1
|
Chabukswar S, Grandi N, Lin LT, Tramontano E. Envelope Recombination: A Major Driver in Shaping Retroviral Diversification and Evolution within the Host Genome. Viruses 2023; 15:1856. [PMID: 37766262 PMCID: PMC10536682 DOI: 10.3390/v15091856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.
Collapse
Affiliation(s)
- Saili Chabukswar
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| |
Collapse
|
2
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
3
|
Boso G, Lam O, Bamunusinghe D, Oler AJ, Wollenberg K, Liu Q, Shaffer E, Kozak CA. Patterns of Coevolutionary Adaptations across Time and Space in Mouse Gammaretroviruses and Three Restrictive Host Factors. Viruses 2021; 13:v13091864. [PMID: 34578445 PMCID: PMC8472935 DOI: 10.3390/v13091864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 10/26/2022] Open
Abstract
The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Oscar Lam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
- Correspondence:
| |
Collapse
|
4
|
Srinivasachar Badarinarayan S, Sauter D. Switching Sides: How Endogenous Retroviruses Protect Us from Viral Infections. J Virol 2021; 95:e02299-20. [PMID: 33883223 PMCID: PMC8315955 DOI: 10.1128/jvi.02299-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.
Collapse
MESH Headings
- Animals
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Humans
- Immunity, Cellular
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Retroelements
- Viral Proteins/metabolism
- Virion/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Virus Diseases/virology
Collapse
Affiliation(s)
- Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| |
Collapse
|
5
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
6
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
7
|
Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats. J Virol 2019; 93:JVI.01324-19. [PMID: 31534037 DOI: 10.1128/jvi.01324-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.
Collapse
|
8
|
Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 2017; 33:817-831. [PMID: 28844698 DOI: 10.1016/j.tig.2017.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
Transposable elements (TEs) are selfish genetic units that typically encode proteins that enable their proliferation in the genome and spread across individual hosts. Here we review a growing number of studies that suggest that TE proteins have often been co-opted or 'domesticated' by their host as adaptations to a variety of evolutionary conflicts. In particular, TE-derived proteins have been recurrently repurposed as part of defense systems that protect prokaryotes and eukaryotes against the proliferation of infectious or invasive agents, including viruses and TEs themselves. We argue that the domestication of TE proteins may often be the only evolutionary path toward the mitigation of the cost incurred by their own selfish activities.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
9
|
Ma Y, Liu R, Lv H, Han J, Zhong D, Zhang X. A computational method for prediction of matrix proteins in endogenous retroviruses. PLoS One 2017; 12:e0176909. [PMID: 28472185 PMCID: PMC5417524 DOI: 10.1371/journal.pone.0176909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) encode active retroviral proteins, which may be involved in the progression of cancer and other diseases. Matrix protein (MA), in group-specific antigen genes (gag) of retroviruses, is associated with the virus envelope glycoproteins in most mammalian retroviruses and may be involved in virus particle assembly, transport and budding. However, the amount of annotated MAs in ERVs is still at a low level so far. No computational method to predict the exact start and end coordinates of MAs in gags has been proposed yet. In this paper, a computational method to identify MAs in ERVs is proposed. A divide and conquer technique was designed and applied to the conventional prediction model to acquire better results when dealing with gene sequences with various lengths. Initiation sites and termination sites were predicted separately and then combined according to their intervals. Three different algorithms were applied and compared: weighted support vector machine (WSVM), weighted extreme learning machine (WELM) and random forest (RF). G − mean (geometric mean of sensitivity and specificity) values of initiation sites and termination sites under 5-fold cross validation generated by random forest models are 0.9869 and 0.9755 respectively, highest among the algorithms applied. Our prediction models combine RF & WSVM algorithms to achieve the best prediction results. 98.4% of all the collected ERV sequences with complete MAs (125 in total) could be predicted exactly correct by the models. 94,671 HERV sequences from 118 families were scanned by the model, 104 new putative MAs were predicted in human chromosomes. Distributions of the putative MAs and optimizations of model parameters were also analyzed. The usage of our predicting method was also expanded to other retroviruses and satisfying results were acquired.
Collapse
Affiliation(s)
- Yucheng Ma
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ruiling Liu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (RLL); (HQL)
| | - Hongqiang Lv
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (RLL); (HQL)
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dexing Zhong
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xinman Zhang
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Existence of Two Distinct Infectious Endogenous Retroviruses in Domestic Cats and Their Different Strategies for Adaptation to Transcriptional Regulation. J Virol 2016; 90:9029-45. [PMID: 27466428 DOI: 10.1128/jvi.00716-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells. Previous work identified one of the youngest feline ERV groups, ERV-DC, and reported that two ERV-DC loci, ERV-DC10 and ERV-DC18 (ERV-DC10/DC18), can replicate in cultured cells. Here, we identified another replication-competent provirus, ERV-DC14, on chromosome C1q32. ERV-DC14 differs from ERV-DC10/DC18 in its phylogeny, receptor usage, and, most notably, transcriptional activities; although ERV-DC14 can replicate in cultured cells, it cannot establish a persistent infection owing to its low transcriptional activity. Furthermore, we examined ERV-DC transcription and its regulation in feline tissues. Quantitative reverse transcription-PCR (RT-PCR) detected extremely low ERV-DC10 expression levels in feline tissues, and bisulfite sequencing showed that 5' long terminal repeats (LTRs) of ERV-DC10/DC18 are significantly hypermethylated in feline blood cells. Reporter assays found that the 5'-LTR promoter activities of ERV-DC10/DC18 are high, whereas that of ERV-DC14 is low. This difference in promoter activity is due to a single substitution from A to T in the LTR, and reverse mutation at this nucleotide in ERV-DC14 enhanced its replication and enabled it to persistently infect cultured cells. Therefore, ERV-DC LTRs can be divided into two types based on this nucleotide, the A type or T type, which have strong or attenuated promoter activity, respectively. Notably, ERV-DCs with T-type LTRs, such as ERV-DC14, have expanded in the cat genome significantly more than A-type ERV-DCs, despite their low promoter activities. Our results provide insights into how the host controls potentially infectious ERVs and, conversely, how ERVs adapt to and invade the host genome. IMPORTANCE The domestic cat genome contains many endogenous retroviruses, including ERV-DCs. These ERV-DCs have been acquired through germ cell infections with exogenous retroviruses. Some of these ERV-DCs are still capable of producing infectious virions. Hosts must tightly control these ERVs because replication-competent viruses in the genome pose a risk to the host. Here, we investigated how ERV-DCs are adapted by their hosts. Replication-competent viruses with strong promoter activity, such as ERV-DC10 and ERV-DC18, were suppressed by promoter methylation in LTRs. On the other hand, replication-competent viruses with weak promoter activity, such as ERV-DC14, seemed to escape strict control via promoter methylation by the host. Interestingly, ERV-DCs with weak promoter activity, such as ERV-DC14, have expanded in the cat genome significantly more than ERV-DCs with strong promoter activity. Our results improve the understanding of the host-virus conflict and how ERVs adapt in their hosts over time.
Collapse
|
11
|
Parker MT. An Ecological Framework of the Human Virome Provides Classification of Current Knowledge and Identifies Areas of Forthcoming Discovery. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:339-351. [PMID: 27698618 PMCID: PMC5045143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent advances in sequencing technologies have opened the door for the classification of the human virome. While taxonomic classification can be applied to the viruses identified in such studies, this gives no information as to the type of interaction the virus has with the host. As follow-up studies are performed to address these questions, the description of these virus-host interactions would be greatly enriched by applying a standard set of definitions that typify them. This paper describes a framework with which all members of the human virome can be classified based on principles of ecology. The scaffold not only enables categorization of the human virome, but can also inform research aimed at identifying novel virus-host interactions.
Collapse
Affiliation(s)
- Michael T Parker
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
13
|
Ancestral Mutations Acquired in Refrex-1, a Restriction Factor against Feline Retroviruses, during its Cooption and Domestication. J Virol 2015; 90:1470-85. [PMID: 26581999 DOI: 10.1128/jvi.01904-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. IMPORTANCE Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Collapse
|
14
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
15
|
Kozak CA. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014; 7:1-26. [PMID: 25549291 PMCID: PMC4306825 DOI: 10.3390/v7010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
Collapse
|
16
|
Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 2013; 87:12029-40. [PMID: 23966402 DOI: 10.1128/jvi.01267-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The host defense against viral infection is acquired during the coevolution or symbiosis of the host and pathogen. Several cellular factors that restrict retroviral infection have been identified in the hosts. Feline leukemia virus (FeLV) is a gammaretrovirus that is classified into several receptor interference groups, including a novel FeLV-subgroup D (FeLV-D) that we recently identified. FeLV-D is generated by transduction of the env gene of feline endogenous gammaretrovirus of the domestic cat (ERV-DCs) into FeLV. Some ERV-DCs are replication competent viruses which are present and hereditary in cats. We report here the determination of new viral receptor interference groups and the discovery of a soluble antiretroviral factor, termed Refrex-1. Detailed analysis of FeLV-D strains and ERV-DCs showed two receptor interference groups that are distinct from other FeLV subgroups, and Refrex-1 specifically inhibited one of them. Refrex-1 is characterized as a truncated envelope protein of ERV-DC and includes the N-terminal region of surface unit, which is a putative receptor-binding domain, but lacks the transmembrane region. Refrex-1 is efficiently secreted from the cells and appears to cause receptor interference extracellularly. Two variants of Refrex-1 encoded by provirus loci, ERV-DC7 and DC16, are expressed in a broad range of feline tissues. The host retains Refrex-1 as an antiretroviral factor, which may potentially prevent reemergence of the ERVs and the emergence of novel ERV-related viruses in cats. Refrex-1 may have been acquired during endogenization of ERV-DCs and may play an important role in retroviral restriction and antiviral defense in cats.
Collapse
|
17
|
Aswad A, Katzourakis A. Paleovirology and virally derived immunity. Trends Ecol Evol 2012; 27:627-36. [PMID: 22901901 DOI: 10.1016/j.tree.2012.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Paleovirology, the study of viruses on evolutionary timescales, can exploit information from endogenous viral elements (EVEs), which are the result of heritable horizontal gene transfer (HGT) from viruses to hosts. The availability of genomic data has increased opportunities to study EVEs, and bioinformatics techniques have been crucial in cataloguing EVE diversity and taxonomic coverage. Recent advances show that some EVEs have been co-opted as cellular genes, often as inhibitors of viral infection. These genes are an intriguing strategy in virus-host evolutionary battles in that genetic material is transferred from virus to host, and then used by the host against the virus. In this review, we consider the genes and processes involved in EVE-derived immunity (EDI), assess factors leading to its emergence, and outline how future work will benefit from incorporating evolutionary approaches.
Collapse
Affiliation(s)
- Amr Aswad
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|
18
|
Abstract
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.
Collapse
|
19
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
20
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
21
|
Evolution of functional and sequence variants of the mammalian XPR1 receptor for mouse xenotropic gammaretroviruses and the human-derived retrovirus XMRV. J Virol 2010; 84:11970-80. [PMID: 20844050 DOI: 10.1128/jvi.01549-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic conflicts between retroviruses and their receptors result in the evolution of novel host entry restrictions and novel virus envelopes, and such variants can influence trans-species transmission. We screened rodents and other mammals for sequence variation in the Xpr1 receptor for the mouse xenotropic or polytropic mouse leukemia viruses (X-MLVs or P-MLVs, respectively) of the gammaretrovirus family and for susceptibility to mouse-derived X/P-MLVs and to XMRV (xenotropic murine leukemia virus-related virus), an X-MLV-like virus isolated from humans with prostate cancer and chronic fatigue syndrome. We identified multiple distinct susceptibility phenotypes; these include the four known Xpr1 variants in Mus and a novel fifth Xpr1 gene found in Mus molossinus and Mus musculus. We describe the geographic and species distribution of the Mus Xpr1 variants but failed to find the X-MLV-restrictive laboratory mouse allele in any wild mouse. We used mutagenesis and phylogenetic analysis to evaluate the functional contributions made by constrained, variable, and deleted residues. Rodent Xpr1 is under positive selection, indicating a history of host-pathogen conflicts; several codons under selection have known roles in virus entry. All non-Mus mammals are susceptible to mouse X-MLVs, but some restrict other members of the X/P-MLV family, and the resistance of hamster and gerbil cells to XMRV indicates that XMRV has unique receptor requirements. We show that the hypervariable fourth extracellular XPR1 loop (ECL4) contains three evolutionarily constrained residues that do not contribute to receptor function, we identify two novel residues important for virus entry (I579 and T583), and we describe a unique pattern of ECL4 variation in the three virus-restrictive Xpr1 variants found in MLV-infected house mice; these mice carry different deletions in ECL4, suggesting either that these sites or loop size affects receptor function.
Collapse
|
22
|
Americo JL, Moss B, Earl PL. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J Virol 2010; 84:8172-80. [PMID: 20519404 PMCID: PMC2916512 DOI: 10.1128/jvi.00621-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD(50)) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD(50) of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD(50) of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.
Collapse
Affiliation(s)
- Jeffrey L. Americo
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia L. Earl
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Bahrami S, Ejegod D, Sørensen KD, Pedersen FS. Coupling of receptor interference and a host-dependent post-binding entry deficiency in a gammaretroviral envelope protein. Retrovirology 2010; 7:9. [PMID: 20137084 PMCID: PMC2827363 DOI: 10.1186/1742-4690-7-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 02/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background SL3-2 is a unique polytropic murine gammaretroviral isolate that is only able to infect murine cells. We have previously shown that two mutations R212G and T213I located on the surface of the receptor binding domain in a region designated the VR3 loop can alter the species tropism of this envelope protein. This location suggests that the VR3 loop composition has an influence on receptor interaction and thereby affects binding as well as superinfection resistance. In order to investigate this further, we have studied the binding and interference patterns of the SL3-2 envelope and its mutants. Results We find unexpectedly that wild type SL3-2 envelope binds equally well to both permissive and non-permissive cells, indicating a post binding defect when interacting with the human Xpr1. Using replication competent viruses containing envelopes from SL3-2 or its mutants we find that the same amino acid mutations can dramatically alter the interference profile of this polytropic ENV, suggesting that the same amino acid changes that cause the post binding defect also influence interaction with the receptor. Conclusions The envelope protein of SL3-2 MLV shows an entry defect on non-murine cells. This is coupled to a dramatically reduced ability to interfere with entry of other polytropic viruses. Two point mutations in the VR3 loop of the receptor binding domain of this envelope result both in a much increased interference ability and in removing the post-binding defect on non-murine cells, suggesting that both of these phenotypes are a consequence of insufficient interaction between the envelope and the receptor
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Molecular Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
24
|
Villarreal LP. The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 2009; 1178:194-232. [PMID: 19845639 DOI: 10.1111/j.1749-6632.2009.05020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable colonization of the host by viruses (genetic parasites) can alter the systems of host identity and provide immunity against related viruses. To attain the needed stability, some viruses of prokaryotes (P1 phage) use a strategy called an addiction module. The linked protective and destructive gene functions of an addiction module insures both virus persistence but will also destroy cells that interrupt this module and thereby prevent infection by competitors. Previously, I have generalized this concept to also include persistent and lytic states of virus infection, which can be considered as a virus addiction module. Such states often involve defective viruses. In this report, I examine the origin of the adaptive immune system from the perspective of a virus addiction module. The likely role of both endogenous and exogenous retroviruses, DNA viruses, and their defective elements is considered in the origin of all the basal components of adaptive immunity (T-cell receptor, RAG-mediated gene rearrangement, clonal lymphocyte proliferation, antigen surface presentation, apoptosis, and education of immune cells). It is concluded that colonization by viruses and their defectives provides a more coherent explanation for the origin of adaptive immunity.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
25
|
Ebert PJR, Jiang S, Xie J, Li QJ, Davis MM. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 2009; 10:1162-9. [PMID: 19801983 PMCID: PMC3762483 DOI: 10.1038/ni.1797] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/01/2009] [Indexed: 11/09/2022]
Abstract
Thymic positive selection is based on the interactions of T cell antigen receptors (TCRs) with self peptide-major histocompatibility complex (MHC) ligands, but the identity of selecting peptides for MHC class II-restricted TCRs and the functional consequences of this peptide specificity are not clear. Here we identify several endogenous self peptides that positively selected the MHC class II-restricted 5C.C7 TCR. The most potent of these also enhanced mature T cell activation, which supports the hypothesis that one function of positive selection is to produce T cells that can use particular self peptide-MHC complexes for activation and/or homeostasis. We also show that inhibiting the microRNA miR-181a resulted in maturation of T cells that overtly reacted toward these erstwhile positively selecting peptides. Therefore, miR-181a helps to guarantee the clonal deletion of particular moderate-affinity clones by modulating the TCR signaling threshold of thymocytes.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
26
|
Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor. Retrovirology 2009; 6:87. [PMID: 19811656 PMCID: PMC2768677 DOI: 10.1186/1742-4690-6-87] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/07/2009] [Indexed: 12/17/2022] Open
Abstract
Background The evolutionary interactions between retroviruses and their receptors result in adaptive selection of restriction variants that can allow natural populations to evade retrovirus infection. The mouse xenotropic/polytropic (X/PMV) gammaretroviruses rely on the XPR1 cell surface receptor for entry into host cells, and polymorphic variants of this receptor have been identified in different rodent species. Results We screened a panel of X/PMVs for infectivity on rodent cells carrying 6 different XPR1 receptor variants. The X/PMVs included 5 well-characterized laboratory and wild mouse virus isolates as well as a novel cytopathic XMV-related virus, termed Cz524, isolated from an Eastern European wild mouse-derived strain, and XMRV, a xenotropic-like virus isolated from human prostate cancer. The 7 viruses define 6 distinct tropisms. Cz524 and another wild mouse isolate, CasE#1, have unique species tropisms. Among the PMVs, one Friend isolate is restricted by rat cells. Among the XMVs, two isolates, XMRV and AKR6, differ from other XMVs in their PMV-like restriction in hamster cells. We generated a set of Xpr1 mutants and chimeras, and identified critical amino acids in two extracellular loops (ECLs) that mediate entry of these different viruses, including 3 residues in ECL3 that are involved in PMV entry (E500, T507, and V508) and can also influence infectivity by AKR6 and Cz524. Conclusion We used a set of natural variants and mutants of Xpr1 to define 6 distinct host range variants among naturally occurring X/PMVs (2 XMV variants, 2 PMVs, 2 different wild mouse variants). We identified critical amino acids in XPR1 that mediate entry of these viruses. These gammaretroviruses and their XPR1 receptor are thus highly functionally polymorphic, a consequence of the evolutionary pressures that favor both host resistance and virus escape mutants. This variation accounts for multiple naturally occurring virus resistance phenotypes and perhaps contributes to the widespread distribution of these viruses in rodent and non-rodent species.
Collapse
|
27
|
Peterson KE, Du M. Innate immunity in the pathogenesis of polytropic retrovirus infection in the central nervous system. Immunol Res 2009; 43:149-59. [PMID: 18818884 DOI: 10.1007/s12026-008-8060-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuroinflammation, including astrogliosis, microgliosis, and the production of proinflammatory cytokines and chemokines is a common response in the central nervous system (CNS) to virus infection, including retrovirus infection. However, the contribution of this innate immune response in disease pathogenesis remains unresolved. Analysis of the neuroinflammatory response to polytropic retrovirus infection in the mouse has provided insight into the potential contribution of the innate immune response to retrovirus-induced neurologic disease. In this model, retroviral pathogenesis correlates with the induction of neuroinflammatory responses including the activation of astrocytes and microglia, as well as the production of proinflammatory cytokines and chemokines. Studies of the neurovirulent determinants of the polytropic envelope protein as well as studies with knockout mice suggest that retroviral pathogenesis in the brain is multifaceted and that cytokine and chemokine production may be only one mechanism of disease pathogenesis. Analysis of the activation of the innate immune response to retrovirus infection in the CNS indicates that toll-like receptor 7 (TLR7) is a contributing factor to retrovirus-induced neuroinflammation, but that other factors can compensate for the lack of TLR7 in inducing both neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South 4th Street, Hamilton, MT 59840, USA.
| | | |
Collapse
|
28
|
Caldwell HK, Young WS. Persistence of reduced aggression in vasopressin 1b receptor knockout mice on a more "wild" background. Physiol Behav 2009; 97:131-4. [PMID: 19419666 DOI: 10.1016/j.physbeh.2009.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
It has been previously reported that vasopressin 1b receptor knockout (Avpr1b(-/-)) mice have reduced levels of aggressive behavior compared to wildtype littermates. However, as the background of the mice was always a mixture of 129/SvJ and C57BL/6, we wanted to determine if the phenotype persisted when our laboratory line was crossed with a wild-derived sub-species of house mice. To this end, we crossed our Avpr1b(-/-) mice with Mus musculus castaneus, one of the few sub-species that will breed with laboratory strains. Subsequent F(2) offspring were tested in a resident-intruder behavioral test to assess aggressive behavior. We found that even on this more "wild" background, Avpr1b(-/-) mice continued to demonstrate longer attack latencies and fewer attacks in a resident-intruder test than wildtype littermates. These findings are consistent with previous reports of reduced aggressive behavior in Avpr1b(-/-) mice and show that the deficit does persist on a different background strain. Further, these findings confirm the importance of the Avpr1b to normal displays of social forms of aggressive behavior.
Collapse
Affiliation(s)
- Heather K Caldwell
- Department of Biological Sciences and the School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States.
| | | |
Collapse
|
29
|
Abstract
Up to 10% of the mouse genome is comprised of endogenous retrovirus (ERV) sequences, and most represent the remains of ancient germ line infections. Our knowledge of the three distinct classes of ERVs is inversely correlated with their copy number, and their characterization has benefited from the availability of divergent wild mouse species and subspecies, and from ongoing analysis of the Mus genome sequence. In contrast to human ERVs, which are nearly all extinct, active mouse ERVs can still be found in all three ERV classes. The distribution and diversity of ERVs has been shaped by host-virus interactions over the course of evolution, but ERVs have also been pivotal in shaping the mouse genome by altering host genes through insertional mutagenesis, by adding novel regulatory and coding sequences, and by their co-option by host cells as retroviral resistance genes. We review mechanisms by which an adaptive coexistence has evolved. (Part of a multi-author review).
Collapse
Affiliation(s)
- C. Stocking
- Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | - C. A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0460, Bethesda, Maryland, 20892-0460 USA
| |
Collapse
|
30
|
Abstract
Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.
Collapse
|
31
|
Yan Y, Knoper RC, Kozak CA. Wild mouse variants of envelope genes of xenotropic/polytropic mouse gammaretroviruses and their XPR1 receptors elucidate receptor determinants of virus entry. J Virol 2007; 81:10550-7. [PMID: 17634227 PMCID: PMC2045450 DOI: 10.1128/jvi.00933-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mouse xenotropic and polytropic leukemia viruses (XMVs and PMVs) are closely related gammaretroviruses that use the XPR1 receptor for entry. To identify amino acid residues in XPR1 important for virus entry, we tested mouse cells derived from evolutionarily divergent species for susceptibility to prototypical PMVs, XMVs, and the wild mouse isolate CasE#1. CasE#1 has a variant XMV/PMV host range, and sequence analysis of the CasE#1 env gene identifies segments related to PMVs and XMVs. Cells from the Asian mouse species Mus pahari show a unique pattern of susceptibility to these three viruses; these cells are susceptible to XMVs and CasE#1 but are resistant to PMVs, whereas NIH 3T3 cells show the reciprocal pattern, susceptibility to only PMVs. The M. pahari XPR1 gene differs from that of NIH 3T3 in the two extracellular loops (ECLs) previously shown to mediate virus entry (M. Marin, C. S. Tailor, A. Nouri, S. L. Kozak, and D. Kabat, J. Virol. 73:9362-9368, 1999, and N. S. Van Hoeven and A. D. Miller, Retrovirology 2:76, 2005). Using transfected hamster cells expressing chimeric and mutated XPR1s, we demonstrated that the susceptibility differences between NIH 3T3 and M. pahari cells are receptor mediated, that PMV entry requires residues in ECL3, that the CasE#1 entry determinant is in ECL4, and that determinants for XMV entry are in both ECL3 and ECL4. Additional substitutions in ECL3 and ECL4 modulate virus susceptibility and suggest that ECL3 and ECL4 may contribute to the formation of a single virus receptor site. The position of M. pahari at the base of the Mus phylogenetic tree indicates that XPR1-mediated susceptibility to XMVs is the ancestral type in this genus and that the phenotypic variants of mouse XPR1 likely arose in conjunction with exposure to gammaretrovirus infections and coevolutionary adaptations in the viral envelope.
Collapse
Affiliation(s)
- Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | | | | |
Collapse
|
32
|
Howard TM, Sheng Z, Wang M, Wu Y, Rasheed S. Molecular and phylogenetic analyses of a new amphotropic murine leukemia virus (MuLV-1313). Virol J 2006; 3:101. [PMID: 17147829 PMCID: PMC1769482 DOI: 10.1186/1743-422x-3-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 12/05/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The amphotropic murine leukemia viruses (MuLV-A's) are naturally occurring, exogenously acquired gammaretroviruses that are indigenous to the Southern California wild mice. These viruses replicate in a wide range of cell types including human cells in vitro and they can cause both hematological and neurological disorders in feral as well as in the inbred laboratory mice. Since MuLV-A's also exhibit discrete interference and neutralization properties, the envelope proteins of these viruses have been extremely useful for studying virus-host cell interactions and as vehicles for transfer of foreign genes into a variety of hosts including human cells. However, the genomic structure of any of the several known MuLV-A's has not been established and the evolutionary relationship of amphotropic retroviruses to the numerous exogenous or endogenous MuLV strains remains elusive. Herein we present a complete genetic structure of a novel amphotropic virus designated MuLV-1313 and demonstrate that this retrovirus together with other MuLV-A's belongs to a distinct molecular, biological and phylogenetic class among the MuLV strains isolated from a large number of the laboratory inbred or feral mice. RESULTS The host range of MuLV-1313 is similar to the previously isolated MuLV-A's except that this virus replicates efficiently in mammalian as well as in chicken cells. Compared to ENV proteins of other MuLV-A's (4070A, 1504A and 10A-1), the gp70 protein of MuLV-1313 exhibits differences in its signal peptides and the proline-rich hinge regions. However, the MuLV-1313 envelope protein is totally unrelated to those present in a broad range of murine retroviruses that have been isolated from various inbred and feral mice globally. Genetic analysis of the entire MuLV-1313 genome by dot plot analyses, which compares each nucleotide of one genome with the corresponding nucleotide of another, revealed that the genome of this virus, with the exception of the env gene, is more closely related to the biologically distinct wild mouse ecotropic retrovirus (Cas-Br-E) isolated from another region of the Southern California, than to any of the 15 MuLV strains whose full-length sequences are present in the GenBank. This finding was corroborated by phylogenetic analyses and hierarchical clustering of the entire genomic sequence of MuLV-1313, which also placed all MULV-A's in a genetically distinct category among the large family of retroviruses isolated from numerous mouse strains globally. Likewise, construction of separate dendrograms for each of the Gag, Pol and Env proteins of MuLV-1313 demonstrated that the amphotropic retroviruses belong to a phylogenetically exclusive group of gammaretroviruses compared to all known MuLV strains. CONCLUSION The molecular, biological and phylogenetic properties of amphotropic retroviruses including MuLV-1313 are distinct compared to a large family of exogenously- or endogenously-transmitted ecotropic, polytropic and xenotropic MuLV strains of the laboratory and feral mice. Further, both the naturally occurring amphotropic and a biologically discrete ecotropic retrovirus of the Southern California wild mice are more closely related to each other on the evolutionary tree than any other mammalian gammaretrovirus indicating a common origin of these viruses. This is the first report of a complete genomic analysis of a unique group of phylogenetically distinct amphotropic virus.
Collapse
MESH Headings
- Animals
- Cell Line
- Chick Embryo
- DNA, Viral/analysis
- Evolution, Molecular
- Gammaretrovirus/classification
- Gammaretrovirus/genetics
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, pol/chemistry
- Gene Products, pol/genetics
- Genome, Viral/genetics
- Leukemia Virus, Murine/classification
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Mice
- Molecular Sequence Data
- Phylogeny
- Rats
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Thomas M Howard
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Zhijuan Sheng
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- County of Los Angeles Department of Health Services Public Health Programs, HIV-Epidemiology Program 600 S Commonwealth Ave., Suite 805 Los Angeles, CA 90005-4001, USA
| | - Mingwu Wang
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- Department of Ophthalmology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Yongchun Wu
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Suraiya Rasheed
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| |
Collapse
|
33
|
Nethe M, Berkhout B, van der Kuyl AC. Retroviral superinfection resistance. Retrovirology 2005; 2:52. [PMID: 16107223 PMCID: PMC1224871 DOI: 10.1186/1742-4690-2-52] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 08/18/2005] [Indexed: 11/10/2022] Open
Abstract
The retroviral phenomenon of superinfection resistance (SIR) defines an interference mechanism that is established after primary infection, preventing the infected cell from being superinfected by a similar type of virus. This review describes our present understanding of the underlying mechanisms of SIR established by three characteristic retroviruses: Murine Leukaemia Virus (MuLV), Foamy Virus (FV), and Human Immunodeficiency Virus (HIV). In addition, SIR is discussed with respect to HIV superinfection of humans. MuLV resistant mice exhibit two genetic resistance traits related to SIR. The cellular Fv4 gene expresses an Env related protein that establishes resistance against MuLV infection. Another mouse gene (Fv1) mediates MuLV resistance by expression of a sequence that is distantly related to Gag and that blocks the viral infection after the reverse transcription step. FVs induce two distinct mechanisms of superinfection resistance. First, expression of the Env protein results in SIR, probably by occupancy of the cellular receptors for FV entry. Second, an increase in the concentration of the viral Bet (Between-env-and-LTR-1-and-2) protein reduces proviral FV gene expression by inhibition of the transcriptional activator protein Tas (Transactivator of spumaviruses). In contrast to SIR in FV and MuLV infection, the underlying mechanism of SIR in HIV-infected cells is poorly understood. CD4 receptor down-modulation, a major characteristic of HIV-infected cells, has been proposed to be the main mechanism of SIR against HIV, but data have been contradictory. Several recent studies report the occurrence of HIV superinfection in humans; an event associated with the generation of recombinant HIV strains and possibly with increased disease progression. The role of SIR in protecting patients from HIV superinfection has not been studied so far. The phenomenon of SIR may also be important in the protection of primates that are vaccinated with live attenuated simian immunodeficiency virus (SIV) against pathogenic SIV variants. As primate models of SIV infection closely resemble HIV infection, a better knowledge of SIR-induced mechanisms could contribute to the development of an HIV vaccine or other antiviral strategies.
Collapse
Affiliation(s)
- Micha Nethe
- Dept. of Human Retrovirology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Dept. of Human Retrovirology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Dept. of Human Retrovirology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|