1
|
Juang HH, Hsu CW, Chang KS, Iang SB, Lin YH, Chao M. Investigating the Genetic Diversity of Hepatitis Delta Virus in Hepatocellular Carcinoma (HCC): Impact on Viral Evolution and Oncogenesis in HCC. Viruses 2024; 16:817. [PMID: 38932110 PMCID: PMC11209585 DOI: 10.3390/v16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV's involvement remains uncertain. Among 300 HBV-associated HCC serum samples from Taiwan's National Health Research Institutes, 2.7% (8/300) tested anti-HDV positive, with 62.7% (5/8) of these also HDV RNA positive. Genotyping revealed HDV-2 in one sample, HDV-4 in two, and two samples showed mixed HDV-2/HDV-4 infection with RNA recombination. A mixed-genotype infection revealed novel mutations at the polyadenylation signal, coinciding with the ochre termination codon for the L-HDAg. To delve deeper into the possible oncogenic properties of HDV-2, the predominant genotype in Taiwan, which was previously thought to be less associated with severe disease outcomes, an HDV-2 cDNA clone was isolated from HCC for study. It demonstrated a replication level reaching up to 74% of that observed for a widely used HDV-1 strain in transfected cultured cells. Surprisingly, both forms of HDV-2 HDAg promoted cell migration and invasion, affecting the rearrangement of actin cytoskeleton and the expression of epithelial-mesenchymal transition markers. In summary, this study underscores the prevalence of HDV-2, HDV-4, and their mixed infections in HCC, highlighting the genetic diversity in HCC as well as the potential role of both forms of the HDAg in HCC oncogenesis.
Collapse
Affiliation(s)
- Horng-Heng Juang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chao-Wei Hsu
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
| | - Shan-Bei Iang
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
| | - Mei Chao
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
2
|
Guo H, Li Q, Li C, Hou Y, Ding Y, Liu D, Ni Y, Tang R, Zheng K, Urban S, Wang W. Molecular determinants within the C-termini of L-HDAg that regulate hepatitis D virus replication and assembly. JHEP Rep 2024; 6:100961. [PMID: 38192534 PMCID: PMC10772390 DOI: 10.1016/j.jhepr.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Hepatitis D virus (HDV) is the causative agent of chronic hepatitis delta, the most severe form of viral hepatitis. HDV encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus, which confer regulatory roles that are distinct from those of S-HDAg. Notably, these residues are divergent between different genotypes. We aimed to elucidate the molecular determinants within the C-termini that are essential for the regulatory role of L-HDAg in HDV replication and assembly. Methods Northern blot, reverse-transcription quantitative PCR, and a newly established HDV trans-complementary system were used in this study. Results C-termini of L-HDAg, albeit with high sequence variation among different genotypes, are interchangeable with respect to the trans-inhibitory function of L-HDAg and HDV assembly. The C-terminus of L-HDAg features a conserved prenylation CXXQ motif and is enriched with proline and hydrophobic residues. Abolishment of the CXXQ motif attenuated the inhibitory effect of L-HDAg on HDV replication. In contrast, the enrichment of proline and hydrophobic residues per se does not modify the trans-inhibitory function of L-HDAg. Nevertheless, these residues are essential for HDV assembly. Mechanistically, prolines and hydrophobic residues contribute to HDV assembly via a mode of action independent of the prenylated CXXQ motif. Conclusions Within the C-terminus of L-HDAg, the CXXQ motif and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly. This intrinsic viral regulatory mechanism we elucidated deepens our understanding of the unique life cycle of HDV. Impact and implications Hepatitis D virus (HDV) encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus. This C-terminal extension in L-HDAg confers regulatory roles in the HDV life cycle that are distinct from those of S-HDAg. Herein, we found that C-termini of L-HDAg, although with high sequence variation, are interchangeable among different HDV genotypes. Within the C-terminus of L-HDAg, the prenylation motif, and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Hsu CW, Hsu HY, Chen CH, Chao M. Unbranched rod-like RNA is required for RNA editing of hepatitis delta virus genotype 2 and genotype 4. Virus Res 2023; 338:199239. [PMID: 37827303 PMCID: PMC10590747 DOI: 10.1016/j.virusres.2023.199239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
RNA editing of the hepatitis delta virus (HDV) is essential for generating the large delta antigen, which is crucial for virion assembly. In HDV genotype 1 (HDV-1), editing occurs within the context of the unbranched rod-like structure characteristic of HDV RNA, while RNA editing in HDV-3 requires a branched double-hairpin structure. The regulation of RNA editing in HDV-2 and HDV-4 remains uncertain. Based on predictions of the unbranched rod-like RNA structures of HDV-2 and HDV-4, the editing site occurs as an A.C mismatch pair, surrounded by four base pairs upstream and two base pairs downstream of the editing site, respectively. To investigate HDV-2 and HDV-4 RNA editing, cultured cells were transfected with non-replicating editing reporters carrying wild-type sequences or specific mutations. The results revealed that the editing rates observed for wild-type HDV-2 and HDV-4 were fairly similar, albeit lower than that of HDV-1. Like HDV-1, both HDV-2 and HDV-4 showed a reduction in editing rate when the A.C mismatch pair and the immediately upstream base-paired region were disturbed. Notably, extending the downstream base-paired region from two to three or four (forming a structure identical to that of HDV-1) base pairs increased editing rate. Furthermore, we presented novel evidence that indicates the importance of the first bulge's size, located upstream of the editing site, and the base-pairing length within 7-13 and 28-39 nucleotides downstream of the editing site in influencing the HDV-4 editing rate. To summarize, our analyses suggest that the unbranched rod-like structures surrounding the editing site of HDV-2 and HDV-4 play a crucial role in regulating their RNA editing rates.
Collapse
Affiliation(s)
- Chao-Wei Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Hsueh-Ying Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Mei Chao
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan; Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan.
| |
Collapse
|
4
|
Pan C, Gish R, Jacobson IM, Hu KQ, Wedemeyer H, Martin P. Diagnosis and Management of Hepatitis Delta Virus Infection. Dig Dis Sci 2023; 68:3237-3248. [PMID: 37338616 PMCID: PMC10374831 DOI: 10.1007/s10620-023-07960-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Hepatitis D virus (HDV) depends on hepatitis B virus (HBV) to enter and exit hepatocytes and to replicate. Despite this dependency, HDV can cause severe liver disease. HDV accelerates liver fibrosis, increases the risk of hepatocellular carcinoma, and hastens hepatic decompensation compared to chronic HBV monoinfection. The Chronic Liver Disease Foundation (CLDF) formed an expert panel to publish updated guidelines on the testing, diagnosis, and management of hepatitis delta virus. The panel group performed network data review on the transmission, epidemiology, natural history, and disease sequelae of acute and chronic HDV infection. Based on current available evidence, we provide recommendations for screening, testing, diagnosis, and treatment of hepatitis D infection and review upcoming novel agents that may expand treatment options. The CLDF recommends universal HDV screening for all patients who are Hepatitis B surface antigen-positive. Initial screening should be with an assay to detect antibodies generated against HDV (anti-HDV). Patients who are positive for anti-HDV IgG antibodies should then undergo quantitative HDV RNA testing. We also provide an algorithm that describes CLDF recommendations on the screening, diagnosis, testing, and initial management of Hepatitis D infection.
Collapse
Affiliation(s)
- Calvin Pan
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York, USA
| | - Robert Gish
- Robert G. Gish Consultants, LLC, 6022 La Jolla Mesa Dr, La Jolla, CA 92037-7814 USA
- Medical Director Hepatitis B Foundation, Doylestown, PA USA
| | - Ira M. Jacobson
- NYU Langone Gastroenterology Associates, 240 East 38Th Street, 23Rd Floor, New York, NY 10016 USA
| | - Ke-Qin Hu
- University of California, Irvine, 101 The City Dr S, Building 22C, Room 1503, Orange, CA 92868 USA
| | - Heiner Wedemeyer
- Clinic for Gastroenterology, Hepatology and Endocrinology Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Paul Martin
- University of Miami Miller School of Medicine, 1500 NW 12 AVE., E Tower #1101, Miami, FL 33136 USA
| |
Collapse
|
5
|
|
6
|
Abstract
Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.
Collapse
|
7
|
Caviglia GP, Ciancio A, Rizzetto M. A Review of HDV Infection. Viruses 2022; 14:1749. [PMID: 36016371 PMCID: PMC9414459 DOI: 10.3390/v14081749] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023] Open
Abstract
Hepatitis D is the most severe viral hepatitis. Hepatitis D virus (HDV) has a very small RNA genome with unique biological properties. It requires for infection the presence of hepatitis B virus (HBV) and is transmitted parenterally, mainly by superinfection of HBsAg carriers who then develop chronic hepatitis D. HDV has been brought under control in high-income countries by the implementation of HBV vaccination, and the clinical pattern has changed to a chronic hepatitis D seen in ageing patients with advanced fibrotic disease; the disease remains a major health concern in developing countries of Africa and Asia. Every HBsAg-positive subject should be tested for HDV serum markers by reflex testing, independently of clinical status. Vaccination against HBV provides the best prophylaxis against hepatitis D. The only therapy available so far has been the poorly performing Interferon alfa; however, several new and promising therapeutic approaches are under study.
Collapse
Affiliation(s)
| | - Alessia Ciancio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, “Città della Salute e della Scienza di Torino” Molinette Hospital, 10126 Turin, Italy
| | - Mario Rizzetto
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
8
|
Saracco GM, Marzano A, Rizzetto M. Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel? Biomedicines 2022; 10:534. [PMID: 35327336 PMCID: PMC8945793 DOI: 10.3390/biomedicines10030534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic viral hepatitis determines significant morbidity and mortality globally and is caused by three main etiological actors (Hepatitis B Virus, Hepatitis C Virus, and Hepatitis D Virus) with different replicative cycles and biological behaviors. Thus, therapies change according to the different characteristics of the viruses. In chronic hepatitis B, long term suppressive treatments with nucleoside/nucleotide analogues have had a dramatic impact on the evolution of liver disease and liver-related complications. However, a conclusive clearance of the virus is difficult to obtain; new strategies that are able to eradicate the infection are currently objects of research. The therapy for Hepatitis D Virus infection is challenging due to the unique virology of the virus, which uses the synthetic machinery of the infected hepatocyte for its own replication and cannot be targeted by conventional antivirals that are active against virus-coded proteins. Recently introduced antivirals, such as bulevertide and lonafarnib, display definite but only partial efficacy in reducing serum HDV-RNA. However, in combination with pegylated interferon, they provide a synergistic therapeutic effect and appear to represent the current best therapy for HDV-positive patients. With the advent of Direct Acting Antiviral Agents (DAAs), a dramatic breakthrough has occurred in the therapeutic scenario of chronic hepatitis C. Cure of HCV infection is achieved in more than 95% of treated patients, irrespective of their baseline liver fibrosis status. Potentially, the goal of global HCV elimination by 2030 as endorsed by the World Health Organization can be obtained if more global subsidised supplies of DAAs are provided.
Collapse
Affiliation(s)
- Giorgio Maria Saracco
- Gastro-Hepatoloy Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.M.); (M.R.)
| | | | | |
Collapse
|
9
|
Akhlaghpour H. An RNA-Based Theory of Natural Universal Computation. J Theor Biol 2021; 537:110984. [PMID: 34979104 DOI: 10.1016/j.jtbi.2021.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Life is confronted with computation problems in a variety of domains including animal behavior, single-cell behavior, and embryonic development. Yet we currently do not know of a naturally existing biological system that is capable of universal computation, i.e., Turing-equivalent in scope. Generic finite-dimensional dynamical systems (which encompass most models of neural networks, intracellular signaling cascades, and gene regulatory networks) fall short of universal computation, but are assumed to be capable of explaining cognition and development. I present a class of models that bridge two concepts from distant fields: combinatory logic (or, equivalently, lambda calculus) and RNA molecular biology. A set of basic RNA editing rules can make it possible to compute any computable function with identical algorithmic complexity to that of Turing machines. The models do not assume extraordinarily complex molecular machinery or any processes that radically differ from what we already know to occur in cells. Distinct independent enzymes can mediate each of the rules and RNA molecules solve the problem of parenthesis matching through their secondary structure. In the most plausible of these models all of the editing rules can be implemented with merely cleavage and ligation operations at fixed positions relative to predefined motifs. This demonstrates that universal computation is well within the reach of molecular biology. It is therefore reasonable to assume that life has evolved - or possibly began with - a universal computer that yet remains to be discovered. The variety of seemingly unrelated computational problems across many scales can potentially be solved using the same RNA-based computation system. Experimental validation of this theory may immensely impact our understanding of memory, cognition, development, disease, evolution, and the early stages of life.
Collapse
Affiliation(s)
- Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
10
|
Dhankhar P, Dalal V, Kumar V. Screening of Severe Acute Respiratory Syndrome Coronavirus 2 RNA-Dependent RNA Polymerase Inhibitors Using Computational Approach. J Comput Biol 2021; 28:1228-1247. [PMID: 34847746 PMCID: PMC8819516 DOI: 10.1089/cmb.2020.0639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The detrimental effect of coronavirus disease 2019 (COVID-19) pandemic has manifested itself as a global crisis. Currently, no specific treatment options are available for COVID-19, so therapeutic interventions to tackle the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection must be urgently established. Therefore, cohesive and multidimensional efforts are required to identify new therapies or investigate the efficacy of small molecules and existing drugs against SARS-CoV-2. Since the RNA-dependent RNA Polymerase (RdRP) of SARS-CoV-2 is a promising therapeutic target, this study addresses the identification of antiviral molecules that can specifically target SARS-CoV-2 RdRP. The computational approach of drug development was used to screen the antiviral molecules from two antiviral libraries (Life Chemicals [LC] and ASINEX) against RdRP. Here, we report six antiviral molecules (F3407-4105, F6523-2250, F6559-0746 from LC and BDG 33693278, BDG 33693315, LAS 34156196 from ASINEX), which show substantial interactions with key amino acid residues of the active site of SARS-CoV-2 RdRP and exhibit higher binding affinity (>7.5 kcalmol-1) than Galidesivir, an Food and Drug Administration-approved inhibitor of the same. Further, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area results confirmed that identified molecules with RdRP formed higher stable RdRP-inhibitor(s) complex than RdRP-Galidesvir complex. Our findings suggest that these molecules could be potential inhibitors of SARS-CoV-2 RdRP. However, further in vitro and preclinical experiments would be required to validate these potential inhibitors of SARS-CoV-2 protein.
Collapse
Affiliation(s)
- Poonam Dhankhar
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Viney Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
11
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Isaeva OV, Kyuregyan KK, Mikhailov MI. [Animal delta-like viruses (Kolmioviridae: Deltavirus) and the origin of the human hepatitis D virus (HDV)]. Vopr Virusol 2021; 66:340-345. [PMID: 34738449 DOI: 10.36233/0507-4088-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/05/2022]
Abstract
Hepatitis D (delta, δ) virus (HDV) was discovered more than 40 years ago, but the understanding of its origin and evolution is poor. This is mainly due to the lack, until recently, of data on the existence of any viruses similar to HDV. The discovery in recent years of sequences of new delta-like agents in a wide range of vertebrate (Vertebrata) and invertebrate (Invertebrata) species has facilitated a revision of views on the origin of HDV and contributed to understanding the place of this unique virus among other animals' viral agents. The purpose of this review is to analyze the latest published data on new delta-like agents and their biological characteristics.
Collapse
Affiliation(s)
- O V Isaeva
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| | - K K Kyuregyan
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| | - M I Mikhailov
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| |
Collapse
|
13
|
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46:790-804. [PMID: 34053843 PMCID: PMC8448906 DOI: 10.1016/j.tibs.2021.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are among the most ancient small RNAs in all domains of life and are generated by the cleavage of tRNAs. Emerging studies have begun to reveal the versatile roles of tsRNAs in fundamental biological processes, including gene silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, which are rooted in tsRNA sequence conservation, RNA modifications, and protein-binding abilities. We summarize the mechanisms of tsRNA biogenesis and the impact of RNA modifications, and propose how thinking of tsRNA functionality from an evolutionary perspective urges the expansion of tsRNA research into a wider spectrum, including cross-tissue/cross-species regulation and harnessing of the 'tsRNA code' for precision medicine.
Collapse
Affiliation(s)
- Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Xudong Zhang
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Menghong Yan
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
14
|
Wang W, Lempp FA, Schlund F, Walter L, Decker CC, Zhang Z, Ni Y, Urban S. Assembly and infection efficacy of hepatitis B virus surface protein exchanges in 8 hepatitis D virus genotype isolates. J Hepatol 2021; 75:311-323. [PMID: 33845061 DOI: 10.1016/j.jhep.2021.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Chronic HDV infections cause the most severe form of viral hepatitis. HDV requires HBV envelope proteins for hepatocyte entry, particle assembly and release. Eight HDV and 8 HBV genotypes have been identified. However, there are limited data on the replication competence of different genotypes and the effect that different HBV envelopes have on virion assembly and infectivity. METHODS We subcloned complementary DNAs (cDNAs) of all HDV and HBV genotypes and systematically studied HDV replication, assembly and infectivity using northern blot, western blot, reverse-transcription quantitative PCR, and in-cell ELISA. RESULTS The 8 HDV cDNA clones initiated HDV replication with noticeable differences regarding replication efficacy. The 8 HBV-HBsAg-encoding constructs all supported secretion of subviral particles, however variations in envelope protein stoichiometry and secretion efficacy were observed. Co-transfection of all HDV/HBV combinations supported particle assembly, however, the respective pseudo-typed HDVs differed with respect to assembly kinetics. The most productive combinations did not correlate with the natural geographic distribution, arguing against an evolutionary adaptation of HDV ribonucleoprotein complexes to HBV envelopes. All HDVs elicited robust and comparable innate immune responses. HBV envelope-dependent differences in the activity of the EMA-approved entry inhibitor bulevirtide were observed, however efficient inhibition could be achieved at therapeutically applied doses. Lonafarnib also showed pan-genotypic activity. CONCLUSIONS HDVs from different genotypes replicate with variable efficacies. Variations in HDV genomes and HBV envelope proteins are both major determinants of HDV egress and entry efficacy, and consequently assembly inhibition by lonafarnib or entry inhibition by bulevirtide. These differences possibly influence HDV pathogenicity, immune responses and the efficacy of novel drug regimens. LAY SUMMARY HDV requires the envelope protein of HBV for assembly and to infect human cells. We investigated the ability of different HDV genotypes to infect cells and replicate. We also assessed the effect that envelope proteins from different HBV genotypes had on HDV infectivity and replication. Herein, we confirmed that genotypic differences in HDV and HBV envelope proteins are major determinants of HDV assembly, de novo cell entry and consequently the efficacy of novel antivirals.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Franziska Schlund
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Walter
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Charlotte C Decker
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Giersch K, Hermanussen L, Volz T, Volmari A, Allweiss L, Sureau C, Casey J, Huang J, Fischer N, Lütgehetmann M, Dandri M. Strong Replication Interference Between Hepatitis Delta Viruses in Human Liver Chimeric Mice. Front Microbiol 2021; 12:671466. [PMID: 34305837 PMCID: PMC8297590 DOI: 10.3389/fmicb.2021.671466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis D Virus (HDV) is classified into eight genotypes with distinct clinical outcomes. Despite the maintenance of highly conserved functional motifs, it is unknown whether sequence divergence between genotypes, such as HDV-1 and HDV-3, or viral interference mechanisms may affect co-infection in the same host and cell, thus hindering the development of HDV inter-genotypic recombinants. We aimed to investigate virological differences of HDV-1 and HDV-3 and assessed their capacity to infect and replicate within the same liver and human hepatocyte in vivo. Methods Human liver chimeric mice were infected with hepatitis B virus (HBV) and with one of the two HDV genotypes or with HDV-1 and HDV-3 simultaneously. In a second set of experiments, HBV-infected mice were first infected with HDV-1 and after 9 weeks with HDV-3, or vice versa. Also two distinct HDV-1 strains were used to infect mice simultaneously and sequentially. Virological parameters were determined by strain-specific qRT-PCR, RNA in situ hybridization and immunofluorescence staining. Results HBV/HDV co-infection studies indicated faster spreading kinetics and higher intrahepatic levels of HDV-3 compared to HDV-1. In mice that simultaneously received both HDV strains, HDV-3 became the dominant genotype. Interestingly, antigenomic HDV-1 and HDV-3 RNA were detected within the same liver but hardly within the same cell. Surprisingly, sequential super-infection experiments revealed a clear dominance of the HDV strain that was inoculated first, indicating that HDV-infected cells may acquire resistance to super-infection. Conclusion Infection with two largely divergent HDV genotypes could be established in the same liver, but rarely within the same hepatocyte. Sequential super-infection with distinct HDV genotypes and even with two HDV-1 isolates was strongly impaired, suggesting that virus interference mechanisms hamper productive replication in the same cell and hence recombination events even in a system lacking adaptive immune responses.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - John Casey
- Georgetown University Medical Center, Washington, DC, United States
| | - Jiabin Huang
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
16
|
Pérez-Vargas J, Pereira de Oliveira R, Jacquet S, Pontier D, Cosset FL, Freitas N. HDV-Like Viruses. Viruses 2021; 13:1207. [PMID: 34201626 PMCID: PMC8310214 DOI: 10.3390/v13071207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective human virus that lacks the ability to produce its own envelope proteins and is thus dependent on the presence of a helper virus, which provides its surface proteins to produce infectious particles. Hepatitis B virus (HBV) was so far thought to be the only helper virus described to be associated with HDV. However, recent studies showed that divergent HDV-like viruses could be detected in fishes, birds, amphibians, and invertebrates, without evidence of any HBV-like agent supporting infection. Another recent study demonstrated that HDV can be transmitted and propagated in experimental infections ex vivo and in vivo by different enveloped viruses unrelated to HBV, including hepatitis C virus (HCV) and flaviviruses such as Dengue and West Nile virus. All this new evidence, in addition to the identification of novel virus species within a large range of hosts in absence of HBV, suggests that deltaviruses may take advantage of a large spectrum of helper viruses and raises questions about HDV origins and evolution.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Rémi Pereira de Oliveira
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Stéphanie Jacquet
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - Dominique Pontier
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - François-Loïc Cosset
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Natalia Freitas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| |
Collapse
|
17
|
Abstract
HDV is a small, defective RNA virus that requires the HBsAg of HBV for its assembly, release, and transmission. Chronic HBV/HDV infection often has a severe clinical outcome and is difficult to treat. The important role of a robust virus-specific T cell response for natural viral control has been established for many other chronic viral infections, but the exact role of the T cell response in the control and progression of chronic HDV infection is far less clear. Several recent studies have characterised HDV-specific CD4+ and CD8+ T cell responses on a peptide level. This review comprehensively summarises all HDV-specific T cell epitopes described to date and describes our current knowledge of the role of T cells in HDV infection. While we now have better tools to study the adaptive anti-HDV-specific T cell response, further efforts are needed to define the HLA restriction of additional HDV-specific T cell epitopes, establish additional HDV-specific MHC tetramers, understand the degree of cross HDV genotype reactivity of individual epitopes and understand the correlation of the HBV- and HDV-specific T cell response, as well as the breadth and specificity of the intrahepatic HDV-specific T cell response.
Collapse
Key Words
- ADAR1, adenosine deaminases acting on RNA
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CD4+
- CD8+
- ELISpot, enzyme-linked immune spot assay
- HBV
- HDAg, hepatitis delta antigen
- HDV
- Hepatitis Delta
- ICS, intracellular cytokine staining
- IFN-, interferon-
- L-HDAg, large hepatitis delta antigen
- MAIT, mucosa-associated invariant T cells
- NK cells, natural killer cells
- NTCP, sodium taurocholate co-transporting polypeptide
- PBMCs, peripheral blood mononuclear cells
- PD-1, programmed cell death protein 1
- PTM, post-translational modification
- Peg-IFN-α, pegylated interferon alpha
- S-HDAg, small hepatitis delta antigen
- T cell
- TCF, T cell-specific transcription factor
- TNFα, tumour necrosis factor-α
- Th1, T helper 1
- aa, amino acid(s)
- cccDNA, covalently closed circular DNA
- epitope
- viral escape
Collapse
|
18
|
In Vivo Models of HDV Infection: Is Humanizing NTCP Enough? Viruses 2021; 13:v13040588. [PMID: 33807170 PMCID: PMC8065588 DOI: 10.3390/v13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a hepatitis B (HBV) and delta virus (HDV) entry receptor has encouraged the development of new animal models of infection. This review provides an overview of the different in vivo models that are currently available to study HDV either in the absence or presence of HBV. By presenting new advances and remaining drawbacks, we will discuss human host factors which, in addition to NTCP, need to be investigated or identified to enable a persistent HDV infection in murine hepatocytes. Detailed knowledge on species-specific factors involved in HDV persistence also shall contribute to the development of therapeutic strategies.
Collapse
|
19
|
Giersch K, Hermanussen L, Volz T, Kah J, Allweiss L, Casey J, Sureau C, Dandri M, Lütgehetmann M. Murine hepatocytes do not support persistence of Hepatitis D virus mono-infection in vivo. Liver Int 2021; 41:410-419. [PMID: 32997847 DOI: 10.1111/liv.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS & AIMS As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John Casey
- Georgetown University Medical Center, Washington, DC, USA
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
21
|
Jain N, Blauch LR, Szymanski MR, Das R, Tang SKY, Yin YW, Fire AZ. Transcription polymerase-catalyzed emergence of novel RNA replicons. Science 2020; 368:eaay0688. [PMID: 32217750 PMCID: PMC7445081 DOI: 10.1126/science.aay0688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Transcription polymerases can exhibit an unusual mode of regenerating certain RNA templates from RNA, yielding systems that can replicate and evolve with RNA as the information carrier. Two classes of pathogenic RNAs (hepatitis delta virus in animals and viroids in plants) are copied by host transcription polymerases. Using in vitro RNA replication by the transcription polymerase of T7 bacteriophage as an experimental model, we identify hundreds of new replicating RNAs, define three mechanistic hallmarks of replication (subterminal de novo initiation, RNA shape-shifting, and interrupted rolling-circle synthesis), and describe emergence from DNA seeds as a mechanism for the origin of novel RNA replicons. These results inform models for the origins and replication of naturally occurring RNA genetic elements and suggest a means by which diverse RNA populations could be propagated as hereditary material in cellular contexts.
Collapse
Affiliation(s)
- Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michal R Szymanski
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Volloch V, Olsen BR, Rits S. AD "Statin": Alzheimer's Disorder is a "Fast" Disease Preventable by Therapeutic Intervention Initiated Even Late in Life and Reversible at the Early Stages. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:75-89. [PMID: 32201863 PMCID: PMC7083596 DOI: 10.33597/aimm.02-1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study posits that Alzheimer's disorder is a "fast" disease. This is in sharp contrast to a view, prevailing until now, that Alzheimer's Disease (AD) is a quintessential "slow" disease that develops throughout the life as one prolonged process. According to this view, beta-amyloid (Aβ) is produced and secreted solely by the beta-amyloid precursor protein (βAPP) proteolytic/secretory pathway. As its extracellular levels increase, it triggers neurodegeneration starting relatively early in life. Damages accumulate and manifest, late in life in sporadic Alzheimer's Disease (SAD) cases, as AD symptoms. In familial AD (FAD) cases, where mutations in βAPP gene or in presenilins increase production of either common Aβ isoform or of its more toxic isoforms, neurodegeneration reaches critical threshold sooner and AD symptoms occur earlier in life, mostly in late 40s and 50s. There are currently no preventive AD therapies but if they were available, according to this viewpoint it would be largely futile to intervene late in life in case of potential SAD or at mid-age in cases of FAD because, although AD symptoms have not yet manifested, the damage has already occurred during the preceding decades. In this paradigm, to be effective, preventive therapeutic intervention should be initiated early in life. The outlook suggested by the present study is radically different. According to it, Alzheimer's disease evolves in two stages. The first stage is a slow process of intracellular beta-amyloid accumulation. It occurs via βAPP proteolytic/secretory pathway and cellular uptake of secreted Aβ common to Homo sapiens, including healthy humans, and to non-human mammals, and results neither in significant damage, nor in manifestation of the disease. The second stage occurs exclusively in humans, commences shortly before symptomatic onset of the disease, sharply accelerates the production and increases intracellular levels of Aβ that is not secreted but is retained intracellularly, generates significant damages, triggers AD symptoms, and is fast. It is driven by an Aβ generation pathway qualitatively and quantitatively different from βAPP proteolytic process and entirely independent of beta-amyloid precursor protein, and results in rapid and substantial intracellular accumulation of Aβ, consequent significant neurodegeneration, and symptomatic AD. In this paradigm, a preventive therapy for AD, an AD "statin", would be effective when initiated at any time prior to commencement of the second stage. Moreover, there are good reasons to believe that with a drug blocking βAPP-independent Aβ production pathway in the second stage, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. The present study posits a notion of AD as a Fast Disease, offers evidence for the occurrence of the AD-specific Aβ production pathway, describes cellular and molecular processes constituting an engine that drives Alzheimer's disease, and explains why non-human mammals are not susceptible to AD and why only a subset of humans develop the disease. It establishes that Alzheimer's disease is preventable by therapeutic intervention initiated even late in life, details a powerful mechanism underlying the disease, suggests that Aβ produced in the βAPP-independent pathway is retained intracellularly, elaborates why neither BACE inhibition nor Aβ immunotherapy are effective in treatment of AD and why intracellularly retained beta-amyloid could be the primary agent of neuronal death in Alzheimer's disease, necessitates generation of a novel animal AD model capable of producing Aβ via βAPP-independent pathway, proposes therapeutic targets profoundly different from previously pursued components of the βAPP proteolytic pathway, and provides conceptual rationale for design of drugs that could be used not only preemptively but also for treatment and reversal of the early stages of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
23
|
Anastasiou OE, Wedemeyer H. Hepatitis D. LIVER IMMUNOLOGY 2020:287-298. [DOI: 10.1007/978-3-030-51709-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
25
|
Volloch V, Olsen BR, Rits S. Precursor-Independent Overproduction of Beta-Amyloid in AD: Mitochondrial Dysfunction as Possible Initiator of Asymmetric RNA-Dependent βAPP mRNA Amplification. An Engine that Drives Alzheimer's Disease. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:61-74. [PMID: 31858090 PMCID: PMC6922309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study defines RNA-dependent amplification of βAPP mRNA as a molecular basis of beta-amyloid overproduction in Alzheimer's disease. In this process, βAPP mRNA serves as a template for RNA-dependent RNA polymerase, RdRp complex. The resulting antisense RNA self-primes its extension utilizing two complementary elements: 3'-terminal and internal, located within an antisense segment corresponding to the coding portion of βAPP mRNA. The extension produces 3'-terminal fragment of βAPP mRNA, a part of a hairpin-structured antisense/sense RNA molecule. Cleavage at the 3' end of the hairpin loop produces RNA end product encoding a C-terminal fragment of βAPP. Since each conventional βAPP mRNA can be used repeatedly as a template, the process constitutes an asymmetric mRNA amplification. The 5'-most translation initiation codon of the amplified mRNA is the AUG preceding immediately and in-frame the Aβ-coding segment. Translation from this codon overproduces Aβ independently of βAPP. Such process can occur in humans but not in mice and other animals where segments of βAPP antisense RNA required for self-priming have little, if any, complementarity. This explains why Alzheimer's disease occurs exclusively in humans and implies that βAPP mRNA amplification is requisite in AD. In AD, therefore, there are two pathways of beta-amyloid production: βAPP proteolytic pathway and βAPP mRNA amplification pathway independent of βAPP and insensitive to beta-secretase inhibition. This implies that in healthy humans, where only the proteolytic pathway is in operation, Aβ production should be suppressed by the BACE inhibition, and indeed it is. However, since βAPP-independent pathway operating in AD is by far the predominant one, BACE inhibition has no effect in Alzheimer's disease. It appears that, physiologically, the extent of beta-amyloid overproduction sufficient to trigger amyloid cascade culminating in AD requires asymmetric RNA-dependent amplification of βAPP mRNA and cannot be reached without it. In turn, the occurrence of mRNA amplification process depends on the activation of inducible components of RdRp complex by certain stresses, for example the ER stress in case of amplification of mRNA encoding extracellular matrix proteins. In case of Alzheimer's disease, such an induction appears to be triggered by stresses associated with mitochondrial dysfunction, a phenomenon closely linked to AD. The cause-and-effect relationships between mitochondrial dysfunction and AD appear to be very different in familial, FAD, and sporadic, SAD cases. In FAD, increased levels or more toxic species of Aβ resulting from the abnormal proteolysis of βAPP trigger mitochondrial dysfunction, activate mRNA amplification and increase the production of Aβ, reinforcing the cycle. Thus in FAD, mitochondrial dysfunction is an intrinsic component of the amyloid cascade. The reverse sequence is true in SAD where aging-related mitochondrial dysfunction activates amplification of βAPP mRNA and enhances the production of Aβ. This causes further mitochondrial dysfunction, the cycle repeats and degeneration increases. Thus in SAD, the initial mitochondrial dysfunction arises prior to the disease, independently of and upstream from the increased Aβ production, i.e. in SAD, mitochondrial pathology hierarchically supersedes Aβ pathology. This is the primary reason for the formulation of the Mitochondrial Cascade Hypothesis. But even in terms of the MCH, the core of the disease is the amyloid cascade as defined in the amyloid cascade hypothesis, ACH. The role of mitochondrial dysfunction in relation to this core is causative in SAD and auxiliary in FAD. In FAD, the initial increase in the production of Aβ is mutations-based and occurs relatively early in life, whereas in SAD it is coerced by an aging-contingent component, but both lead to mechanistically identical self-perpetuating mutual Aβ/mitochondrial dysfunction feedback cycles, an engine that drives, via RNA-dependent βAPP mRNA amplification, overproduction of beta-amyloid and, consequently, AD; hence drastic difference in the age of onset, yet profound pathological and symptomatic similarity in the progression, of familial and sporadic forms of Alzheimer's disease. Interestingly, the recent findings that mitochondrial microprotein PIGBOS interacts with the ER in mitigating the unfolded protein response indicate a possible connection between mitochondrial dysfunction and ER stress, implicated in activation of RNA-dependent mRNA amplification pathway. The possible involvement of mitochondrial dysfunction in βAPP mRNA amplification makes it a promising therapeutic target. Recent successes in mitigating, and even reversing, Aβ-induced metabolic defects with anti-diabetes drug metformin are encouraging in this respect.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
26
|
Brancaccio G, Gaeta GB. Treatment of chronic hepatitis due to hepatitis B and hepatitis delta virus coinfection. Int J Antimicrob Agents 2019; 54:697-701. [PMID: 31541699 DOI: 10.1016/j.ijantimicag.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
An estimated 20-40 million individuals worldwide are infected with hepatitis delta virus (HDV), mostly with rapidly evolving liver disease. Therapy of chronic HDV infection remains an unmet need. To date, only interferon (IFN)-based therapy is recommended for HDV infection and response rates are unsatisfactory; in addition, many patients are intolerant to or ineligible for IFN treatment. In recent years, innovative approaches have been in development, including the following: targeting virus entry into hepatocytes; inhibition of the host enzyme farnesyltransferase by prenylation inhibitors, leading to inhibition of complete virion formation and release; blockade of hepatitis B surface antigen (HBsAg) secretion, inhibiting virus release; and IFN-lambda, which causes fewer adverse effects than IFN-alfa. Clinical trials are ongoing with encouraging preliminary results.
Collapse
Affiliation(s)
- Giuseppina Brancaccio
- Infectious Diseases, Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giovanni B Gaeta
- Infectious Diseases, Department of Mental and Physical Health, Campania University, Naples, Italy.
| |
Collapse
|
27
|
Rits S, Olsen BR, Volloch V. Protein-Encoding RNA to RNA Information Transfer in Mammalian Cells: RNA-dependent mRNA Amplification. Identification of Chimeric RNA Intermediates and Putative RNA End Products. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:23-47. [PMID: 31656957 PMCID: PMC6814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our initial unidirectional understanding of the flow of protein-encoding genetic information, DNA to RNA to protein, a process defined as the "Central Dogma of Molecular Biology" and usually depicted as a downward arrow, was eventually amended to account for the "vertical" information back-flow from RNA to DNA, reverse transcription, and for its "horizontal" side-flow from RNA to RNA, RNA-dependent RNA synthesis, RdRs. These processes, both potentially leading to protein production, were assumed to be strictly virus-specific. However, whereas this presumption might be true for the former, it became apparent that the cellular enzymatic machinery for the later, a conventional RNA-dependent RNA polymerase activity, RdRp, is ubiquitously present and RdRs regularly occurs in eukaryotes. The strongest evidence for the occurrence and functionality of RdRp activity in mammalian cells comes from viruses, such as hepatitis delta virus, HDV, that do not encode RdRp yet undergo a robust RNA replication once inside the host. Eventually, it became clear that RdRp activity, apparently in a non-conventional form, is constitutively present in most, if not in all, mammalian cells. Because such activity was shown to produce short transcripts, because of its apparent involvement in RNA interference phenomena, and because double-stranded RNA is known to trigger cellular responses leading to its degradation, it was generally assumed that its role in mammalian cells is restricted to a regulatory function. However, at the same time, an enzymatic activity capable of generating complete antisense RNA complements of mRNAs was discovered in mammalian cells undergoing terminal differentiation. Moreover, observations of widespread synthesis of antisense RNA initiating at the 3'poly(A) of mRNAs in human cells suggested an extensive cellular utilization of mammalian RdRp. These results led to the development of a model of RdRp-facilitated and antisense RNA-mediated amplification of mammalian mRNA. Here, we report the in vivo detection in cells undergoing terminal erythroid differentiation of the major model-predicted identifiers of such a process, a chimeric double-stranded/pinhead-structured intermediates containing both sense and antisense RNA strands covalently joined in a rigorously predicted and uniquely defined manner. We also report the identification of the putative chimeric RNA end product of mRNA amplification. It is heavily modified, uniformly truncated, yet retains the intact coding region, and terminates with the OH group at both ends; its massive cellular amount is unprecedented for a conventional mRNA transcription product and it translates into polypeptides indistinguishable from the translation product of conventional mRNA. Moreover, we describe the occurrence of the second Tier of mammalian RNA-dependent mRNA amplification, a physiologically occurring, RdRp-driven intracellular PCR process, "iPCR", and report the detection of its distinct RNA end products. Whether mammalian mRNA amplification is a specialized occurrence limited to extreme circumstances of terminal differentiation in cells programmed for only a short survival span or a general physiological phenomenon was answered in the companion article Volloch et al. Ann Integr Mol Med. 2019;1(1):1004. by the detection of major identifiers of this process for mRNA encoding α1, β1, and γ1 chains of laminin, a major extracellular matrix protein abundantly produced throughout the tissue and organ development and homeostasis and an exceptionally revealing indicator of the range and scope of this phenomenon. The results obtained introduce the occurrence of RNA-dependent mRNA amplification as a new mode of genomic protein-encoding information transfer in mammalian cells and establish it as a general physiological phenomenon.
Collapse
Affiliation(s)
- Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Deptartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| |
Collapse
|
28
|
Chang WS, Pettersson JHO, Le Lay C, Shi M, Lo N, Wille M, Eden JS, Holmes EC. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol 2019; 5:vez021. [PMID: 31321078 PMCID: PMC6628682 DOI: 10.1093/ve/vez021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known RNA virus, encoding a single protein. Until recently, HDV had only been identified in humans, where it is strongly associated with co-infection with hepatitis B virus (HBV). However, the recent discovery of HDV-like viruses in metagenomic samples from birds and snakes suggests that this virus has a far longer evolutionary history. Herein, using additional meta-transcriptomic data, we show that highly divergent HDV-like viruses are also present in fish, amphibians, and invertebrates, with PCR and Sanger sequencing confirming the presence of the invertebrate HDV-like viruses. Notably, the novel viruses identified here share genomic features characteristic of HDV, such as a circular genome of only approximately 1.7 kb in length, and self-complementary, unbranched rod-like structures. Coiled-coil domains, leucine zippers, conserved residues with essential biological functions, and isoelectronic points similar to those in the human hepatitis delta virus antigens (HDAgs) were also identified in the putative non-human viruses. Importantly, none of these novel HDV-like viruses were associated with hepadnavirus infection, supporting the idea that the HDV–HBV association may be specific to humans. Collectively, these data not only broaden our understanding of the diversity and host range of HDV, but also shed light on its origin and evolutionary history.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Callum Le Lay
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mang Shi
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Wille
- The Peter Doherty Institute for Infection and Immunity, WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Volloch V, Rits-Volloch S. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics. ACTA ACUST UNITED AC 2019; 2:131-173. [PMID: 33942036 DOI: 10.33597/aimm.02-1009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular Biology, a branch of science established to examine the flow of information from "letters" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a "chimeric" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is "silent" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial "Dark Matter" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children's Hospital, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
30
|
Giersch K, Bhadra OD, Volz T, Allweiss L, Riecken K, Fehse B, Lohse AW, Petersen J, Sureau C, Urban S, Dandri M, Lütgehetmann M. Hepatitis delta virus persists during liver regeneration and is amplified through cell division both in vitro and in vivo. Gut 2019; 68:150-157. [PMID: 29217749 DOI: 10.1136/gutjnl-2017-314713] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Hepatitis delta virus (HDV) was shown to persist for weeks in the absence of HBV and for months after liver transplantation, demonstrating the ability of HDV to persevere in quiescent hepatocytes. The aim of the study was to evaluate the impact of cell proliferation on HDV persistence in vitro and in vivo. DESIGN Genetically labelled human sodium taurocholate cotransporting polypeptide (hNTCP)-transduced human hepatoma(HepG2) cells were infected with HBV/HDV and passaged every 7 days for 100 days in the presence of the entry inhibitor Myrcludex-B. In vivo, cell proliferation was triggered by transplanting primary human hepatocytes (PHHs) isolated from HBV/HDV-infected humanised mice into naïve recipients. Virological parameters were measured by quantitative real time polymerase chain reaction (qRT-PCR). Hepatitis delta antigen (HDAg), hepatitis B core antigen (HBcAg) and cell proliferation were determined by immunofluorescence. RESULTS Despite 15 in vitro cell passages and block of viral spreading by Myrcludex-B, clonal cell expansion permitted amplification of HDV infection. In vivo, expansion of PHHs isolated from HBV/HDV-infected humanised mice was confirmed 3 days, 2, 4 and 8 weeks after transplantation. While HBV markers rapidly dropped in proliferating PHHs, HDAg-positive hepatocytes were observed among dividing cells at all time points. Notably, HDAg-positive cells appeared in clusters, indicating that HDV was transmitted to daughter cells during liver regeneration even in the absence of de novo infection. CONCLUSION This study demonstrates that HDV persists during liver regeneration by transmitting HDV RNA to dividing cells even in the absence of HBV coinfection. The strong persistence capacities of HDV may also explain why HDV clearance is difficult to achieve in HBV/HDV chronically infected patients.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver D Bhadra
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Department of Stem Cell transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine, Asklepios Clinic St. Georg, Hamburg, Germany
| | - Camille Sureau
- Laboratoirede Virologie Moleculaire, INTS, Centre National de la Recherche Scientifique, Paris, France
| | - Stephan Urban
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Marc Lütgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Volloch V. Protein-Encoding RNA-to-RNA Information Transfer in Mammalian Cells: Principles of RNA-Dependent mRNA Amplification. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:1002. [PMID: 31535092 PMCID: PMC6750253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transfer of protein-encoding genetic information from DNA to RNA to protein, a process formalized as the "Central Dogma of Molecular Biology", has undergone a significant evolution since its inception. It was amended to account for the information flow from RNA to DNA, the reverse transcription, and for the information transfer from RNA to RNA, the RNA-dependent RNA synthesis. These processes, both potentially leading to protein production, were initially described only in viral systems, and although RNA-dependent RNA polymerase activity was shown to be present, and RNA-dependent RNA synthesis found to occur, in mammalian cells, its function was presumed to be restricted to regulatory. However, recent results, obtained with multiple mRNA species in several mammalian systems, strongly indicate the occurrence of protein-encoding RNA to RNA information transfer in mammalian cells. It can result in the rapid production of the extraordinary quantities of specific proteins as was seen in cases of terminal cellular differentiation and during cellular deposition of extracellular matrix molecules. A malfunction of this process may be involved in pathologies associated either with the deficiency of a protein normally produced by this mechanism or with the abnormal abundance of a protein or of its C-terminal fragment. It seems to be responsible for some types of familial thalassemia and may underlie the overproduction of beta amyloid in sporadic Alzheimer's disease. The aim of the present article is to systematize the current knowledge and understanding of this pathway. The outlined framework introduces unexpected features of the mRNA amplification such as its ability to generate polypeptides non-contiguously encoded in the genome, its second Tier, a physiologically occurring intracellular polymerase chain reaction, iPCR, a "Two-Tier Paradox" and RNA "Dark Matter". RNA-dependent mRNA amplification represents a new mode of genomic protein-encoding information transfer in mammalian cells. Its potential physiological impact is substantial, it appears relevant to multiple pathologies and its understanding opens new venues of therapeutic interference, it suggests powerful novel bioengineering approaches and its further rigorous investigations are highly warranted.
Collapse
|
32
|
Wille M, Netter HJ, Littlejohn M, Yuen L, Shi M, Eden JS, Klaassen M, Holmes EC, Hurt AC. A Divergent Hepatitis D-Like Agent in Birds. Viruses 2018; 10:E720. [PMID: 30562970 PMCID: PMC6315422 DOI: 10.3390/v10120720] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is currently only found in humans and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release, and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and sub-viral agents.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Hans J Netter
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3220, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
33
|
SHARIFAN P, AMOUEIAN S. Histological and Serological Epidemiology of Hepatitis Delta Virus Coinfection among Patients with Chronic Active Hepatitis B Virus in Razavi Khorasan Province, Northeastern Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1906-1912. [PMID: 30788306 PMCID: PMC6379606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV), as well as hepatitis B virus (HBV), are regarded as one of the main public health issues in developing countries. This retrospective study described histological and serological features of HDV coinfection patients with chronic active HBV in Northeastern Iran. METHODS The frequency of HDV seropositivity and its impact on serum liver enzyme levels and pathological features were investigated by reviewing clinical and laboratory data. This study contained chronic active HBV-infected patients having admitted the department during 2009 and 2014. RESULTS The rate of HDV coinfection in chronic active carriers was 21.84%, with a male predominance. HDV seropositive carriers showed significantly higher concentrations of liver enzyme than chronic active HBV monoinfection. Moreover, there was a strong association between degrees of inflammation with HDV-positive patients' enzyme levels. CONCLUSION The HDV seroprevalence in northeastern Iran was higher than that reported from elsewhere in Iran while comparable to some regions in Middle East, which, in turn, requires more comprehensive tools for diagnosing and screening the blood.
Collapse
|
34
|
Farci P, Anna Niro G. Current and Future Management of Chronic Hepatitis D. Gastroenterol Hepatol (N Y) 2018; 14:342-351. [PMID: 30166948 PMCID: PMC6111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatitis D virus (HDV) is a defective RNA virus that requires the hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) for its assembly, release, and transmission. HDV is highly pathogenic, causing the least common, but most severe, form of chronic viral hepatitis at all ages. Although significant advances have been made in the treatment of chronic viral hepatitis, targeting HDV remains a major challenge because of the unconventional nature of this virus and the severity of its disease. The virus contains a ribonucleoprotein complex formed by the RNA genome with a single structural protein, delta antigen (HDAg), which exists in 2 forms (small and large HDAg) and is coated by HBsAg. Farnesylation of the large HDAg is essential for anchoring the ribonucleoprotein to HBsAg for the assembly of virion particles. HDV enters into hepatocytes by using the HBV receptor, the sodium taurocholate cotransporting polypeptide (NTCP). Unlike other RNA viruses, HDV does not encode its own polymerase but exploits the host RNA polymerase II for replication. Thus, in contrast to HBV and hepatitis C virus, which possess virus-specific enzymes that can be targeted by specific inhibitors, the lack of a virus-specific polymerase makes HDV a particularly challenging therapeutic target. Treatment of hepatitis D remains unsatisfactory, and interferon-α has been the only approved drug over the past 30 years. This article examines the unconventional nature of HDV, the current management of chronic hepatitis D, and how new insights from the HDV life cycle have led to the development of 3 novel classes of drugs (NTCP receptor inhibitors, farnesyltransferase inhibitors, and nucleic acid polymers) that are currently under clinical evaluation.
Collapse
Affiliation(s)
- Patrizia Farci
- Dr Farci is chief of the Hepatic Pathogenesis Section of the Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases in the National Institutes of Health in Bethesda, Maryland
- Dr Niro is a senior staff clinician in the Gastroenterology Unit at IRCCS Casa Sollievo Sofferenza Hospital in San Giovanni Rotondo, Foggia, Italy
| | - Grazia Anna Niro
- Dr Farci is chief of the Hepatic Pathogenesis Section of the Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases in the National Institutes of Health in Bethesda, Maryland
- Dr Niro is a senior staff clinician in the Gastroenterology Unit at IRCCS Casa Sollievo Sofferenza Hospital in San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
35
|
Fros JJ, Dietrich I, Alshaikhahmed K, Passchier TC, Evans DJ, Simmonds P. CpG and UpA dinucleotides in both coding and non-coding regions of echovirus 7 inhibit replication initiation post-entry. eLife 2017; 6:e29112. [PMID: 28960178 PMCID: PMC5659819 DOI: 10.7554/elife.29112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022] Open
Abstract
Most vertebrate and plant RNA and small DNA viruses suppress genomic CpG and UpA dinucleotide frequencies, apparently mimicking host mRNA composition. Artificially increasing CpG/UpA dinucleotides attenuates viruses through an entirely unknown mechanism. Using the echovirus 7 (E7) model in several cell types, we show that the restriction in E7 replication in mutants with increased CpG/UpA dinucleotides occurred immediately after viral entry, with incoming virions failing to form replication complexes. Sequences of CpG/UpA-high virus stocks showed no evidence of increased mutational errors that would render them replication defective, these viral RNAs were not differentially sequestered in cytoplasmic stress granules nor did they induce a systemic antiviral state. Importantly, restriction was not mediated through effects on translation efficiency since replicons with high CpG/UpA sequences inserted into a non-coding region were similarly replication defective. Host-cells thus possess intrinsic defence pathways that prevent replication of viruses with increased CpG/UpA frequencies independently of codon usage.
Collapse
Affiliation(s)
- Jelke Jan Fros
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Isabelle Dietrich
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Kinda Alshaikhahmed
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Tim Casper Passchier
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - David John Evans
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUnited Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
36
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
37
|
Abstract
INTRODUCTION Treatment of chronic hepatitis D still relies on Interferon. To improve efficacy, new therapeutic strategies are in development which aim to deprive the Hepatitis D Virus (HDV) of functions of the Hepatitis B Virus and of the host required for its life-cycle. Areas covered: The therapeutic options are; 1) The inhibition of the farnesylation of the large HD-protein permissive of virion assembly with Lonafarnib, 2) The blocking of HBsAg entry into cells with Myrcludex B via the inhibition of the Sodium Taurocholate Cotransporting Receptor, to prevent the spreading of HDV to uninfected hepatocytes, 3) The reduction of subviral HBsAg particles by REP 2139, leading to diminished virion morphogenesis . Expert opinion: Lonafarnib and Myrcludex reduced serum HVD-RNA; neither diminished serum HBsAg. NAP REP-2139 diminished both HDV-RNA and HBsAg in serum; a full report is awaited. In combination with Peg-Interferon, these new drugs may provide additional efficacy.
Collapse
Affiliation(s)
- Mario Rizzetto
- a Department of Medicine , University of Torino , Torino , Italy
| |
Collapse
|
38
|
Lempp FA, Urban S. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen. Viruses 2017; 9:E172. [PMID: 28677645 PMCID: PMC5537664 DOI: 10.3390/v9070172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Merk K, Breinig M, Böttcher R, Krebs S, Blum H, Boutros M, Förstemann K. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks. PLoS Genet 2017. [PMID: 28628606 PMCID: PMC5495518 DOI: 10.1371/journal.pgen.1006861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene's first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks.
Collapse
Affiliation(s)
- Karin Merk
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Marco Breinig
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Romy Böttcher
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Klaus Förstemann
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail:
| |
Collapse
|
40
|
Wranke A, Wedemeyer H. Antiviral therapy of hepatitis delta virus infection - progress and challenges towards cure. Curr Opin Virol 2016; 20:112-118. [PMID: 27792905 DOI: 10.1016/j.coviro.2016.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis B-/D-virus co-infection causes the most severe form of viral hepatitis, frequently leading to liver cirrhosis, hepatic decompensation and consecutive liver-related mortality. Treatment options for hepatitis delta are limited. The only recommended therapy is pegylated interferon alpha which leads to virological responses in about 25-30% of patients. However, interferon therapy is associated with frequent side-effects and late HDV RNA relapses have been described during long-term follow even in patients who were HDV RNA negative 24 weeks after the end of therapy. Thus, alternative treatment options are urgently needed. Clinical studies have been performed exploring prenylation inhibitors, viral entry inhibitors and nucleic acid polymers to block particle release. We here summarize the progress and challenges towards cure of HDV infection.
Collapse
Affiliation(s)
- Anika Wranke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Side HepNet Study-House, Hannover, Germany; HepNet Study-House, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Germany.
| |
Collapse
|
41
|
Alfaiate D, Lucifora J, Abeywickrama-Samarakoon N, Michelet M, Testoni B, Cortay JC, Sureau C, Zoulim F, Dény P, Durantel D. HDV RNA replication is associated with HBV repression and interferon-stimulated genes induction in super-infected hepatocytes. Antiviral Res 2016; 136:19-31. [PMID: 27771387 DOI: 10.1016/j.antiviral.2016.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis D virus (HDV) super-infection of Hepatitis B virus (HBV)-infected patients is the most aggressive form of viral hepatitis. HDV infection is not susceptible to direct anti-HBV drugs, and only suboptimal antiviral responses are obtained with interferon (IFN)-alpha-based therapy. To get insights on HDV replication and interplay with HBV in physiologically relevant hepatocytes, differentiated HepaRG (dHepaRG) cells, previously infected or not with HBV, were infected with HDV, and viral markers were extensively analyzed. Innate and IFN responses to HDV were monitored by measuring pro-inflammatory and interferon-stimulated gene (ISG) expression. Both mono- and super-infected dHepaRG cells supported a strong HDV intracellular replication, which was accompanied by a strong secretion of infectious HDV virions only in the super-infection setting and despite the low number of co-infected cells. Upon HDV super-infection, HBV replication markers including HBeAg, total HBV-DNA and pregenomic RNA were significantly decreased, confirming the interference of HDV on HBV. Yet, no decrease of circular covalently closed HBV DNA (cccDNA) and HBsAg levels was evidenced. At the peak of HDV-RNA accumulation and onset of interference on HBV replication, a strong type-I IFN response was observed, with interferon stimulated genes, RSAD2 (Viperin) and IFI78 (MxA) being highly induced. We established a cellular model to characterize in more detail the direct interference of HBV and HDV, and the indirect interplay between the two viruses via innate immune responses. This model will be instrumental to assess molecular and immunological mechanisms of this viral interference.
Collapse
Affiliation(s)
- Dulce Alfaiate
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France.
| | - Natali Abeywickrama-Samarakoon
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Jean-Claude Cortay
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Camille Sureau
- Institut National de Transfusion Sanguine, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France
| | - Paul Dény
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; Université Paris 13/SPC, UFR SMBH, Laboratoire de Bactériologie, Virologie - Hygiène, GHU Paris Seine Saint Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France.
| |
Collapse
|
42
|
Lempp FA, Ni Y, Urban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol 2016; 13:580-9. [PMID: 27534692 DOI: 10.1038/nrgastro.2016.126] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis D is the most severe form of viral hepatitis, affecting ∼20 million HBV-infected people worldwide. The causative agent, hepatitis delta virus (HDV), is a unique human pathogen: it is the smallest known virus; it depends on HBV to disseminate its viroid-like RNA; it encodes only one protein (HDAg), which has both structural and regulatory functions; and it replicates using predominantly host proteins. The failure of HBV-specific nucleoside analogues to suppress the HBV helper function, and the limitations of experimental systems to study the HDV life cycle, have impeded the development of HDV-specific drugs. Thus, the only clinical regimen for HDV is IFNα, which shows some efficacy but long-term virological responses are rare. Insights into the receptor-mediated entry of HDV, and the observation that HDV assembly requires farnesyltransferase, have enabled novel therapeutic strategies to be developed. Interference with entry, for example through blockade of the HBV-HDV-specific receptor sodium/taurocholate cotransporting polypeptide NTCP by Myrcludex B, and inhibition of assembly by blockade of farnesyltransferase using lonafarnib or nucleic acid polymers such as REP 2139-Ca, have shown promising results in phase II studies. In this Review, we summarize our knowledge of HDV epidemiology, pathogenesis and molecular biology, with a particular emphasis on possible future developments.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Soyer OM, Baran B, Ormeci AC, Gokturk S, Aydın E, Onel D, Gulluoglu M, Karaca C, Akyuz F, Demir K, Besisik F, Kaymakoglu S. Comparison of the efficacy of 12 months and longer courses of interferon therapy for the treatment of chronic delta hepatitis: a retrospective cohort study. Postgrad Med 2016; 128:432-8. [DOI: 10.1080/00325481.2016.1175310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
45
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [PMID: 26275800 DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
46
|
Botelho-Souza LF, Souza Vieira D, de Oliveira Dos Santos A, Cunha Pereira AV, Villalobos-Salcedo JM. Characterization of the Genotypic Profile of Hepatitis Delta Virus: Isolation of HDV Genotype-1 in the Western Amazon Region of Brazil. Intervirology 2015; 58:166-71. [PMID: 26112316 DOI: 10.1159/000431040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/24/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The hepatitis delta virus (HDV) is a hepatotropic subvirus that is dependent on the hepatitis B virus (HBV) and supplies the viral envelope containing the surface antigen of hepatitis B. Viral genetic diversity is related to the geographical origin of the isolates, and there are at least eight genotypes that are referred to as HDV-1 through HDV-8. HDV-3 is responsible for epidemics of severe and fulminant hepatitis, which are common in northeastern South America. HDV-3 is prevalent in the Brazilian Amazon and is associated with the increased aggressiveness of HDV infections. Although isolated, the characteristics of the clinical presentation of HDV-1 in the Amazon region have not yet been clearly reported. OBJECTIVE This study aims to assess the genotypic and clinical characteristics of individuals with the HDV-1 genotype in the western Amazon region. METHODS The HDV was genotyped by nested PCR-RFLP and sequencing from serum samples of 56 patients with HBV/HDV infection. The genotypes were correlated with the clinical characteristics presented by patients with HBV/HDV infection. RESULTS A prevalence of 92.3% for the HDV-3 genotype (n = 48) and 7.6% (n = 4) for the HDV-1 genotype was observed. CONCLUSION To date, this is the most extensive clinical study of HDV-1 genotype infections in the nonindigenous population of Western Amazonia.
Collapse
|
47
|
The case for an early biological origin of DNA. J Mol Evol 2014; 79:204-12. [PMID: 25425102 PMCID: PMC4247479 DOI: 10.1007/s00239-014-9656-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route—the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage. In light of recent work demonstrating that this reaction can drive synthesis of deoxyribonucleosides, we consider what pressures early adoption of this pathway would have placed on cell metabolism. This in turn provides a rationale for the replacement of DERA-dependent DNA production by RNR-dependent production.
Collapse
|
48
|
Hepatitis delta virus genotype-1 alone cocirculates with hepatitis B virus genotypes A and D in Pakistan. Eur J Gastroenterol Hepatol 2014; 26:319-24. [PMID: 24129252 DOI: 10.1097/meg.0000000000000007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Hepatitis delta virus (HDV) and hepatitis B virus (HBV) have been identified as major causes of morbidity and mortality in Pakistan because HDV causes infection only in the presence of HBV. Coinfection with both hepatitis viruses can lead to a more severe acute form of disease and to an increased risk of fulminant hepatitis. HDV infection differs in its distribution and severity depending on the geographical distribution, and several genotypes of HDV have been identified so far. OBJECTIVES The aim of the present study was to establish the HDV and HBV genotypes in chronically infected Pakistani patients and to determine whether there is any correlation between HDV and HBV genotypes. PATIENTS AND METHODS We studied samples from a total of 46 chronically infected HBV and HDV patients for HBV and HDV genotype analysis out of a total of 75 chronic HBV carriers enrolled. HBV and HDV genotypes were determined using type-specific PCR, followed by sequencing of PCR amplified products. RESULTS The results of HBV genotyping showed that 33 of 46 (71.7%) patients had genotype D, five (10.9%) had A+D mixed genotypes, whereas eight (17.3) samples were untypable. We could detect only one HDV genotype (HDV-1) prevalent in the Pakistani population. The HDV-1 genotype isolate was associated with HBV genotype D alone or in combination with A (HBV-A+D). CONCLUSION The present study concludes that HDV/HBV coinfection is very high in the Pakistani population and was previously underestimated. The most prevalent circulating genotypes of HBV and HDV are HDV-1 and HBV-D, respectively, in the studied area. There is no specific interaction between HBV and HDV genotypes as suggested by HDV-1/HBV-D or HDV-1/HBV-A+D coinfection. Coinfection of HDV-1 and HBV-D simply reflects the most frequent genotypes circulating in this specific geographical region of the world.
Collapse
|
49
|
Abstract
Immigration is fuelling a new reservoir of hepatitis D virus (HDV) in Europe, and hepatitis D still represents an important medical problem in the USA. The disease continues to be a major medical scourge in the developing world, in particular in countries such as Pakistan, Mongolia and Mauritania. New therapeutic strategies are being developed to disrupt interactions between HDV and its viral partner HBV, or with the host. Blocking or modifying the hepatitis B surface antigen (HBsAg) might interfere with the uptake or release of the hepatitis D virion; interference with host-mediated post-translational changes of proteins that are crucial to the HDV life cycle, such as prenylation, is another potential therapeutic option. At present, however, the only realistic option is to optimize IFN-α therapy. As eradication of HBsAg is the ultimate end point of therapy, long-term interferon administration might be required, raising an issue of tolerance in patients. Treatment with IFN-λ is a potential alternative approach to IFN-α; treatment of hepatitis C with this cytokine seems to cause fewer adverse effects than IFN-α and, therefore, might be more suitable for long-term treatment of HDV.
Collapse
|
50
|
Lunemann S, Grabowski J, Wedemeyer H. Immunopathogenesis of Hepatitis D. LIVER IMMUNOLOGY 2014:231-241. [DOI: 10.1007/978-3-319-02096-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|