1
|
Wu J, Meng L, Gaïa M, Hikida H, Okazaki Y, Endo H, Ogata H. Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. Mol Biol Evol 2024; 41:msae161. [PMID: 39093595 PMCID: PMC11334073 DOI: 10.1093/molbev/msae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.
Collapse
Affiliation(s)
- Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry F-91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris F-75016, France
| | - Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
2
|
Machado TB, Picorelli ACR, de Azevedo BL, de Aquino ILM, Queiroz VF, Rodrigues RAL, Araújo JP, Ullmann LS, dos Santos TM, Marques RE, Guimarães SL, Andrade ACSP, Gularte JS, Demoliner M, Filippi M, Pereira VMAG, Spilki FR, Krupovic M, Aylward FO, Del-Bem LE, Abrahão JS. Gene duplication as a major force driving the genome expansion in some giant viruses. J Virol 2023; 97:e0130923. [PMID: 38092658 PMCID: PMC10734413 DOI: 10.1128/jvi.01309-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.
Collapse
Affiliation(s)
- Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agnello C. R. Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna L. de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isabella L. M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Leila S. Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Thiago M. dos Santos
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel L. Guimarães
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Cláudia S. P. Andrade
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Laval, Québec, Canada
| | - Juliana S. Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Rigou S, Santini S, Abergel C, Claverie JM, Legendre M. Past and present giant viruses diversity explored through permafrost metagenomics. Nat Commun 2022; 13:5853. [PMID: 36207343 PMCID: PMC9546926 DOI: 10.1038/s41467-022-33633-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of Nucleocytoviricota in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample. Pithoviridae and Orpheoviridae-like viruses were the most important contributors. A complete 1.6 Mb Pithoviridae-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.
Collapse
Affiliation(s)
- Sofia Rigou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Sébastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France.
| |
Collapse
|
4
|
Crystal structures of FNIP/FGxxFN motif-containing leucine-rich repeat proteins. Sci Rep 2022; 12:16430. [PMID: 36180492 PMCID: PMC9525666 DOI: 10.1038/s41598-022-20758-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
The Cafeteria roenbergensis virus (Crov), Dictyostelium, and other species encode a large family of leucine-rich repeat (LRR) proteins with FGxxFN motifs. We determined the structures of two of them and observed several unique structural features that set them aside from previously characterized LRR family members. Crov588 comprises 25 regular repeats with a LxxLxFGxxFNQxIxENVLPxx consensus, forming a unique closed circular repeat structure. Novel features include a repositioning of a conserved asparagine at the middle of the repeat, a double phenylalanine spine that generates an alternate core packing arrangement, and a histidine/tyrosine ladder on the concave surface. Crov539 is smaller, comprising 12 repeats of a similar LxxLxFGxxFNQPIExVxW/LPxx consensus and forming an unusual cap-swapped dimer structure. The phenylalanine spine of Crov539 is supplemented with a tryptophan spine, while a hydrophobic isoleucine-rich patch is found on the central concave surface. We present a detailed analysis of the structures of Crov588 and Crov539 and compare them to related repeat proteins and other LRR classes.
Collapse
|
5
|
Role of an FNIP Repeat Domain-Containing Protein Encoded by Megavirus Baoshan during Viral Infection. J Virol 2022; 96:e0081322. [PMID: 35762756 PMCID: PMC9327691 DOI: 10.1128/jvi.00813-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FNIP repeat domain-containing protein (FNIP protein) is a little-studied atypical leucine-rich repeat domain-containing protein found in social amoebae and mimiviruses. Here, a recently reported mimivirus of lineage C, Megavirus baoshan, was analyzed for FNIP protein genes. A total of 82 FNIP protein genes were identified, each containing up to 26 copies of the FNIP repeat, and mostly having an F-box domain at the N terminus. Both nucleotide and amino acid sequences of FNIP repeat were highly conserved. Most of the FNIP protein genes clustered together tandemly in groups of two to 14 genes. Nearly all FNIP protein genes shared similar expression patterns and were expressed 4 to 9 h postinfection. A typical viral FNIP protein, Mb0983, was selected for functional analysis. Protein interactome analysis identified two small GTPases, Rap1B and Rab7A, that interacted with Mb0983 in cytoplasm. The overexpression of Mb0983 in Acanthamoeba castellanii accelerated the degradation of Rap1B and Rab7A during viral infection. Mb0983 also interacted with host SKP1 and cullin-1, which were conserved components of the SKP1-cullin-1-F-box protein (SCF)-type ubiquitin E3 ligase complex. Deletion of the F-box domain of Mb0983 not only abolished its interaction with SKP1 and cullin-1 but also returned the speed of Rap1B and Rab7A degradation to normal in infected A. castellanii. These results suggested that Mb0983 is a part of the SCF-type ubiquitin E3 ligase complex and plays a role in the degradation of Rap1B and Rab7A. They also implied that other viral F-box-containing FNIP proteins might have similar effects on various host proteins. IMPORTANCE Megavirus baoshan encodes 82 FNIP proteins, more than any other reported mimiviruses. Their genetic and transcriptional features suggest that they are important for virus infection and adaption. Since most mimiviral FNIP proteins have the F-box domain, they were predicted to be involved in protein ubiquitylation. FNIP protein Mb0983 interacted with host SKP1 and cullin-1 through the F-box domain, supporting the idea that it is a part of the SCF-type ubiquitin E3 ligase complex. The substrates of Mb0983 for degradation were identified as the host small GTPases Rap1B and Rab7A. Combining the facts of the presence of a large number of FNIP genes in megavirus genomes, the extremely high expression level of the viral ubiquitin gene, and the reported observation that 35% of megavirus-infected amoeba cells died without productive infection, it is likely that megavirus actively explores the host ubiquitin-proteasome pathway in infection and that viral FNIP proteins play roles in the process.
Collapse
|
6
|
Xia Y, Cheng H, Zhong J. Hybrid Sequencing Resolved Inverted Terminal Repeats in the Genome of Megavirus Baoshan. Front Microbiol 2022; 13:831659. [PMID: 35620092 PMCID: PMC9127612 DOI: 10.3389/fmicb.2022.831659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mimivirus is a group of amoeba-infecting DNA viruses with linear double-strand genome. It is found to be ubiquitous in nature worldwide. Here, we reported the complete genome of a new member of Mimivirus lineage C isolated from a fresh water pond in Shanghai, China. Its 1,224,839-bp genome encoded 1,062 predicted ORFs. Combining the results of Nanopore, Illumina, and Sanger sequencing technologies, two identical 23,919 bp inverted terminal repeats (ITRs) were identified at both extremities of the viral linear genome, one of which was missing in the draft assembly based on Illumina data only. The discovery of ITRs of Mimivirus provided a new insight into Mimivirus genome structure.
Collapse
Affiliation(s)
- Yucheng Xia
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanyu Cheng
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Zhong
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Kou X, Liu Q, Sun Y, Wang P, Zhang S, Wu J. The Peptide PbrPSK2 From Phytosulfokine Family Induces Reactive Oxygen Species (ROS) Production to Regulate Pear Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:601993. [PMID: 33329671 PMCID: PMC7734187 DOI: 10.3389/fpls.2020.601993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Phytosulfokines (PSKs) are plant peptide growth factors that participate in multiple biological processes, including cell elongation and immune signaling. However, little is known about PSKs in Rosaceae species. Here, we identified 10 PSK genes in pear (Pyrus bretschneideri), 11 in apple (Malus × domestica), four in peach (Prunus persica), six in strawberry (Fragaria vesca), and five in Chinese plum (Prunus mume). In addition, we undertook comparative analysis of the PSK gene family in pear and the four other species. Evolutionary analysis indicated that whole genome duplication events (WGD) may have contributed to the expansion of the PSK gene family in Rosaceae. Transcriptomes, reverse transcription-PCR and quantitative real-time-PCR analyses were undertaken to demonstrate that PbrPSK2 is highly expressed in pear pollen. In addition, by adding purified E. coli-expressed PbrPSK2 to pollen and using an antisense oligonucleotide approach, we showed that PbrPSK2 can promote pear pollen tube elongation in a dose-dependent manner. Furthermore, PbrPSK2 was found to mediate the production of reactive oxygen species to regulate pear pollen tube growth.
Collapse
|
9
|
Gao C, Pallett MA, Croll TI, Smith GL, Graham SC. Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55. J Biol Chem 2019; 294:6416-6429. [PMID: 30819806 PMCID: PMC6484134 DOI: 10.1074/jbc.ra118.006561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
BTB-Kelch proteins are substrate-specific adaptors for cullin-3 (Cul3) RING-box-based E3 ubiquitin ligases, mediating protein ubiquitylation for subsequent proteasomal degradation. Vaccinia virus encodes three BTB-Kelch proteins: A55, C2, and F3. Viruses lacking A55 or C2 have altered cytopathic effects in cultured cells and altered pathology in vivo Previous studies have shown that the ectromelia virus orthologue of A55 interacts with Cul3 in cells. We report that the N-terminal BTB-BACK (BB) domain of A55 binds directly to the Cul3 N-terminal domain (Cul3-NTD), forming a 2:2 complex in solution. We solved the structure of an A55BB/Cul3-NTD complex from anisotropic crystals diffracting to 2.3/3.7 Å resolution in the best/worst direction, revealing that the overall interaction and binding interface closely resemble the structures of cellular BTB/Cul3-NTD complexes, despite low sequence identity between A55 and cellular BTB domains. Surprisingly, despite this structural similarity, the affinity of Cul3-NTD for A55BB was stronger than for cellular BTB proteins. Glutamate substitution of the A55 residue Ile-48, adjacent to the canonical φX(D/E) Cul3-binding motif, reduced affinity of A55BB for Cul3-NTD by at least 2 orders of magnitude. Moreover, Ile-48 and the φX(D/E) motif are conserved in A55 orthologues from other poxviruses, but not in the vaccinia virus proteins C2 or F3. The high-affinity interaction between A55BB and Cul3-NTD suggests that, in addition to directing the Cul3-RING E3 ligase complex to degrade cellular/viral target proteins that are normally unaffected, A55 may also sequester Cul3 from cellular adaptor proteins, thereby protecting substrates of these cellular adaptors from ubiquitylation and degradation.
Collapse
Affiliation(s)
- Chen Gao
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP and
| | - Mitchell A Pallett
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP and
| | - Tristan I Croll
- the Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 0XY, United Kingdom
| | - Geoffrey L Smith
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP and
| | - Stephen C Graham
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP and
| |
Collapse
|
10
|
Filée J. Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis. Curr Opin Virol 2018; 33:81-88. [DOI: 10.1016/j.coviro.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
11
|
Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, Blanchard J, Woyke T. Hidden diversity of soil giant viruses. Nat Commun 2018; 9:4881. [PMID: 30451857 PMCID: PMC6243002 DOI: 10.1038/s41467-018-07335-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023] Open
Abstract
Known giant virus diversity is currently skewed towards viruses isolated from aquatic environments and cultivated in the laboratory. Here, we employ cultivation-independent metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate viruses greatly expand phylogenetic diversity of known giant viruses and either represented novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupanviruses. One assembled genome with a size of 2.4 Mb represents the largest currently known viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we find more than 240 major capsid proteins encoded on unbinned metagenome fragments, further indicating that giant viruses are underexplored in soil ecosystems. The fact that most of these novel viruses evaded detection in bulk metagenomes suggests that mini-metagenomics could be a valuable approach to unearth viral giants.
Collapse
Affiliation(s)
- Frederik Schulz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| | - Lauren Alteio
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Danielle Goudeau
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Elizabeth M Ryan
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Feiqiao B Yu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rex R Malmstrom
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jeffrey Blanchard
- Department of Biology, University of Massachusetts, Amherst, MA, USA.
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|
12
|
Colson P, Ominami Y, Hisada A, La Scola B, Raoult D. Giant mimiviruses escape many canonical criteria of the virus definition. Clin Microbiol Infect 2018; 25:147-154. [PMID: 30267933 DOI: 10.1016/j.cmi.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The discovery of mimivirus in 2003 prompted the quest for other giant viruses of amoebae. Mimiviruses and their relatives were found to differ considerably from other viruses. Their study led to major advances in virology and evolutionary biology. AIMS We summarized the widening gap between mimiviruses and other viruses. SOURCES We collected data from articles retrieved from PubMed using as keywords 'giant virus', 'mimivirus' and 'virophage', as well as quoted references from these articles. CONTENT Data accumulated during the last 15 years on mimiviruses and other giant viruses highlight that there is a quantum leap between these infectious agents, the complexity of which is similar to that of intracellular microorganisms, and classical viruses. Notably, in addition to their giant structures and genomes, giant viruses have abundant gene repertoires with genes unique in the virosphere, including a tremendous set of translation components. The viruses contain hundreds of proteins and many transcripts. They share a core of central and ancient proteins but their genome sequences display a substantial level of mosaicism. Finally, mimiviruses have a specific mobilome, including virophages that can integrate into their genomes, and against which they can defend themselves through integration of short fragments of the DNA of these invaders. IMPLICATIONS Mimiviruses and subsequently discovered giant viruses have changed the virus paradigm and contradict many virus definition criteria delineated for classical viruses. The major cellular hallmark that is still lacking in giant viruses is the ribosome, including both ribosomal protein and RNA encoding genes, which makes them bona fide microbes without ribosomes.
Collapse
Affiliation(s)
- P Colson
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Y Ominami
- Hitachi High-Technologies Corporation, Science & Medical Systems Business Group, Minato-ku, Tokyo, Japan
| | - A Hisada
- Hitachi Ltd, Research & Development Group, Saitama, Japan
| | - B La Scola
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - D Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
13
|
Adaptation by copy number variation in monopartite viruses. Curr Opin Virol 2018; 33:7-12. [PMID: 30015083 PMCID: PMC6289852 DOI: 10.1016/j.coviro.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
Viral gene amplification allows rapid adaptation, especially for large DNA viruses. Amplifications often incur fitness costs for viral replication. Adaptive mutations can arise in the expanded locus or elsewhere enabling collapse. Genome amplifications provide genetic substrate for the evolution of modified or new functions.
Viruses evolve rapidly in response to host defenses and to exploit new niches. Gene amplification, a common adaptive mechanism in prokaryotes, archaea, and eukaryotes, has also contributed to viral evolution, especially of large DNA viruses. In experimental systems, gene amplification is one mechanism for rapidly overcoming selective pressures. Because the amplification generally incurs a fitness cost, emergence of adaptive point mutations within the amplified locus or elsewhere in the genome can enable collapse of the locus back to a single copy. Evidence of gene amplification followed by subfunctionalization or neofunctionalization of the copies is apparent by the presence of families of paralogous genes in many DNA viruses. These observations suggest that copy number variation has contributed broadly to virus evolution.
Collapse
|
14
|
Experimental Analysis of Mimivirus Translation Initiation Factor 4a Reveals Its Importance in Viral Protein Translation during Infection of Acanthamoeba polyphaga. J Virol 2018. [PMID: 29514904 DOI: 10.1128/jvi.00337-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Acanthamoeba polyphaga mimivirus is the first giant virus ever described, with a 1.2-Mb genome which encodes 979 proteins, including central components of the translation apparatus. One of these proteins, R458, was predicted to initiate translation, although its specific role remains unknown. We silenced the R458 gene using small interfering RNA (siRNA) and compared levels of viral fitness and protein expression in silenced versus wild-type mimivirus. Silencing decreased the growth rate, but viral particle production at the end of the viral cycle was unaffected. A comparative proteomic approach using two-dimensional difference-in-gel electrophoresis (2D-DIGE) revealed deregulation of the expression of 32 proteins in silenced mimivirus, which were defined as up- or downregulated. Besides revealing proteins with unknown functions, silencing R458 also revealed deregulation in proteins associated with viral particle structures, transcriptional machinery, oxidative pathways, modification of proteins/lipids, and DNA topology/repair. Most of these proteins belong to genes transcribed at the end of the viral cycle. Overall, our data suggest that the R458 protein regulates the expression of mimivirus proteins and, thus, that mimivirus translational proteins may not be strictly redundant in relation to those from the amoeba host. As is the case for eukaryotic initiation factor 4a (eIF4a), the R458 protein is the prototypical member of the ATP-dependent DEAD box RNA helicase mechanism. We suggest that the R458 protein is required to unwind the secondary structures at the 5' ends of mRNAs and to bind the mRNA to the ribosome, making it possible to scan for the start codon. These data are the first experimental evidence of mimivirus translation-related genes, predicted to initiate protein biosynthesis.IMPORTANCE The presence in the genome of a mimivirus of genes coding for many translational processes, with the exception of ribosome constituents, has been the subject of debate since its discovery in 2003. In this work, we focused on the R458 mimivirus gene, predicted to initiate protein biosynthesis. After silencing was performed, we observed that it has no major effect on mimivirus multiplication but that it affects protein expression and fitness. This suggests that it is effectively used by mimivirus during its developmental cycle. Until large-scale genetic manipulation of giant viruses becomes possible, the silencing strategy used here on mimivirus translation-related factors will open the way to understanding the functions of these translational genes.
Collapse
|
15
|
Staggemeier R, Arantes T, Caumo KS, Rott MB, Spilki FR. Detection and quantification of human adenovirus genomes in Acanthamoeba isolated from swimming pools. AN ACAD BRAS CIENC 2018; 88 Suppl 1:635-41. [PMID: 27142544 DOI: 10.1590/0001-3765201620150151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/06/2015] [Indexed: 11/22/2022] Open
Abstract
Acanthamoeba is the most common free-living environmental amoeba, it may serve as an important vehicle for various microorganisms living in the same environment, such as viruses, being pathogenic to humans. This study aimed to detect and quantify human adenoviruses (HAdV) in Acanthamoebas isolated from water samples collected from swimming pools in the city of Porto Alegre, Southern Brazil. Free-living amoebae of the genus Acanthamoeba were isolated from water samples, and isolates (n=16) were used to investigate the occurrence of HAdVs. HAdV detection was performed by quantitative real-time polymerase chain reaction (qPCR). HAdVs were detected in 62.5% (10/16) of Acanthamoeba isolates, ranging from 3.24x103 to 5.14x105 DNA copies per milliliter of isolate. HAdV viral loads found in this study are not negligible, especially because HAdV infections are associated with several human diseases, including gastroenteritis, respiratory distress, and ocular diseases. These findings reinforce the concept that Acanthamoeba may act as a reservoir and promote HAdV transmission through water.
Collapse
Affiliation(s)
- Rodrigo Staggemeier
- Laboratório de Microbiologia Molecular, Universidade Feevale, RS-239, 2755, 96652-000 Novo Hamburgo, RS, Brasil, Universidade FEEVALE, Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo RS , Brazil
| | - Thalita Arantes
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e ParasitologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul/UFRGS, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brasil, Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS , Brazil
| | - Karin S Caumo
- Laboratório de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul/UFRGS, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brasil, Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS , Brazil
| | - Marilise B Rott
- Laboratório de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul/UFRGS, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brasil, Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS , Brazil
| | - Fernando R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, RS-239, 2755, 96652-000 Novo Hamburgo, RS, Brasil, Universidade FEEVALE, Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo RS , Brazil
| |
Collapse
|
16
|
Almeida GMDF, Silva LCF, Colson P, Abrahao JS. Mimiviruses and the Human Interferon System: Viral Evasion of Classical Antiviral Activities, But Inhibition By a Novel Interferon-β Regulated Immunomodulatory Pathway. J Interferon Cytokine Res 2018; 37:1-8. [PMID: 28079476 DOI: 10.1089/jir.2016.0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review we discuss the role of mimiviruses as potential human pathogens focusing on clinical and evolutionary evidence. We also propose a novel antiviral immunomodulatory pathway controlled by interferon-β (IFN-β) and mediated by immune-responsive gene 1 (IRG1) and itaconic acid, its product. Acanthamoeba polyphaga Mimivirus (APMV) was isolated from amoebae in a hospital while investigating a pneumonia outbreak. Mimivirus ubiquity and role as protist pathogens are well understood, and its putative status as a human pathogen has been gaining strength as more evidence is being found. The study of APMV and human cells interaction revealed that the virus is able to evade the IFN system by inhibiting the regulation of interferon-stimulated genes, suggesting that the virus and humans have had host-pathogen interactions. It also has shown that the virus is capable of growing on IFN-α2, but not on IFN-β-treated cells, hinting at an exclusive IFN-β antiviral pathway. Our hypothesis based on preliminary data and published articles is that IFN-β preferentially upregulates IRG1 in human macrophagic cells, which in turn produces itaconic acid. This metabolite links metabolism to antiviral activity by inactivating the virus, in a novel immunomodulatory pathway relevant for APMV infections and probably to other infectious diseases as well.
Collapse
Affiliation(s)
| | - Lorena C Ferreira Silva
- 2 Laboratorio de Virus, Departamento de Microbiologia, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Philippe Colson
- 3 Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Universite Faculté de Médecine , Marseille, France
| | - Jonatas Santos Abrahao
- 2 Laboratorio de Virus, Departamento de Microbiologia, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,3 Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Universite Faculté de Médecine , Marseille, France
| |
Collapse
|
17
|
Diesend J, Kruse J, Hagedorn M, Hammann C. Amoebae, Giant Viruses, and Virophages Make Up a Complex, Multilayered Threesome. Front Cell Infect Microbiol 2018; 7:527. [PMID: 29376032 PMCID: PMC5768912 DOI: 10.3389/fcimb.2017.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories.
Collapse
Affiliation(s)
- Jan Diesend
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Janis Kruse
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
18
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
19
|
Colson P, La Scola B, Raoult D. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes. Annu Rev Virol 2017; 4:61-85. [PMID: 28759330 DOI: 10.1146/annurev-virology-101416-041816] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| |
Collapse
|
20
|
Abstract
Viruses are incapable of autonomous energy production. Although many experimental studies make it clear that viruses are parasitic entities that hijack the molecular resources of the host, a detailed estimate for the energetic cost of viral synthesis is largely lacking. To quantify the energetic cost of viruses to their hosts, we enumerated the costs associated with two very distinct but representative DNA and RNA viruses, namely, T4 and influenza. We found that, for these viruses, translation of viral proteins is the most energetically expensive process. Interestingly, the costs of building a T4 phage and a single influenza virus are nearly the same. Due to influenza's higher burst size, however, the overall cost of a T4 phage infection is only 2-3% of the cost of an influenza infection. The costs of these infections relative to their host's estimated energy budget during the infection reveal that a T4 infection consumes about a third of its host's energy budget, whereas an influenza infection consumes only ≈ 1%. Building on our estimates for T4, we show how the energetic costs of double-stranded DNA phages scale with the capsid size, revealing that the dominant cost of building a virus can switch from translation to genome replication above a critical size. Last, using our predictions for the energetic cost of viruses, we provide estimates for the strengths of selection and genetic drift acting on newly incorporated genetic elements in viral genomes, under conditions of energy limitation.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125;
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
21
|
Jain S, Panda A, Colson P, Raoult D, Pontarotti P. MimiLook: A Phylogenetic Workflow for Detection of Gene Acquisition in Major Orthologous Groups of Megavirales. Viruses 2017; 9:v9040072. [PMID: 28387730 PMCID: PMC5408678 DOI: 10.3390/v9040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
With the inclusion of new members, understanding about evolutionary mechanisms and processes by which members of the proposed order, Megavirales, have evolved has become a key area of interest. The central role of gene acquisition has been shown in previous studies. However, the major drawback in gene acquisition studies is the focus on few MV families or putative families with large variation in their genetic structure. Thus, here we have tried to develop a methodology by which we can detect horizontal gene transfers (HGTs), taking into consideration orthologous groups of distantly related Megavirale families. Here, we report an automated workflow MimiLook, prepared as a Perl command line program, that deduces orthologous groups (OGs) from ORFomes of Megavirales and constructs phylogenetic trees by performing alignment generation, alignment editing and protein-protein BLAST (BLASTP) searching across the National Center for Biotechnology Information (NCBI) non-redundant (nr) protein sequence database. Finally, this tool detects statistically validated events of gene acquisitions with the help of the T-REX algorithm by comparing individual gene tree with NCBI species tree. In between the steps, the workflow decides about handling paralogs, filtering outputs, identifying Megavirale specific OGs, detection of HGTs, along with retrieval of information about those OGs that are monophyletic with organisms from cellular domains of life. By implementing MimiLook, we noticed that nine percent of Megavirale gene families (i.e., OGs) have been acquired by HGT, 80% OGs were Megaviralespecific and eight percent were found to be sharing common ancestry with members of cellular domains (Eukaryote, Bacteria, Archaea, Phages or other viruses) and three percent were ambivalent. The results are briefly discussed to emphasize methodology. Also, MimiLook is relevant for detecting evolutionary scenarios in other targeted phyla with user defined modifications. It can be accessed at following link 10.6084/m9.figshare.4653622.
Collapse
Affiliation(s)
- Sourabh Jain
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
| | - Arup Panda
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 INSERM U1095IRD 198, Faculté de Médecine, 13284 Marseille, France.
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Pierre Pontarotti
- Aix-Marseille Université, Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, 13284 Marseille, France.
| |
Collapse
|
22
|
Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 2017; 15:243-254. [PMID: 28239153 PMCID: PMC7096837 DOI: 10.1038/nrmicro.2016.197] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acanthamoeba polyphaga mimivirus (APMV) and subsequently discovered giant viruses of amoebae challenge the previous definition of viruses and their classification. The replication cycle, structure, genomic make-up and plasticity of giant viruses differ from those of traditional viruses. They extend the definition of viruses into a broader range of biological entities, some of which are very simple and others of which have a complexity that is comparable to that of other microorganisms. Giant viruses of amoebae have virus particles as large as some microorganisms that are visible by light microscopy and that have a stunning level of complexity. Their genomes are mosaics and contain large repertoires of genes, some of which are hallmarks of cellular organisms, although the majority of which have unknown functions. Mimiviruses are associated with a specific mobilome and are parasitized by viruses that they can defend against. Several hypotheses on the ancient origin and evolutionary relationship between cellular organisms and giant viruses of amoebae have been proposed, and these topics continue to be debated. The detection of giant viruses of amoebae in humans and the study of their potential pathogenicity are emerging fields.
The discovery of the giant amoebal virus mimivirus, in 2003, opened up a new area of virology. Extended studies, including those of mimiviruses, have since revealed that these viruses have genetic, proteomic and structural features that are more complex than those of conventional viruses. The accidental discovery of the giant virus of amoeba — Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) — in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Anthony Levasseur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, 332 National Soybean Research Center, 1101 West Peabody Drive, Urbana, Illinois 61801, USA
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
23
|
Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME JOURNAL 2016; 11:808-812. [PMID: 27911439 DOI: 10.1038/ismej.2016.154] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/04/2016] [Accepted: 09/18/2016] [Indexed: 11/10/2022]
Abstract
Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermosensitive and a thermotolerant type C1 Symbiodinium population at ambient (27 °C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermosensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27 °C, but at 32 °C, expression levels of +ssRNAV transcripts decreased, while expression levels of anti-viral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32 °C, but thermal induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermosensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.
Collapse
Affiliation(s)
- Rachel Ashley Levin
- Centre for Marine Bio-Innovation, The University of New South Wales (UNSW), Sydney, NSW, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Robert Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | |
Collapse
|
24
|
Efficiency in Complexity: Composition and Dynamic Nature of Mimivirus Replication Factories. J Virol 2016; 90:10039-10047. [PMID: 27581975 DOI: 10.1128/jvi.01319-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
The recent discovery of multiple giant double-stranded DNA (dsDNA) viruses blurred the consensual distinction between viruses and cells due to their size, as well as to their structural and genetic complexity. A dramatic feature revealed by these viruses as well as by many positive-strand RNA viruses is their ability to rapidly form elaborate intracellular organelles, termed "viral factories," where viral progeny are continuously generated. Here we report the first isolation of viral factories at progressive postinfection time points. The isolated factories were subjected to mass spectrometry-based proteomics, bioinformatics, and imaging analyses. These analyses revealed that numerous viral proteins are present in the factories but not in mature virions, thus implying that multiple and diverse proteins are required to promote the efficiency of viral factories as "production lines" of viral progeny. Moreover, our results highlight the dynamic and highly complex nature of viral factories, provide new and general insights into viral infection, and substantiate the intriguing notion that viral factories may represent the living state of viruses. IMPORTANCE Large dsDNA viruses such as vaccinia virus and the giant mimivirus, as well as many positive-strand RNA viruses, generate elaborate cytoplasmic organelles in which the multiple and diverse transactions required for viral replication and assembly occur. These organelles, which were termed "viral factories," are attracting much interest due to the increasing realization that the rapid and continuous production of viral progeny is a direct outcome of the elaborate structure and composition of the factories, which act as efficient production lines. To get new insights into the nature and function of viral factories, we devised a method that allows, for the first time, the isolation of these organelles. Analyses of the isolated factories generated at different times postinfection by mass spectrometry-based proteomics provide new perceptions of their role and reveal the highly dynamic nature of these organelles.
Collapse
|
25
|
Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF. Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biol Evol 2016; 8:3065-3082. [PMID: 27604880 PMCID: PMC5633665 DOI: 10.1093/gbe/evw219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes, particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a significant reduction in viral fitness. Moreover, upon analyzing the genomes of the evolved viruses, we always observed the deletion of the duplicated gene copy and maintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the experimental data, we developed a mathematical model to characterize the stability of genetically redundant sequences, and showed that fitness effects are not enough to predict genomic stability. A context-dependent recombination rate is also required, with the context being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene duplications in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the likelihood of the maintenance of duplicated genes.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: Institute of Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Pablo Higueras
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain
| | - Josep Sardanyés
- ICREA Complex Systems Laboratory, Universitat Pompeu Fabra, Barcelona, Spain Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Instituto de Biología Integrativa y de Sistems (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Parc Científic de la Universitat de València, Paterna, València, Spain The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
26
|
Villarreal LP. Persistent virus and addiction modules: an engine of symbiosis. Curr Opin Microbiol 2016; 31:70-79. [PMID: 27039268 DOI: 10.1016/j.mib.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
The giant DNA viruses are highly prevalent and have a particular affinity for the lytic infection of unicellular eukaryotic host. The giant viruses can also be infected by inhibitory virophage which can provide lysis protection to their host. The combined protective and destructive action of such viruses can define a general model (PD) of virus-mediated host survival. Here, I present a general model for role such viruses play in the evolution of host symbiosis. By considering how virus mixtures can participate in addiction modules, I provide a functional explanation for persistence of virus derived genetic 'junk' in their host genomic habitats.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, Irvine, CA 926197, USA.
| |
Collapse
|
27
|
Boratto PVM, Arantes TS, Silva LCF, Assis FL, Kroon EG, La Scola B, Abrahão JS. Niemeyer Virus: A New Mimivirus Group A Isolate Harboring a Set of Duplicated Aminoacyl-tRNA Synthetase Genes. Front Microbiol 2015; 6:1256. [PMID: 26635738 PMCID: PMC4639698 DOI: 10.3389/fmicb.2015.01256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
It is well recognized that gene duplication/acquisition is a key factor for molecular evolution, being directly related to the emergence of new genetic variants. The importance of such phenomena can also be expanded to the viral world, with impacts on viral fitness and environmental adaptations. In this work we describe the isolation and characterization of Niemeyer virus, a new mimivirus isolate obtained from water samples of an urban lake in Brazil. Genomic data showed that Niemeyer harbors duplicated copies of three of its four aminoacyl-tRNA synthetase genes (cysteinyl, methionyl, and tyrosyl RS). Gene expression analysis showed that such duplications allowed significantly increased expression of methionyl and tyrosyl aaRS mRNA by Niemeyer in comparison to APMV. Remarkably, phylogenetic data revealed that Niemeyer duplicated gene pairs are different, each one clustering with a different group of mimivirus strains. Taken together, our results raise new questions about the origins and selective pressures involving events of aaRS gain and loss among mimiviruses.
Collapse
Affiliation(s)
- Paulo V M Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Thalita S Arantes
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Lorena C F Silva
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Felipe L Assis
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Erna G Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Bernard La Scola
- URMITE CNRS UMR 6236 - IRD 3R198, Aix Marseille Université Marseille, France
| | - Jônatas S Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
28
|
Assis FL, Bajrai L, Abrahao JS, Kroon EG, Dornas FP, Andrade KR, Boratto PVM, Pilotto MR, Robert C, Benamar S, Scola BL, Colson P. Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses. Viruses 2015; 7:3483-99. [PMID: 26131958 PMCID: PMC4517111 DOI: 10.3390/v7072782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/03/2022] Open
Abstract
Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.
Collapse
Affiliation(s)
- Felipe L Assis
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Leena Bajrai
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Jonatas S Abrahao
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Erna G Kroon
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Fabio P Dornas
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Kétyllen R Andrade
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Paulo V M Boratto
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Mariana R Pilotto
- Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil.
| | - Catherine Robert
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
| | - Samia Benamar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| |
Collapse
|
29
|
Filée J. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution. Front Microbiol 2015; 6:593. [PMID: 26136734 PMCID: PMC4468942 DOI: 10.3389/fmicb.2015.00593] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023] Open
Abstract
Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Génome, Comportement, Ecologie, Centre National de la Recherche Scientifique UMR 9191, IRD UMR 247, Université Paris-Saclay Gif-sur-Yvette, France
| |
Collapse
|
30
|
Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, Wilhelm SW. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology 2014; 466-467:60-70. [PMID: 25035289 DOI: 10.1016/j.virol.2014.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Aureococcus anophagefferens causes economically and ecologically destructive "brown tides" in the United States, China and South Africa. Here we report the 370,920bp genomic sequence of AaV, a virus capable of infecting and lysing A. anophagefferens. AaV is a member of the nucleocytoplasmic large DNA virus (NCLDV) group, harboring 377 putative coding sequences and 8 tRNAs. Despite being an algal virus, AaV shows no phylogenetic affinity to the Phycodnaviridae family, to which most algae-infecting viruses belong. Core gene phylogenies, shared gene content and genome-wide similarities suggest AaV is the smallest member of the emerging clade "Megaviridae". The genomic architecture of AaV demonstrates that the ancestral virus had an even smaller genome, which expanded through gene duplication and assimilation of genes from diverse sources including the host itself - some of which probably modulate important host processes. AaV also harbors a number of genes exclusive to phycodnaviruses - reinforcing the hypothesis that Phycodna- and Mimiviridae share a common ancestor.
Collapse
Affiliation(s)
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, TN 37996, United States
| | | | | | - Kay D Bidle
- Institute of Marine and Coastal Sciences, Rutgers, NJ 08901, United States
| | - William H Wilson
- Bigelow Lab for Ocean Sciences, Boothbay, ME 04544, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, TN 37996, United States.
| |
Collapse
|
31
|
Complete genome sequence of Tunisvirus, a new member of the proposed family Marseilleviridae. Arch Virol 2014; 159:2349-58. [PMID: 24770845 DOI: 10.1007/s00705-014-2023-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/08/2014] [Indexed: 02/07/2023]
Abstract
Marseillevirus is the founding member of the proposed family Marseilleviridae, which is the second discovered family of giant viruses that infect amoebae. These viruses have been recovered from environmental water samples and, more recently, from humans. Tunisvirus was isolated from fountain water in Tunis, Tunisia, by culturing on Acanthamoeba spp. and is a new marseillevirus. We describe here its 380,011 base-pair genome. A total of 484 proteins were identified, among which 320 and 358 have an ortholog in Marseillevirus and Lausannevirus (e-value<1e-2), respectively, and 259 and 299 have best reciprocal hits with a Marseillevirus and a Lausannevirus protein, respectively. In addition, a significant hit was found in organisms other than marseilleviruses for 144 Tunisvirus proteins, indicating extensive lateral gene transfers, as has been demonstrated previously for Marseillevirus. Finally, a total of 21 ORFans were identified. Phylogeny reconstructions and analysis of the gene repertoires of marseilleviruses, including the proportion of orthologs and the mean amino acid identity between genes in pairs, suggest that the proposed family Marseilleviridae encompasses three lineages. Lineage A is composed of Marseillevirus, Cannes 8 virus and Senegalvirus; lineage B is represented by Lausannevirus alone; and lineage C has Tunisvirus as its first member. Taken together, these findings suggest that the marseilleviruses display a substantial level of diversity.
Collapse
|
32
|
Mixed triple: allied viruses in unique recent isolates of highly virulent type 2 bovine viral diarrhea virus detected by deep sequencing. J Virol 2014; 88:6983-92. [PMID: 24719408 DOI: 10.1128/jvi.00620-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In February 2013, very severe acute clinical symptoms were observed in calves, heifers, and dairy cattle in several farms in North Rhine Westphalia and Lower Saxony, Germany. Deep sequencing revealed the coexistence of three distinct genome variants within recent highly virulent bovine viral diarrhea virus type 2 (BVDV-2) isolates. While the major portion (ca. 95%) of the population harbored a duplication of a 222-nucleotide (nt) segment within the p7-NS2-encoding region, the minority reflected the standard structure of a BVDV-2 genome. Additionally, unusual mutations were found in both variants, within the highly conserved p7 protein and close to the p7-NS2 cleavage site. Using a reverse genetic system with a BVDV-2a strain harboring a similar duplication, it could be demonstrated that during replication, genomes without duplication are generated de novo from genomes with duplication. The major variant with duplication is compulsorily escorted by the minor variant without duplication. RNA secondary structure prediction allowed the analysis of the unique but stable mixture of three BVDV variants and also provided the explanation for their generation. Finally, our results suggest that the variant with duplication plays the major role in the highly virulent phenotype. IMPORTANCE This study emphasizes the importance of full-genome deep sequencing in combination with manual in-depth data analysis for the investigation of viruses in basic research and diagnostics. Here we investigated recent highly virulent bovine viral diarrhea virus isolates from a 2013 series of outbreaks. We discovered a unique special feature of the viral genome, an unstable duplication of 222 nucleotides which is eventually deleted by viral polymerase activity, leading to an unexpectedly mixed population of viral genomes for all investigated isolates. Our study is of high importance to the field because we demonstrate that these insertion/deletion events allow another level of genome plasticity of plus-strand RNA viruses, in addition to the well-known polymerase-induced single nucleotide variations which are generally considered the main basis for viral adaptation and evolution.
Collapse
|
33
|
Filée J. Route of NCLDV evolution: the genomic accordion. Curr Opin Virol 2013; 3:595-9. [PMID: 23896278 DOI: 10.1016/j.coviro.2013.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 11/15/2022]
Abstract
Nucleo cytoplasmic large DNA virus (NCLDV) superfamily forms a diverse group of viruses that infects a wide range of eukaryotic hosts (e.g. vertebrates, insects, protests, etc.). These viruses are characterized by a huge range in genome size (between 100kb and 1.2Mb), coupled with an extraordinary diverse genomic repertoire. Here I will review some recent results that shed light on the origin and genome evolution of these viruses, introducing the idea that these viruses evolved using a complex process of genomic accordion that imply successive steps of genome expansions (duplication and gene transfers) and genome reduction, in addition to movement and amplification of diverse mobile genetic elements.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR 9034, Université Paris-Sud, Avenue de la Terrasse 91198 Gif sur Yvette cedex, France.
| |
Collapse
|
34
|
Abstract
The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world.
Collapse
|
35
|
Wise MJ. Mean protein evolutionary distance: a method for comparative protein evolution and its application. PLoS One 2013; 8:e61276. [PMID: 23613826 PMCID: PMC3626687 DOI: 10.1371/journal.pone.0061276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/08/2013] [Indexed: 12/26/2022] Open
Abstract
Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins’ roles. Different species’ proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.
Collapse
Affiliation(s)
- Michael J Wise
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
36
|
Scheid P, Schwarzenberger R. Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res 2012; 111:479-85. [PMID: 22290448 DOI: 10.1007/s00436-012-2828-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Adenoviruses are important pathogens which are responsible for human enteritic, respiratory and eye infections. These viruses have been found to be prevalent in several natural and artificial water reservoirs worldwide. Free-living amoebae (FLA) have been recovered from similar water reservoirs, and it has been shown that FLA may act as reservoirs or vehicles of various microorganisms living in the same environment. To examine the ability of FLA to harbour adenoviruses, an in vitro study was conducted. Several Acanthamoeba strains were ‘co-cultivated’ with adenoviruses (adenoviruses 11 and 41), grown on A549 cells, using a proven test protocol. After phagocytosis and ingestion, the adenoviruses could be found within the cytoplasm of the Acanthamoeba trophozoites. The intake of the viruses into the cytoplasm of the trophozoites was demonstrated in an Acanthamoeba castellanii strain with the help of fluorescence microscopy and electron microscopy. An adenovirus DFA kit, which utilizes a direct immunofluorescent antibody technique for identifying adenovirus in infected tissue cultures, was used. In our study, it was demonstrated that adenoviruses were incorporated into the host amoebae (Acanthamoeba sp. Grp. II, three strains). So far, there were only a few publications concerning the relationship of free-living amoebae and viruses; only one of these described the detection of adenoviruses within acanthamoebae with molecular biological methods. We conducted this descriptive study to further examine the association between viable adenoviruses and FLA. To our knowledge, this is the first study to demonstrate directly the adenoviruses within FLA as vectors and vehicles. Therefore, we concluded that free-living amoebae appear able to act as carriers or vectors of the adenoviruses and thus may play a certain role in the dispersal of adenoviruses.
Collapse
Affiliation(s)
- Patrick Scheid
- Laboratory of Medical Parasitology, Central Institute of the Bundeswehr Medical Service Koblenz, Andernacherstr. 100, 56070 Koblenz, Germany.
| | | |
Collapse
|
37
|
Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A 2011; 108:17486-91. [PMID: 21987820 DOI: 10.1073/pnas.1110889108] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mimivirus, a DNA virus infecting acanthamoeba, was for a long time the largest known virus both in terms of particle size and gene content. Its genome encodes 979 proteins, including the first four aminoacyl tRNA synthetases (ArgRS, CysRS, MetRS, and TyrRS) ever found outside of cellular organisms. The discovery that Mimivirus encoded trademark cellular functions prompted a wealth of theoretical studies revisiting the concept of virus and associated large DNA viruses with the emergence of early eukaryotes. However, the evolutionary significance of these unique features remained impossible to assess in absence of a Mimivirus relative exhibiting a suitable evolutionary divergence. Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein).
Collapse
|
38
|
Kazlauskas D, Venclovas C. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Nucleic Acids Res 2011; 39:8291-305. [PMID: 21742758 PMCID: PMC3201878 DOI: 10.1093/nar/gkr564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genome duplication in free-living cellular organisms is performed by DNA replicases that always include a DNA polymerase, a DNA sliding clamp and a clamp loader. What are the evolutionary solutions for DNA replicases associated with smaller genomes? Are there some general principles? To address these questions we analyzed DNA replicases of double-stranded (ds) DNA viruses. In the process we discovered highly divergent B-family DNA polymerases in phiKZ-like phages and remote sliding clamp homologs in Ascoviridae family and Ma-LMM01 phage. The analysis revealed a clear dependency between DNA replicase components and the viral genome size. As the genome size increases, viruses universally encode their own DNA polymerases and frequently have homologs of DNA sliding clamps, which sometimes are accompanied by clamp loader subunits. This pattern is highly non-random. The absence of sliding clamps in large viral genomes usually coincides with the presence of atypical polymerases. Meanwhile, sliding clamp homologs, not accompanied by clamp loaders, have an elevated positive electrostatic potential, characteristic of non-ring viral processivity factors that bind the DNA directly. Unexpectedly, we found that similar electrostatic properties are shared by the eukaryotic 9-1-1 clamp subunits, Hus1 and, to a lesser extent, Rad9, also suggesting the possibility of direct DNA binding.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| | | |
Collapse
|
39
|
Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc Natl Acad Sci U S A 2011; 108:10296-301. [PMID: 21646533 DOI: 10.1073/pnas.1101118108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most phagocytic protist viruses have large particles and genomes as well as many laterally acquired genes that may be associated with a sympatric intracellular life (a community-associated lifestyle with viruses, bacteria, and eukaryotes) and the presence of virophages. By subculturing Mimivirus 150 times in a germ-free amoebal host, we observed the emergence of a bald form of the virus that lacked surface fibers and replicated in a morphologically different type of viral factory. When studying a 0.40-μm filtered cloned particle, we found that its genome size shifted from 1.2 (M1) to 0.993 Mb (M4), mainly due to large deletions occurring at both ends of the genome. Some of the lost genes are encoding enzymes required for posttranslational modification of the structural viral proteins, such as glycosyltransferases and ankyrin repeat proteins. Proteomic analysis allowed identification of three proteins, probably required for the assembly of virus fibers. The genes for two of these were found to be deleted from the M4 virus genome. The proteins associated with fibers are highly antigenic and can be recognized by mouse and human antimimivirus antibodies. In addition, the bald strain (M4) was not able to propagate the sputnik virophage. Overall, the Mimivirus transition from a sympatric to an allopatric lifestyle was associated with a stepwise genome reduction and the production of a predominantly bald virophage resistant strain. The new axenic ecosystem allowed the allopatric Mimivirus to lose unnecessary genes that might be involved in the control of competitors.
Collapse
|
40
|
The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One 2011; 6:e18935. [PMID: 21559486 PMCID: PMC3084725 DOI: 10.1371/journal.pone.0018935] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/13/2011] [Indexed: 12/22/2022] Open
Abstract
Background A recent work has provided strong arguments in favor of a fourth domain of Life composed of nucleo-cytoplasmic large DNA viruses (NCLDVs). This hypothesis was supported by phylogenetic and phyletic analyses based on a common set of proteins conserved in Eukarya, Archaea, Bacteria, and viruses, and implicated in the functions of information storage and processing. Recently, the genome of a new NCLDV, Cafeteria roenbergensis virus (CroV), was released. The present work aimed to determine if CroV supports the fourth domain of Life hypothesis. Methods A consensus phylogenetic tree of NCLDVs including CroV was generated from a concatenated alignment of four universal proteins of NCLDVs. Some features of the gene complement of CroV and its distribution along the genome were further analyzed. Phylogenetic and phyletic analyses were performed using the previously identified common set of informational genes present in Eukarya, Archaea, Bacteria, and NCLDVs, including CroV. Findings Phylogenetic reconstructions indicated that CroV is clearly related to the Mimiviridae family. The comparison between the gene repertoires of CroV and Mimivirus showed similarities regarding the gene contents and genome organization. In addition, the phyletic clustering based on the comparison of informational gene repertoire between Eukarya, Archaea, Bacteria, and NCLDVs unambiguously classified CroV with other NCLDVs and clearly included it in a fourth domain of Life. Taken together, these data suggest that Mimiviridae, including CroV, may have inherited a common gene content probably acquired from a common Mimiviridae ancestor. Conclusions This further analysis of the gene repertoire of CroV consolidated the fourth domain of Life hypothesis and contributed to outline a functional pan-genome for giant viruses infecting phagocytic protistan grazers.
Collapse
|
41
|
Van Etten JL. Another really, really big virus. Viruses 2011; 3:32-46. [PMID: 21994725 PMCID: PMC3187590 DOI: 10.3390/v3010032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/25/2022] Open
Abstract
Viruses with genomes larger than 300 kb and up to 1.2 Mb, which encode hundreds of proteins, are being discovered and characterized with increasing frequency. Most, but not all, of these large viruses (often referred to as giruses) infect protists that live in aqueous environments. Bioinformatic analyses of metagenomes of aqueous samples indicate that large DNA viruses are quite common in nature and await discovery. One issue that is perhaps not appreciated by the virology community is that large viruses, even those classified in the same family, can differ significantly in morphology, lifestyle, and gene complement. This brief commentary, which will mention some of these unique properties, was stimulated by the characterization of the newest member of this club, virus CroV (Fischer, M.G.; Allen, M.J.; Wilson, W.H.; Suttle, C.A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. USA2010, 107, 19508–19513 [1]). CroV has a 730 kb genome (with ∼544 protein-encoding genes) and infects the marine microzooplankton Cafeteria roenbergensis producing a lytic infection.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, 205 Morrison Hall, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
42
|
Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A 2010; 107:19508-13. [PMID: 20974979 DOI: 10.1073/pnas.1007615107] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.
Collapse
|
43
|
Moliner C, Fournier PE, Raoult D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 2010. [DOI: 10.1111/j.1574-6976.2009.00209.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Abstract
Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mammals have little to say to each other. Accordingly, their research tends to track the particularities and peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of explanations. Here, I present evidence in support of the heterodox idea that evolution might look to a general theory that does more than serve as a tautology ('evolution explains evolution'). Specifically, I argue that far from its myriad of products being fortuitous and accidental, evolution is remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek explanations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its Newton, biology its Darwin: evolutionary biology now awaits its Einstein.
Collapse
|
45
|
Abstract
Viruses with genomes greater than 300 kb and up to 1200 kb are being discovered with increasing frequency. These large viruses (often called giruses) can encode up to 900 proteins and also many tRNAs. Consequently, these viruses have more protein-encoding genes than many bacteria, and the concept of small particle/small genome that once defined viruses is no longer valid. Giruses infect bacteria and animals although most of the recently discovered ones infect protists. Thus, genome gigantism is not restricted to a specific host or phylogenetic clade. To date, most of the giruses are associated with aqueous environments. Many of these large viruses (phycodnaviruses and Mimiviruses) probably have a common evolutionary ancestor with the poxviruses, iridoviruses, asfarviruses, ascoviruses, and a recently discovered Marseillevirus. One issue that is perhaps not appreciated by the microbiology community is that large viruses, even ones classified in the same family, can differ significantly in morphology, lifestyle, and genome structure. This review focuses on some of these differences than on extensive details about individual viruses.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | | | |
Collapse
|
46
|
Abstract
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.
Collapse
|
47
|
Filée J. Lateral gene transfer, lineage-specific gene expansion and the evolution of Nucleo Cytoplasmic Large DNA viruses. J Invertebr Pathol 2009; 101:169-71. [DOI: 10.1016/j.jip.2009.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/13/2009] [Indexed: 11/29/2022]
|
48
|
The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions. J Mol Evol 2009; 68:587-602. [PMID: 19495554 DOI: 10.1007/s00239-009-9242-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 04/21/2009] [Indexed: 12/30/2022]
Abstract
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity. Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signal transduction.
Collapse
|
49
|
Petković M, Travar M. The giant viruses. SCRIPTA MEDICA 2009. [DOI: 10.5937/scrimed0901069p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
50
|
Abstract
During the past few years one of the most astonishing findings in the field of virology has been the realization that viruses that infect hosts from all three domains of life are often structurally similar. The recent burst of structural information points to a need to create a new way to organize the virosphere that, in addition to the current classification, would reflect relationships between virus families. Using the vertical beta-barrel major capsid proteins and ATPases related to known viral genome-packaging ATPases as examples, we can now re-evaluate the classification of viruses and virus-like genetic elements from a structural standpoint.
Collapse
|