, Anghelina D, Zhao J, Perlman S. Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4391-400. [PMID: 20208000 PMCID: PMC2851486 DOI: 10.4049/jimmunol.0903918] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) develop acute and chronic demyelinating diseases with histopathological similarities to multiple sclerosis. The process of demyelination is largely immune-mediated, as immunodeficient mice (RAG1(-/-) mice) do not develop demyelination upon infection; however, demyelination develops if these mice are reconstituted with either JHMV-immune CD4 or CD8 T cells. Because myelin destruction is a consequence of the inflammatory response associated with virus clearance, we reasoned that decreasing the amount of inflammation would diminish clinical disease and demyelination. Given that regulatory T cells (Tregs) have potent anti-inflammatory effects, we adoptively transferred Tregs into infected C57BL/6 and RAG1(-/-) mice. In both instances, transfer of Tregs decreased weight loss, clinical scores, and demyelination. Transferred Tregs were not detected in the CNS of infected RAG1(-/-) mice, but rather appeared to mediate their effects in the draining cervical lymph nodes. We show that Tregs dampen the inflammatory response mediated by transferred JHMV-immune splenocytes in infected RAG1(-/-) mice by decreasing T cell proliferation, dendritic cell activation, and proinflammatory cytokine/chemokine production, without inducing apoptosis. By extension, decreasing inflammation, whether by Treg transfer or by otherwise enhancing the anti-inflammatory milieu, could contribute to improved clinical outcomes in patients with virus-induced demyelination.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Proliferation
- Chronic Disease
- Coronavirus Infections/immunology
- Coronavirus Infections/physiopathology
- Coronavirus Infections/therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- HeLa Cells
- Humans
- Immune Tolerance
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/immunology
- Murine hepatitis virus/pathogenicity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/transplantation
- Viral Load/immunology
- Virulence/immunology
Collapse
Affiliation(s)
- Kathryn Trandem
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | | | - Jingxian Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou 510630, China
| | - Stanley Perlman
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
26
|
Zhao J, Zhao J, Perlman S. De novo recruitment of antigen-experienced and naive T cells contributes to the long-term maintenance of antiviral T cell populations in the persistently infected central nervous system. THE JOURNAL OF IMMUNOLOGY 2009; 183:5163-70. [PMID: 19786545 DOI: 10.4049/jimmunol.0902164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice infected with attenuated strains of mouse hepatitis virus, strain JHM, develop a chronic infection in the brain and spinal cord characterized by low levels of viral Ag persistence and retention of virus-specific CD4 and CD8 T cells at the site of infection. It is not known whether these cells are maintained by proliferation of T cells that entered the CNS during acute infection or are newly recruited from Ag-experienced or naive T cell pools. In this study, using adoptive transfer experiments and bone marrow chimeras, we show that at least some of these cells are recruited from the periphery, predominantly from the viral Ag-experienced T cell pool. Both virus-specific CD4 and CD8 T cells are functional, as assessed by cytokine expression and degranulation after peptide exposure. In addition, populations of virus-specific CD4 T cells undergo dynamic changes in the infected CNS, as previously shown for CD8 T cells, because ratios of cells responding to two CD4 T cell epitopes change by a factor of five during the course of persistence. Collectively, these results show that maintenance of T cell responses in the virus-infected CNS is a dynamic process. Further, virus-specific T cell numbers at this site of infection are maintained by recruitment from peripheral Ag-experienced and naive T cell pools.
Collapse
Affiliation(s)
- Jingxian Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
27
|
Abstract
Coronaviruses are positive strand RNA viruses that cause disease in humans, and domestic and companion animals. They are most notorious for causing severe acute respiratory syndrome (SARS) outbreaks in 2002–2003. All coronaviruses follow the same basic strategy of replication. All coronaviruses encode 15 or 16 replicase related proteins, 4 or 5 structural proteins and 1–8 group-specific or accessory proteins. Many of the replicase proteins are assembled into replication machinery in double-membrane vesicles (DMVs) and on a reticular network of membranes that are derived from the endoplasmic reticulum. Coronaviruses are readily transmitted across species. This phenomenon was illustrated when the SARS-coronavirus crossed species from bats to intermediate hosts, such as palm civets, and then to humans. It also explains the large number of species, including humans, that are infected with viruses closely related to bovine coronavirus. In many coronavirus infections, disease severity increases during virus clearance, suggesting that the host immune response is both protective and pathogenic. Furthermore, inhibition of specific aspects of the immune response results in less severe disease and less tissue destruction, without diminishing the kinetics of virus clearance. Like all successful viruses, coronaviruses have evolved both passive and active mechanisms to evade the interferon response. Replication in DMVs may contribute to passive evasion of the innate immune response by making double-stranded RNA inaccessible to cellular sensors.
Coronaviruses gained prominence during the SARS outbreaks of 2002–2003, but there are many different coronaviruses that infect humans and animals. Perlman and Netland describe the biology of the coronaviruses, including their replication, host immune response and interspecies transmission. Although coronaviruses were first identified nearly 60 years ago, they only received notoriety in 2003 when one of their members was identified as the aetiological agent of severe acute respiratory syndrome. Previously these viruses were known to be important agents of respiratory and enteric infections of domestic and companion animals and to cause approximately 15% of all cases of the common cold. This Review focuses on recent advances in our understanding of the mechanisms of coronavirus replication, interactions with the host immune response and disease pathogenesis. It also highlights the recent identification of numerous novel coronaviruses and the propensity of this virus family to cross species barriers.
Collapse
Affiliation(s)
- Stanley Perlman
- Department of Microbiology and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, 52242, USA.
| | | |
Collapse
|
28
|
Shriver LP, Koudelka KJ, Manchester M. Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol 2009; 211:66-72. [PMID: 19394707 DOI: 10.1016/j.jneuroim.2009.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Targeted treatment of inflammatory diseases of the central nervous system (CNS) remains problematic due to the complex pathogenesis of these disorders and difficulty in drug delivery. The plant virus, cowpea mosaic virus (CPMV), has recently been explored as a nanoparticle delivery system for therapeutics targeting a number of diseases including cancer and neurodegeneration. To understand the biodistribution of CPMV in the CNS, we examined CPMV uptake during infection of mice with neurotropic mouse hepatitis virus (MHV). CPMV localized mainly to the CNS endothelium in areas that contained an intact blood brain barrier. However, in inflammatory lesions containing macrophage/microglial cell infiltration and IgG, CPMV could be detected in the brain parenchyma. Furthermore, CPMV showed rapid internalization in an in vitro model of the BBB. These results suggest that CPMV particles could be used as a vehicle to deliver therapeutics to the damaged CNS during neurodegenerative and infectious diseases of the CNS.
Collapse
Affiliation(s)
- Leah P Shriver
- Department of Cell Biology and Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
29
|
Sullivan EV, Zahr NM. Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on "Increased MCP-1 and microglia in various regions of human alcoholic brain". Exp Neurol 2008; 213:10-7. [PMID: 18625499 PMCID: PMC2591065 DOI: 10.1016/j.expneurol.2008.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA.
| | | |
Collapse
|
30
|
Templeton SP, Perlman S. Role of IFN-gamma responsiveness in CD8 T-cell-mediated viral clearance and demyelination in coronavirus-infected mice. J Neuroimmunol 2008; 194:18-26. [PMID: 18082272 PMCID: PMC7112937 DOI: 10.1016/j.jneuroim.2007.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/12/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
Abstract
Immunocompetent, but not RAG1(-/-) mice infected with MHV-JHM develop demyelination. Transferred CD8 T cell-enriched splenocytes reconstitute demyelination, and this ability is dependent on donor IFN-gamma. We used IFN-gammaR1(-/-) mice to examine the target of IFN-gamma in CD8 T cell-mediated demyelination. In IFN-gammaR1(-/-)RAG1(-/-) recipients, demyelination is decreased, but not eliminated, while viral titers are significantly increased when compared to IFN-gammaR1(+/+)RAG1(-/-) recipients. IFN-gammaR1(-/-) CD8 T cells retain virus-specific effector function regardless of IFN-gammaR1 expression. Although IFN-gammaR1 responsiveness is critical for maximal demyelination, increased levels of infectious virus coupled with adoptive transfer of CD8 T cells may result in myelin destruction independent of IFN-gammaR1 expression.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/physiology
- Central Nervous System Viral Diseases/immunology
- Central Nervous System Viral Diseases/pathology
- Central Nervous System Viral Diseases/virology
- Chemotaxis
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Crosses, Genetic
- Demyelinating Autoimmune Diseases, CNS/etiology
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/pathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Dendritic Cells/immunology
- Disease Models, Animal
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Interferon-gamma/analysis
- Interferon-gamma/physiology
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/isolation & purification
- Murine hepatitis virus/physiology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Specific Pathogen-Free Organisms
- T-Lymphocytes/transplantation
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Steven P Templeton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, United States.
| | | |
Collapse
|
31
|
Templeton SP, Perlman S. Pathogenesis of acute and chronic central nervous system infection with variants of mouse hepatitis virus, strain JHM. Immunol Res 2008; 39:160-72. [PMID: 17917063 PMCID: PMC7090838 DOI: 10.1007/s12026-007-0079-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Infection of mice with variants of mouse hepatitis virus, strain JHM (MHV-JHM), provide models of acute and chronic viral infection of the central nervous system (CNS). Through targeted recombination and reverse genetic manipulation, studies of infection with MHV-JHM variants have identified phenotypic differences and examined the effects of these differences on viral pathogenesis and anti-viral host immune responses. Studies employing recombinant viruses with a modified spike (S) glycoprotein of MHV-JHM have identified the S gene as a major determinant of neurovirulence. However, the association of S gene variation and neurovirulence with host ability to generate anti-viral CD8 T cell responses is not completely clear. Partially protective anti-viral immune responses may result in persistent infection and chronic demyelinating disease characterized by myelin removal from axons of the CNS and associated with dense macrophage/microglial infiltration. Demyelinating disease during MHV-JHM infection is immune-mediated, as mice that lack T lymphocytes fail to develop disease despite succumbing to encephalitis with high levels of infectious virus in the CNS. However, the presence of T lymphocytes or anti-viral antibody can induce disease in infected immunodeficient mice. The mechanisms by which these immune effectors induce demyelination share an ability to activate and recruit macrophages and microglia, thus increasing the putative role of these cells in myelin destruction.
Collapse
Affiliation(s)
- Steven P Templeton
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
32
|
Zahr NM, Sullivan EV. Translational studies of alcoholism: bridging the gap. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2008; 31:215-30. [PMID: 20041042 PMCID: PMC2798743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human studies are necessary to identify and classify the brain systems predisposing individuals to develop alcohol use disorders and those modified by alcohol, while animal models of alcoholism are essential for a mechanistic understanding of how chronic voluntary alcohol consumption becomes compulsive, how brain systems become damaged, and how damage resolves. Our current knowledge of the neuroscience of alcohol dependence has evolved from the interchange of information gathered from both human alcoholics and animal models of alcoholism. Together, studies in humans and animal models have provided support for the involvement of specific brain structures over the course of alcohol addiction, including the prefrontal cortex, basal ganglia, cerebellum, amygdala, hippocampus, and the hypothalamic-pituitary-adrenal axis.
Collapse
|
33
|
CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus. J Virol 2007; 82:2130-9. [PMID: 18094171 DOI: 10.1128/jvi.01762-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of the neurotropic mouse hepatitis virus strain JHM (JHMV) is controlled primarily by CD8(+) T-cell effectors utilizing gamma interferon (IFN-gamma) and perforin-mediated cytotoxicity. CD4(+) T cells provide an auxiliary function(s) for CD8(+) T-cell survival; however, their direct contribution to control of virus replication and pathology is unclear. To examine a direct role of CD4(+) T cells in viral clearance and pathology, pathogenesis was compared in mice deficient in both perforin and IFN-gamma that were selectively reconstituted for these functions via transfer of virus-specific memory CD4(+) T cells. CD4(+) T cells from immunized wild-type, perforin-deficient, and IFN-gamma-deficient donors all initially reduced virus replication. However, prolonged viral control by IFN-gamma-competent donors suggested that IFN-gamma is important for sustained virus control. Local release of IFN-gamma was evident by up-regulation of class II molecules on microglia in recipients of IFN-gamma producing CD4(+) T cells. CD4(+) T-cell-mediated antiviral activity correlated with diminished clinical symptoms, pathology, and demyelination. Both wild-type donor CD90.1 and recipient CD90.2 CD4(+) T cells trafficked into the central nervous system (CNS) parenchyma and localized to infected white matter, correlating with decreased numbers of virus-infected oligodendrocytes in the CNS. These data support a direct, if limited, antiviral role for CD4(+) T cells early during acute JHMV encephalomyelitis. Although the antiviral effector mechanism is initially independent of IFN-gamma secretion, sustained control of CNS virus replication by CD4(+) T cells requires IFN-gamma.
Collapse
|
34
|
Templeton SP, Kim TS, O'Malley K, Perlman S. Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus. Brain Pathol 2007; 18:40-51. [PMID: 17935605 PMCID: PMC7596182 DOI: 10.1111/j.1750-3639.2007.00098.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophages and microglia are critical in the acute inflammatory response and act as final effector cells of demyelination during chronic infection with the neutrotropic MHV‐JHM strain of mouse hepatitis virus (MHV‐JHM). Herein, we show that “immature” F4/80+Ly‐6Chi monocytes are the first cells, along with neutrophils, to enter the MHV‐JHM‐infected central nervous system (CNS). As the infection progresses, macrophages in the CNS down‐regulate expression of Ly‐6C and CD62L, consistent with maturation, and a higher frequency express CD11c, a marker for dendritic cells (DCs). Microglia also express CD11c during this phase of the infection. CD11c+ macrophages in the infected CNS exhibit variable properties of immature antigen‐presenting cells (APCs), with modestly increased CD40 and MHC expression, and equivalent potent antigen uptake when compared with CD11c‐ macrophages. Furthermore, CDllc+ and F4/80+ macrophages and microglia are localized to areas of demyelination, in some instances directly associated with damaged axons. These results suggest that chronic CNS infection results in the appearance of CD11c‐expressing macrophages from the blood that exhibit properties of immature APCs, are closely associated with areas of demyelination, and may act as final effectors of myelin destruction.
Collapse
|
35
|
Furtado GC, Piña B, Tacke F, Gaupp S, van Rooijen N, Moran TM, Randolph GJ, Ransohoff RM, Chensue SW, Raine CS, Lira SA. A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:6871-9. [PMID: 17082601 DOI: 10.4049/jimmunol.177.10.6871] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Local inflammation may be a precipitating event in autoimmune processes. In this study, we demonstrate that regulated influx of monocytes and dendritic cells (DC) into the CNS causes an acute neurological syndrome that results in a demyelinating encephalomyelitis. Expansion of monocytes and DC by conditional expression of Flt3 ligand in animals expressing CCL2 in the CNS promoted parenchymal cell infiltration and ascending paralysis in 100% of the mice within 9 days of Flt3 ligand induction. Depletion of circulating monocytes and DC reduced disease incidence and severity. Unlike the classical models of experimental autoimmune encephalomyelitis, depletion of CD4+ and CD8+ T cells did not affect disease induction. T cells and demyelinating lesions were observed in the CNS at a later stage as a result of organ-specific inflammation. We propose that alterations in the numbers or function of monocytes and DC coupled to dysregulated expression of chemokines in the neural tissues, favors development of CNS autoimmune disease.
Collapse
Affiliation(s)
- Glaucia C Furtado
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Perlman S, Holmes KV. Coronavirus immunity: from T cells to B cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:341-9. [PMID: 17037557 PMCID: PMC7124054 DOI: 10.1007/978-0-387-33012-9_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
37
|
Abstract
The severe acute respiratory syndrome (SARS), which was first identified in 2003, is caused by a novel coronavirus: the SARS coronavirus (SARS-CoV). Many features of the infection indicate that an excessive, but perhaps 'normal', immune response contributes to SARS. Several coronaviruses cause diseases that result in considerable morbidity and mortality in animals. Some of these diseases are also immune mediated and provide insights into the pathogenesis of SARS. Feline infectious peritonitis virus (FIPV) causes a fatal, immune-mediated disease of felines. Macrophage infection, lymphocyte depletion and antibody-dependent disease enhancement are hallmarks of this disease. Infection with the murine coronavirus murine hepatitis virus (MHV) strain JHM results in immune-mediated demyelination. Similar to SARS, macrophage activation is a key component in the pathogenic process. Another strain of MHV, MHV-3, causes a fatal, fulminant hepatitis. MHV-3 infection of macrophages, with subsequent activation and induction of expression of a novel procoagulant, fibrinogen-like protein 2 (FGL2), is required for severe disease. Chickens that are infected with avian infectious bronchitis virus (IBV) develop respiratory and renal disease. An excessive innate immune response contributes to the pathogenic process in these animals. To develop effective therapies for SARS will require understanding of the contributions of direct injury by virus and of the host immune response to pathogenesis. This requires further studies of the interactions of SARS-CoV with its target cells and necessitates the development of an animal model that reproduces the pulmonary infection that is observed in infected humans.
At the end of 2002, the first cases of severe acute respiratory syndrome (SARS) were reported, and in the following year, SARS resulted in considerable mortality and morbidity worldwide. SARS is caused by a novel species of coronavirus (SARS-CoV) and is the most severe coronavirus-mediated human disease that has been described so far. On the basis of similarities with other coronavirus infections, SARS might, in part, be immune mediated. As discussed in this Review, studies of animals that are infected with other coronaviruses indicate that excessive and sometimes dysregulated responses by macrophages and other pro-inflammatory cells might be particularly important in the pathogenesis of disease that is caused by infection with these viruses. It is hoped that lessons from such studies will help us to understand more about the pathogenesis of SARS in humans and to prevent or control outbreaks of SARS in the future.
Collapse
Affiliation(s)
- Stanley Perlman
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
38
|
Lane TE, Hardison JL, Walsh KB. Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system. Curr Top Microbiol Immunol 2006; 303:1-27. [PMID: 16570854 PMCID: PMC7121733 DOI: 10.1007/978-3-540-33397-5_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS.
Collapse
Affiliation(s)
- T E Lane
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA 92697-3900, USA.
| | | | | |
Collapse
|
39
|
Dandekar AA, O'Malley K, Perlman S. Important roles for gamma interferon and NKG2D in gammadelta T-cell-induced demyelination in T-cell receptor beta-deficient mice infected with a coronavirus. J Virol 2005; 79:9388-96. [PMID: 16014902 PMCID: PMC1181615 DOI: 10.1128/jvi.79.15.9388-9396.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gammadelta T cells mediate demyelination in athymic (nude) mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM. Now, we show that these cells also mediate the same process in mice lacking alphabeta T cells (T-cell receptor beta-deficient [TCRbeta(-/-)] mice) and demyelination is gamma interferon (IFN-gamma) dependent. Most strikingly, our results also show a major role for NKG2D, expressed on gammadelta T cells, in the demyelinating process with in vivo blockade of NKG2D interactions resulting in a 60% reduction in demyelination. NKG2D may serve as a primary recognition receptor or as a costimulatory molecule. We show that NKG2D(+) gammadelta T cells in the JHM-infected central nervous system express the adaptor molecule DAP12 and an NKG2D isoform (NKG2D short), both required for NKG2D to serve as a primary receptor. These results are consistent with models in which gammadelta T cells mediate demyelination using the same effector cytokine, IFN-gamma, as CD8 T cells and do so without a requirement for signaling through the TCR.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Coronavirus
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Spinal Cord/pathology
- Spinal Cord/virology
Collapse
Affiliation(s)
- Ajai A Dandekar
- Interdisciplinary Program in Immunology, Unversity of Iowa, Iowa City, 52242, USA
| | | | | |
Collapse
|