1
|
Escrig J, Marcos-Alcalde Í, Domínguez-Zotes S, Abia D, Gómez-Puertas P, Valbuena A, Mateu MG. Structural Basis for Alternative Self-Assembly Pathways Leading to Different Human Immunodeficiency Virus Capsid-Like Nanoparticles. ACS NANO 2024; 18:27465-27478. [PMID: 39329375 PMCID: PMC11587947 DOI: 10.1021/acsnano.4c07948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The mechanisms that underlie the spontaneous and faithful assembly of virus particles are guiding the design of self-assembling protein-based nanostructures for biomedical or nanotechnological uses. In this study, the human immunodeficiency virus (HIV-1) capsid was used as a model to investigate what molecular feature(s) may determine whether a protein nanoparticle with the intended architecture, instead of an aberrant particle, will be self-assembled in vitro. Attempts of using the HIV-1 capsid protein CA for achieving in vitro the self-assembly of cone-shaped nanoparticles that contain CA hexamers and pentamers, similar to authentic viral capsids, had typically yielded hexamer-only tubular particles. We hypothesized that a reduction in the stability of a transient major assembly intermediate, a trimer of CA dimers (ToD), will increase the propensity of CA to assemble in vitro into cone-shaped particles instead of tubes. Certain amino acid substitutions at CA-CA interfaces strongly favored in vitro the assembly of cone-shaped nanoparticles that resembled authentic HIV-1 capsids. All-atom MD simulations indicated that ToDs formed by CA mutants with increased propensity for assembly into cone-shaped particles are destabilized relative to ToDs formed by wt CA or by another mutant that assembles into tubes. The results also indicated that ToD destabilization is mediated by conformational distortion of different CA-CA interfaces, which removes some interprotein interactions within the ToD. A model is proposed to rationalize the linkage between reduced ToD stability and increased propensity for the formation of CA pentamers during particle growth in vitro, favoring the assembly of cone-shaped HIV-1 capsid-like nanoparticles.
Collapse
Affiliation(s)
- Judith Escrig
- Virus
Engineering Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - íñigo Marcos-Alcalde
- Molecular
Modeling Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Santos Domínguez-Zotes
- Virus
Engineering Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David Abia
- Bioinformatics
Unit, Centro de Biología Molecular
Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Paulino Gómez-Puertas
- Molecular
Modeling Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alejandro Valbuena
- Virus
Engineering Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mauricio G. Mateu
- Virus
Engineering Group, Centro de Biología
Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Fuertes MA, López Mateos D, Valiente L, Rodríguez Huete A, Valbuena A, Mateu MG. Electrostatic Screening, Acidic pH and Macromolecular Crowding Increase the Self-Assembly Efficiency of the Minute Virus of Mice Capsid In Vitro. Viruses 2023; 15:v15051054. [PMID: 37243141 DOI: 10.3390/v15051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers. In this study we analyzed the effects of protein concentration, macromolecular crowding, temperature, pH, ionic strength, or a combination of some of those variables on the fidelity and efficiency of self-assembly of the MVM capsid in vitro. The results revealed that the in vitro reassembly of the MVM capsid is an efficient and faithful process. Under some conditions, up to ~40% of the starting virus capsids were reassembled in vitro as free, non aggregated, correctly assembled particles. These results open up the possibility of encapsidating different compounds in VP2-only capsids of MVM during its reassembly in vitro, and encourage the use of virus-like particles of MVM as nanocontainers.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diego López Mateos
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434 10.1126/sciadv.add7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 11/04/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434+10.1126/sciadv.add7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2024]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 05/29/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
|
7
|
Multiple Gene Expression in Cell-Free Protein Synthesis Systems for Reconstructing Bacteriophages and Metabolic Pathways. Microorganisms 2022; 10:microorganisms10122477. [PMID: 36557730 PMCID: PMC9786908 DOI: 10.3390/microorganisms10122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
As a fast and reliable technology with applications in diverse biological studies, cell-free protein synthesis has become popular in recent decades. The cell-free protein synthesis system can be considered a complex chemical reaction system that is also open to exogenous manipulation, including that which could otherwise potentially harm the cell's viability. On the other hand, since the technology depends on the cell lysates by which genetic information is transformed into active proteins, the whole system resembles the cell to some extent. These features make cell-free protein synthesis a valuable addition to synthetic biology technologies, expediting the design-build-test-learn cycle of synthetic biology routines. While the system has traditionally been used to synthesize one protein product from one gene addition, recent studies have employed multiple gene products in order to, for example, develop novel bacteriophages, viral particles, or synthetic metabolisms. Thus, we would like to review recent advancements in applying cell-free protein synthesis technology to synthetic biology, with an emphasis on multiple gene expressions.
Collapse
|
8
|
Koone JC, Dashnaw CM, Gonzalez M, Shaw BF. A method for quantifying how the activity of an enzyme is affected by the net charge of its nearest crowded neighbor. Protein Sci 2022. [PMCID: PMC9601770 DOI: 10.1002/pro.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge (Z) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z = +8.50 ± 0.04, Z = +6.39 ± 0.12, or Z = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength (I = 0.201 M) and attenuated at low ionic strength (I = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding.
Collapse
Affiliation(s)
- Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Mayte Gonzalez
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| |
Collapse
|
9
|
Domínguez-Zotes S, Valbuena A, Mateu MG. Antiviral compounds modulate elasticity, strength and material fatigue of a virus capsid framework. Biophys J 2022; 121:919-931. [PMID: 35151634 PMCID: PMC8943814 DOI: 10.1016/j.bpj.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
This study investigates whether the biochemical and antiviral effects of organic compounds that bind different sites in the mature human immunodeficiency virus capsid may be related to the modulation of different mechanical properties of the protein lattice from which the capsid is built. Mechanical force was used as a probe to quantify, in atomic force microscopy experiments at physiological pH and ionic strength, ligand-mediated changes in capsid lattice elasticity, breathing, strength against local dislocation by mechanical stress, and resistance to material fatigue. The results indicate that the effects of the tested compounds on assembly or biochemical stability can be linked, from a physics-based perspective, to their interference with the mechanical behavior of the viral capsid framework. The antivirals CAP-1 and CAI-55 increased the intrinsic elasticity and breathing of the capsid protein lattice and may entropically decrease the probability of the capsid protein to assemble into a functionally competent conformation. Antiviral PF74 increased the resistance of the capsid protein lattice to disruption by mechanical stress and material fatigue and may enthalpically strengthen the basal capsid lattice against breakage and disintegration. This study provides proof of concept that the interrogation of the mechanical properties of the nanostructured protein material that makes a virus capsid may provide fundamental insights into the biophysical action of capsid-binding antiviral agents. The implications for drug design by specifically targeting the biomechanics of viruses are discussed.
Collapse
Affiliation(s)
- Santos Domínguez-Zotes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
10
|
Domínguez-Zotes S, Fuertes MA, Rodríguez-Huete A, Valbuena A, Mateu MG. A Genetically Engineered, Chain Mail-Like Nanostructured Protein Material with Increased Fatigue Resistance and Enhanced Self-Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105456. [PMID: 35060301 DOI: 10.1002/smll.202105456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Protein-based nanostructured materials are being developed for many biomedical and nanotechnological applications. Despite their many desirable features, protein materials are highly susceptible to disruption by mechanical stress and fatigue. This study is aimed to increase fatigue resistance and enhance self-healing of a natural protein-based supramolecular nanomaterial through permanent genetic modification. The authors envisage the conversion of a model nanosheet, formed by a regular array of noncovalently bound human immunodeficiency virus capsid protein molecules, into a supramolecular "chain mail." Rationally engineered mutations allow the formation of a regular network of disulfide bridges in the protein lattice. This network links each molecule in the lattice to each adjacent molecule through one covalent bond, analogous to the rivetting of interlinked iron rings in the chain mail of a medieval knight. The engineered protein nanosheet shows greatly increased thermostability and resistance to mechanical stress and fatigue in particular, as well as enhanced self-healing, without undesirable stiffening compared to the original material. The results provide proof of concept for a genetic design to permanently increase fatigue resistance and enhance self-healing of protein-based nanostructured materials. They also provide insights into the molecular basis for fatigue of protein materials.
Collapse
Affiliation(s)
- Santos Domínguez-Zotes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
11
|
Sangiambut S, Promphet N, Chaiyaloom S, Puttikhunt C, Avirutnan P, Kasinrerk W, Sittisombut N, Malasit P. Increased capsid oligomerization is deleterious to dengue virus particle production. J Gen Virol 2021; 102. [PMID: 34410905 DOI: 10.1099/jgv.0.001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capsid protein (C) of dengue virus is required for viral infectivity as it packages viral RNA genome into infectious particles. C exists as a homodimer that forms via hydrophobic interactions between the α2 and α4 helices of monomers. To identify C region(s) important for virus particle production, a complementation system was employed in which single-round infectious particles are generated by trans-encapsidation of a viral C-deleted genome by recombinant C expressed in mosquito cells. Mutants harbouring a complete α3 deletion, or a dual Ile65-/Trp69-to-Ala substitution in the α3 helix, exhibited reduced production of infectious virus. Unexpectedly, higher proportions of oligomeric C were detected in cells expressing both mutated forms as compared with the wild-type counterpart, indicating that the α3 helix, through its internal hydrophobic residues, may down-modulate oligomerization of C during particle formation. Compared with wild-type C, the double Ile65-/Trp69 to Ala mutations appeared to hamper viral infectivity but not C and genomic RNA incorporation into the pseudo-infectious virus particles, suggesting that increased C oligomerization may impair DENV replication at the cell entry step.
Collapse
Affiliation(s)
- Sutha Sangiambut
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Natcha Promphet
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwipa Chaiyaloom
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopporn Sittisombut
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency, Bangkok 12120, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
12
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
13
|
Kobayashi R, Inaba H, Matsuura K. Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of β-Annulus Peptide into Artificial Viral Capsid. Int J Mol Sci 2021; 22:ijms22094754. [PMID: 33946174 PMCID: PMC8125178 DOI: 10.3390/ijms22094754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.
Collapse
Affiliation(s)
- Risako Kobayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
- Correspondence: ; Tel.: +81-857-31-5262
| |
Collapse
|
14
|
Gupta K, Allen A, Giraldo C, Eilers G, Sharp R, Hwang Y, Murali H, Cruz K, Janmey P, Bushman F, Van Duyne GD. Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Structure 2021; 29:213-225.e5. [PMID: 33357410 PMCID: PMC7935764 DOI: 10.1016/j.str.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The major effect of allosteric HIV integrase (IN) inhibitors (ALLINIs) is observed during virion maturation, where ALLINI treatment interrupts IN-RNA interactions via drug-induced IN aggregation, leading to the formation of aberrant virions. To understand the structural changes that accompany drug-induced aggregation, we determined the soft matter properties of ALLINI-induced IN aggregates. Using small-angle neutron scattering, SEM, and rheology, we have discovered that the higher-order aggregates induced by ALLINIs have the characteristics of weak three-dimensional gels with a fractal-like character. Their formation is inhibited by the host factor LEDGF/p75, as well as ex vivo resistance substitutions. Mutagenesis and biophysical analyses reveal that homomeric carboxy-terminal domain interactions are required to achieve the branched-polymer nature of the ALLINI-induced aggregates. These studies provide key insight into the mechanisms of ALLINI action and resistance in the context of the crowded virion environment where ALLINIs exert their effect.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Audrey Allen
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Carolina Giraldo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Grant Eilers
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Hemma Murali
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Katrina Cruz
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Paul Janmey
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Frederic Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA.
| |
Collapse
|
15
|
Selzer L, Su Z, Pintilie GD, Chiu W, Kirkegaard K. Full-length three-dimensional structure of the influenza A virus M1 protein and its organization into a matrix layer. PLoS Biol 2020; 18:e3000827. [PMID: 32997652 PMCID: PMC7549809 DOI: 10.1371/journal.pbio.3000827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Matrix proteins are encoded by many enveloped viruses, including influenza viruses, herpes viruses, and coronaviruses. Underneath the viral envelope of influenza virus, matrix protein 1 (M1) forms an oligomeric layer critical for particle stability and pH-dependent RNA genome release. However, high-resolution structures of full-length monomeric M1 and the matrix layer have not been available, impeding antiviral targeting and understanding of the pH-dependent transitions involved in cell entry. Here, purification and extensive mutagenesis revealed protein–protein interfaces required for the formation of multilayered helical M1 oligomers similar to those observed in virions exposed to the low pH of cell entry. However, single-layered helical oligomers with biochemical and ultrastructural similarity to those found in infectious virions before cell entry were observed upon mutation of a single amino acid. The highly ordered structure of the single-layered oligomers and their likeness to the matrix layer of intact virions prompted structural analysis by cryo-electron microscopy (cryo-EM). The resulting 3.4-Å–resolution structure revealed the molecular details of M1 folding and its organization within the single-shelled matrix. The solution of the full-length M1 structure, the identification of critical assembly interfaces, and the development of M1 assembly assays with purified proteins are crucial advances for antiviral targeting of influenza viruses. Multi-subunit shells of matrix proteins line the interior of infectious influenza virus particles. In this study, biochemical purification of wild-type and mutant influenza M1 proteins allows the structural determination of an oligomer whose shape corresponds to that of infectious virions and suggests mechanisms for its formation and dismantling during infection.
Collapse
Affiliation(s)
- Lisa Selzer
- Departments of Genetics Stanford University School of Medicine, Stanford, California, United States of America
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, United States of America
| | - Grigore D. Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, United States of America
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KK); (WC)
| | - Karla Kirkegaard
- Departments of Genetics Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KK); (WC)
| |
Collapse
|
16
|
Popielec A, Ostrowska N, Wojciechowska M, Feig M, Trylska J. Crowded environment affects the activity and inhibition of the NS3/4A protease. Biochimie 2020; 176:169-180. [DOI: 10.1016/j.biochi.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
|
17
|
Valbuena A, Maity S, Mateu MG, Roos WH. Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS NANO 2020; 14:8724-8734. [PMID: 32633498 PMCID: PMC7392527 DOI: 10.1021/acsnano.0c03207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Mauricio G. Mateu
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
18
|
Relevance and Regulation of Cell Density. Trends Cell Biol 2020; 30:213-225. [PMID: 31980346 DOI: 10.1016/j.tcb.2019.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Cell density shows very little variation within a given cell type. For example, in humans variability in cell density among cells of a given cell type is 100 times smaller than variation in cell mass. This tight control indicates that maintenance of a cell type-specific cell density is important for cell function. Indeed, pathological conditions such as cellular senescence are accompanied by changes in cell density. Despite the apparent importance of cell-type-specific density, we know little about how cell density affects cell function, how it is controlled, and how it sometimes changes as part of a developmental process or in response to changes in the environment. The recent development of new technologies to accurately measure the cell density of single cells in suspension and in tissues is likely to provide answers to these important questions.
Collapse
|
19
|
Fejer SN. Minimalistic coarse-grained modeling of viral capsid assembly. COMPUTATIONAL APPROACHES FOR UNDERSTANDING DYNAMICAL SYSTEMS: PROTEIN FOLDING AND ASSEMBLY 2020; 170:405-434. [DOI: 10.1016/bs.pmbts.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wang J, Jia J, Wang Y, Xing Q, Peng X, Qi W, Su R, He Z. Protamine-induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. J Pept Sci 2019; 25:e3176. [PMID: 31309673 DOI: 10.1002/psc.3176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/22/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022]
Abstract
Chiral self-assembly of peptides is of fundamental interest in the field of biology and material science. Protamine, an alkaline biomacromolecule which is ubiquitous in fish and mammalian, plays crucial roles in directing the helical twisting of DNA. Inspired by this, we reported a bioinspired pathway to direct the hierarchical chiral self-assembly of a short synthetic dipeptide. The peptide could self-assemble into negatively charged chiral micelles in water that spontaneously formed a nematic liquid crystalline phase. By incorporation with protamine, the micelles condensed with the protamine into large helical bundles with precisely controlled diameter. Furthermore, to simulate the intracellular environments, we investigated macromolecular crowding on the coassembly of peptide and protamine, which leads to the formation of much thinner helical structures. The results highlight the roles of highly charged biomacromolecules and macromolecular crowding on peptide self-assembly, which are beneficial for the practical applications of self-assembling peptides in biomedicine and sensing.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jiajia Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China
| | - Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
21
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
22
|
Píchalová R, Füzik T, Vokatá B, Rumlová M, Llano M, Dostálková A, Křížová I, Ruml T, Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology 2018; 521:108-117. [PMID: 29906704 DOI: 10.1016/j.virol.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Collapse
Affiliation(s)
- Růžena Píchalová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tibor Füzik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University El Paso, TX 79902, USA.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
23
|
The Three-Fold Axis of the HIV-1 Capsid Lattice Is the Species-Specific Binding Interface for TRIM5α. J Virol 2018; 92:JVI.01541-17. [PMID: 29237846 PMCID: PMC5809731 DOI: 10.1128/jvi.01541-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/02/2017] [Indexed: 12/25/2022] Open
Abstract
Rhesus TRIM5α (rhTRIM5α) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5α to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the precise site at which the B30.2 domain binds remain largely unknown. The human orthologue of TRIM5α (hsTRIM5α) fails to block infection by HIV-1 both in vivo and in vitro. This is thought to be due to differences in binding to the capsid lattice. To map the species-specific binding surface on the HIV-1 capsid lattice, we used microscale thermophoresis and dual-focus fluorescence correlation spectroscopy to measure binding affinity of rhesus and human TRIM5α B30.2 domains to a series of HIV-1 capsid variants that mimic distinct capsid arrangements at each of the symmetry axes of the HIV-1 capsid lattice. These surrogates include previously characterized capsid oligomers, as well as a novel chemically cross-linked capsid trimer that contains cysteine substitutions near the 3-fold axis of symmetry. The results demonstrate that TRIM5α binding involves multiple capsid molecules along the 2-fold and 3-fold interfaces between hexamers and indicate that the binding interface at the 3-fold axis contributes to the well-established differences in restriction potency between TRIM5α orthologues. IMPORTANCE TRIM5α is a cellular protein that fends off infection by retroviruses through binding to the viruses' protein shell surrounding its genetic material. This shell is composed of several hundred capsid proteins arranged in a honeycomb-like hexagonal pattern that is conserved across retroviruses. By binding to the complex lattice formed by multiple capsid proteins, rather than to a single capsid monomer, TRIM5α restriction activity persists despite the high mutation rate in retroviruses such as HIV-1. In rhesus monkeys, but not in humans, TRIM5α confers resistance to HIV-1. By measuring the binding of human and rhesus TRIM5α to a series of engineered HIV-1 capsid mimics of distinct capsid lattice interfaces, we reveal the HIV-1 capsid surface critical for species-specific binding by TRIM5α.
Collapse
|
24
|
Rustad M, Eastlund A, Jardine P, Noireaux V. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth Biol (Oxf) 2018; 3:ysy002. [PMID: 32995511 PMCID: PMC7445788 DOI: 10.1093/synbio/ysy002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
The bottom-up construction of biological entities from genetic information provides a broad range of opportunities to better understand fundamental processes within living cells, as well as holding great promise for the development of novel biomedical applications. Cell-free transcription–translation (TXTL) systems have become suitable platforms to tackle such topics because they recapitulate the process of gene expression. TXTL systems have advanced to where the in vitro construction of viable, complex, self-assembling deoxyribonucleic acid-programmed biological entities is now possible. Previously, we demonstrated the cell-free synthesis of three bacteriophages from their genomes: MS2, ΦX174, T7. In this work, we present the complete synthesis of the phage T4 from its 169-kbp genome in one-pot TXTL reactions. This achievement, for one of the largest coliphages, demonstrates the integration of complex gene regulation, metabolism and self-assembly, and brings the bottom-up synthesis of biological systems to a new level.
Collapse
Affiliation(s)
- Mark Rustad
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Allen Eastlund
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Paul Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Valbuena A, Mateu MG. Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus-Based Nanocoating. Biophys J 2017; 112:663-673. [PMID: 28256226 DOI: 10.1016/j.bpj.2016.11.3209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023] Open
Abstract
Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biologia Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biologia Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
26
|
Miyazaki Y, Miyake A, Doi N, Koma T, Uchiyama T, Adachi A, Nomaguchi M. Comparison of Biochemical Properties of HIV-1 and HIV-2 Capsid Proteins. Front Microbiol 2017; 8:1082. [PMID: 28659897 PMCID: PMC5469281 DOI: 10.3389/fmicb.2017.01082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023] Open
Abstract
Timely disassembly of viral core composed of self-assembled capsid (CA) in infected host cells is crucial for retroviral replication. Extensive in vitro studies to date on the self-assembly/disassembly mechanism of human immunodeficiency virus type 1 (HIV-1) CA have revealed its core structure and amino acid residues essential for CA–CA intermolecular interaction. However, little is known about in vitro properties of HIV-2 CA. In this study, we comparatively analyzed the polymerization properties of bacterially expressed HIV-1 and HIV-2 CA proteins. Interestingly, a much higher concentration of NaCl was required for HIV-2 CA to self-assemble than that for HIV-1 CA, but once the polymerization started, the reaction proceeded more rapidly than that observed for HIV-1 CA. Analysis of a chimeric protein revealed that N-terminal domain (NTD) is responsible for this unique property of HIV-2 CA. To further study the molecular basis for different in vitro properties of HIV-1 and HIV-2 CA proteins, we determined thermal stabilities of HIV-1 and HIV-2 CA NTD proteins at several NaCl concentrations by fluorescent-based thermal shift assays. Experimental data obtained showed that HIV-2 CA NTD was structurally more stable than HIV-1 CA NTD. Taken together, our results imply that distinct in vitro polymerization abilities of the two CA proteins are related to their structural instability/stability, which is one of the decisive factors for viral replication potential. In addition, our assay system described here may be potentially useful for searching for anti-CA antivirals against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi UniversityYamaguchi, Japan
| | - Noya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Tsuneo Uchiyama
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| |
Collapse
|
27
|
In vitro assembly of the Rous Sarcoma Virus capsid protein into hexamer tubes at physiological temperature. Sci Rep 2017; 7:2913. [PMID: 28588198 PMCID: PMC5460288 DOI: 10.1038/s41598-017-02060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
During a proteolytically-driven maturation process, the orthoretroviral capsid protein (CA) assembles to form the convex shell that surrounds the viral genome. In some orthoretroviruses, including Rous Sarcoma Virus (RSV), CA carries a short and hydrophobic spacer peptide (SP) at its C-terminus early in the maturation process, which is progressively removed as maturation proceeds. In this work, we show that RSV CA assembles in vitro at near-physiological temperatures, forming hexamer tubes that effectively model the mature capsid surface. Tube assembly is strongly influenced by electrostatic effects, and is a nucleated process that remains thermodynamically favored at lower temperatures, but is effectively arrested by the large Gibbs energy barrier associated with nucleation. RSV CA tubes are multi-layered, being formed by nested and concentric tubes of capsid hexamers. However the spacer peptide acts as a layering determinant during tube assembly. If only a minor fraction of CA-SP is present, multi-layered tube formation is blocked, and single-layered tubes predominate. This likely prevents formation of biologically aberrant multi-layered capsids in the virion. The generation of single-layered hexamer tubes facilitated 3D helical image reconstruction from cryo-electron microscopy data, revealing the basic tube architecture.
Collapse
|
28
|
Abstract
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.
Collapse
Affiliation(s)
- Marcus Thomas
- Computational Biology Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America. Joint Carnegie Mellon University/University of Pittsburgh Ph.D. Program in Computational Biology, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | | |
Collapse
|
29
|
Ganji M, Docter M, Le Grice SFJ, Abbondanzieri EA. DNA binding proteins explore multiple local configurations during docking via rapid rebinding. Nucleic Acids Res 2016; 44:8376-84. [PMID: 27471033 PMCID: PMC5041478 DOI: 10.1093/nar/gkw666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear. Here, we probed the mechanism of protein flipping at the single molecule level, using HIV-1 reverse transcriptase (RT) as a model system. In order to test the effects of long-range attractive forces on flipping efficiency, we varied the salt concentration and macromolecular crowding conditions. As expected, increased salt concentrations weaken the binding of RT to DNA while increased crowding strengthens the binding. Moreover, when we analyzed the flipping kinetics, i.e. the rate and probability of flipping, at each condition we found that flipping was more efficient when RT bound more strongly. Our data are consistent with a view that DNA bound proteins undergo multiple rapid re-binding events, or short hops, that allow the protein to explore other configurations without completely dissociating from the DNA.
Collapse
Affiliation(s)
- Mahipal Ganji
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Margreet Docter
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elio A Abbondanzieri
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| |
Collapse
|
30
|
Grime JMA, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 2016; 7:11568. [PMID: 27174390 PMCID: PMC4869257 DOI: 10.1038/ncomms11568] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/07/2016] [Indexed: 12/23/2022] Open
Abstract
The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. Significant morphological changes occur during the conversion of the immature HIV virion into a mature infectious form. Here the authors use coarse-grained molecular dynamics simulations to model HIV-1 capsid self-assembly and disassembly events that suggests several metastable capsid intermediates sensitive to local conditions.
Collapse
Affiliation(s)
- John M A Grime
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - James F Dama
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Center for Membrane Biology, Cardiovascular Research Center, and Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Abstract
The HIV genome materials are encaged by a proteinaceous shell called the capsid, constructed from ∼1000-1500 copies of the capsid proteins. Because its stability and integrity are critical to the normal life cycle and infectivity of the virus, the HIV capsid is a promising antiviral drug target. In this paper, we review the studies shaping our understanding of the structure and dynamics of the capsid proteins and various forms of their assemblies, as well as the assembly mechanism.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| |
Collapse
|
32
|
Lampel A, Varenik M, Regev O, Gazit E. Hierarchical multi-step organization during viral capsid assembly. Colloids Surf B Biointerfaces 2015; 136:674-7. [DOI: 10.1016/j.colsurfb.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023]
|
33
|
Bocanegra R, Fuertes MÁ, Rodríguez-Huete A, Neira JL, Mateu MG. Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain. Biophys J 2015; 108:338-49. [PMID: 25606682 DOI: 10.1016/j.bpj.2014.11.3472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - José Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, and Instituto de Biocomputación y Física de los Sistemas Complejos, Zaragoza, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
34
|
Groen J, Foschepoth D, te Brinke E, Boersma AJ, Imamura H, Rivas G, Heus HA, Huck WTS. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects. J Am Chem Soc 2015; 137:13041-8. [PMID: 26383885 DOI: 10.1021/jacs.5b07898] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.
Collapse
Affiliation(s)
- Joost Groen
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - David Foschepoth
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Esra te Brinke
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Arnold J Boersma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , 9747 AG Groningen, The Netherlands
| | - Hiromi Imamura
- Graduate School of Biostudies & The Hakubi Center for Advanced Research, Kyoto University , 606-8501 Kyoto, Japan
| | - Germán Rivas
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu 9, E-40 28040 Madrid, Spain
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University , 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Valbuena A, Mateu MG. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating. NANOSCALE 2015; 7:14953-14964. [PMID: 26302823 DOI: 10.1039/c5nr04023j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics ("breathing") of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
36
|
Qiao X, Jeon J, Weber J, Zhu F, Chen B. Mechanism of polymorphism and curvature of HIV capsid assemblies probed by 3D simulations with a novel coarse grain model. Biochim Biophys Acta Gen Subj 2015; 1850:2353-67. [PMID: 26318016 DOI: 10.1016/j.bbagen.2015.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND During the maturation process, HIV capsid proteins self-assemble into polymorphic capsids. The strong polymorphism precludes high resolution structural characterization under in vivo conditions. In spite of the determination of structural models for various in vitro assemblies of HIV capsid proteins, the assembly mechanism is still not well-understood. METHODS We report 3D simulations of HIV capsid proteins by a novel coarse grain model that captures the backbone of the rigid segments in the protein accurately. The effects of protein dynamics on assembly are emulated by a static ensemble of subunits in conformations derived from molecular dynamics simulation. RESULTS We show that HIV capsid proteins robustly assemble into hexameric lattices in a range of conditions where trimers of dimeric subunits are the dominant oligomeric intermediates. Variations of hexameric lattice curvatures are observed in simulations with subunits of variable inter-domain orientations mimicking the conformation distribution in solution. Simulations with subunits based on pentameric structural models lead to assembly of sharp curved structures resembling the tips of authentic HIV capsids, along a distinct pathway populated by tetramers and pentamers with the characteristic quasi-equivalency of viral capsids. CONCLUSIONS Our results suggest that the polymorphism assembly is triggered by the inter-domain dynamics of HIV capsid proteins in solution. The assembly of highly curved structures arises from proteins in conformation with a highly specific inter-domain orientation. SIGNIFICANCE Our work proposes a mechanism of HIV capsid assembly based on available structural data, which can be readily verified. Our model can be applied to other large biomolecular assemblies.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jaekyun Jeon
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jeff Weber
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Fangqiang Zhu
- Department of Physics, Indiana University - Purdue University Indianapolis, IN, USA
| | - Bo Chen
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA.
| |
Collapse
|
37
|
Shin J, Cherstvy AG, Metzler R. Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size. SOFT MATTER 2015; 11:472-88. [PMID: 25413029 DOI: 10.1039/c4sm02007c] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.
Collapse
Affiliation(s)
- Jaeoh Shin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
38
|
Abstract
Experimental evidence for in vivo capsid assembly suggests that capsid formation initiates from interactions between capsid (CA) proteins and lipids in the viral envelope. Various in vitro studies aiming to elucidate the detailed mechanisms of capsid self-assembly products have been carried out in conditions far removed from those, which would be encountered in a physiological environment. In this work we used lipid bilayers as a platform for studying the assembly of the CA protein with the rationale that the lipid-CA interactions play an important role in the nucleation of these structures. Observations using atomic force microscopy (AFM) have allowed a 'curling tadpole' mechanism to be suggested for the capsid self-assembly process. Stable dimeric CA proteins are able to move across the lipid bilayer to associate into trimers-of-dimers. These trimers form distinctly curved chains, which coil up to form larger features. As the feature grows additional trimers associate with the feature, giving a tadpole-like appearance. By comparing capsid assembly on mica, on single component lipid bilayers, and phase separated lipid bilayers, it was possible to determine the effect of lipid-protein interactions on capsid assembly.
Collapse
Affiliation(s)
- Penny Miles
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
39
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
40
|
Naddaf L, Sayyed-Ahmad A. Intracellular crowding effects on the self-association of the bacterial cell division protein FtsZ. Arch Biochem Biophys 2014; 564:12-9. [DOI: 10.1016/j.abb.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 11/15/2022]
|
41
|
White SJ, Johnson SD, Sellick MA, Bronowska A, Stockley PG, Wälti C. The Influence of Two-Dimensional Organization on Peptide Conformation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
White SJ, Johnson SD, Sellick MA, Bronowska A, Stockley PG, Wälti C. The influence of two-dimensional organization on peptide conformation. Angew Chem Int Ed Engl 2014; 54:974-8. [PMID: 25413024 PMCID: PMC4506555 DOI: 10.1002/anie.201408971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/13/2014] [Indexed: 11/08/2022]
Abstract
Molecular crowding plays a significant role in regulating molecular conformation in cellular environments. It is also likely to be important wherever high molecular densities are required, for example in surface-phase studies, in which molecular densities generally far exceed those observed in solution. Using on-surface circular dichroism (CD) spectroscopy, we have investigated the structure of a synthetic peptide assembled into a highly packed monolayer. The immobilized peptide undergoes a structural transition between α-helical and random coil conformation upon changes in pH and ionic concentration, but critically the threshold for conformational change is altered dramatically by molecular crowding within the peptide monolayer. This study highlights the often overlooked role molecular crowding plays in regulating molecular structure and function in surface-phase studies of biological molecules.
Collapse
Affiliation(s)
- Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (UK)
| | | | | | | | | | | |
Collapse
|
43
|
Smith GR, Xie L, Lee B, Schwartz R. Applying molecular crowding models to simulations of virus capsid assembly in vitro. Biophys J 2014; 106:310-20. [PMID: 24411263 DOI: 10.1016/j.bpj.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/03/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Virus capsid assembly has been widely studied as a biophysical system, both for its biological and medical significance and as an important model for complex self-assembly processes. No current technology can monitor assembly in detail and what information we have on assembly kinetics comes exclusively from in vitro studies. There are many differences between the intracellular environment and that of an in vitro assembly assay, however, that might be expected to alter assembly pathways. Here, we explore one specific feature characteristic of the intracellular environment and known to have large effects on macromolecular assembly processes: molecular crowding. We combine prior particle simulation methods for estimating crowding effects with coarse-grained stochastic models of capsid assembly, using the crowding models to adjust kinetics of capsid simulations to examine possible effects of crowding on assembly pathways. Simulations suggest a striking difference depending on whether or not a system uses nucleation-limited assembly, with crowding tending to promote off-pathway growth in a nonnucleation-limited model but often enhancing assembly efficiency at high crowding levels even while impeding it at lower crowding levels in a nucleation-limited model. These models may help us understand how complicated assembly systems may have evolved to function with high efficiency and fidelity in the densely crowded environment of the cell.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lu Xie
- Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
44
|
Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, Nolte RT, Wang L, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD. Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem 2014; 289:20477-88. [PMID: 24904063 PMCID: PMC4110260 DOI: 10.1074/jbc.m114.551119] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/03/2014] [Indexed: 11/06/2022] Open
Abstract
HIV-1 replication in the presence of antiviral agents results in evolution of drug-resistant variants, motivating the search for additional drug classes. Here we report studies of GSK1264, which was identified as a compound that disrupts the interaction between HIV-1 integrase (IN) and the cellular factor lens epithelium-derived growth factor (LEDGF)/p75. GSK1264 displayed potent antiviral activity and was found to bind at the site occupied by LEDGF/p75 on IN by x-ray crystallography. Assays of HIV replication in the presence of GSK1264 showed only modest inhibition of the early infection steps and little effect on integration targeting, which is guided by the LEDGF/p75-IN interaction. In contrast, inhibition of late replication steps was more potent. Particle production was normal, but particles showed reduced infectivity. GSK1264 promoted aggregation of IN and preformed LEDGF/p75-IN complexes, suggesting a mechanism of inhibition. LEDGF/p75 was not displaced from IN during aggregation, indicating trapping of LEDGF/p75 in aggregates. Aggregation assays with truncated IN variants revealed that a construct with catalytic and C-terminal domains of IN only formed an open polymer associated with efficient drug-induced aggregation. These data suggest that the allosteric inhibitors of IN are promising antiviral agents and provide new information on their mechanism of action.
Collapse
Affiliation(s)
- Kushol Gupta
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, and
| | - Troy Brady
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Benjamin M. Dyer
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Nirav Malani
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Young Hwang
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Frances Male
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | | | | | - Emile Velthuisen
- the HIV Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Jerry Jeffrey
- the HIV Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Gregory D. Van Duyne
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, and
| | - Frederic D. Bushman
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| |
Collapse
|
45
|
Deshmukh L, Schwieters CD, Grishaev A, Ghirlando R, Baber JL, Clore GM. Structure and dynamics of full-length HIV-1 capsid protein in solution. J Am Chem Soc 2013; 135:16133-47. [PMID: 24066695 DOI: 10.1021/ja406246z] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The HIV-1 capsid protein plays a crucial role in viral infectivity, assembling into a cone that encloses the viral RNA. In the mature virion, the N-terminal domain of the capsid protein forms hexameric and pentameric rings, while C-terminal domain homodimers connect adjacent N-terminal domain rings to one another. Structures of disulfide-linked hexamer and pentamer assemblies, as well as structures of the isolated domains, have been solved previously. The dimer configuration in C-terminal domain constructs differs in solution (residues 144-231) and crystal (residues 146-231) structures by ∼30°, and it has been postulated that the former connects the hexamers while the latter links pentamers to hexamers. Here we study the structure and dynamics of full-length capsid protein in solution, comprising a mixture of monomeric and dimeric forms in dynamic equilibrium, using ensemble simulated annealing driven by experimental NMR residual dipolar couplings and X-ray scattering data. The complexity of the system necessitated the development of a novel computational framework that should be generally applicable to many other challenging systems that currently escape structural characterization by standard application of mainstream techniques of structural biology. We show that the orientation of the C-terminal domains in dimeric full-length capsid and isolated C-terminal domain constructs is the same in solution, and we obtain a quantitative description of the conformational space sampled by the N-terminal domain relative to the C-terminal domain on the nano- to millisecond time scale. The positional distribution of the N-terminal domain relative to the C-terminal domain is large and modulated by the oligomerization state of the C-terminal domain. We also show that a model of the hexamer/pentamer assembly can be readily generated with a single configuration of the C-terminal domain dimer, and that capsid assembly likely proceeds via conformational selection of sparsely populated configurations of the N-terminal domain within the capsid protein dimer.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | | | | | | | | | | |
Collapse
|
46
|
Bocanegra R, Alfonso C, Rodríguez-Huete A, Fuertes MÁ, Jiménez M, Rivas G, Mateu MG. Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface. Biophys J 2013; 104:884-93. [PMID: 23442967 DOI: 10.1016/j.bpj.2012.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 01/12/2023] Open
Abstract
Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Lampel A, Bram Y, Levy-Sakin M, Bacharach E, Gazit E. The effect of chemical chaperones on the assembly and stability of HIV-1 capsid protein. PLoS One 2013; 8:e60867. [PMID: 23577173 PMCID: PMC3618117 DOI: 10.1371/journal.pone.0060867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specific interactions. However, the precise mechanism of action remains elusive. Protein self-assembly is a key event in both native and pathological states, ranging from microtubules and actin filaments formation to toxic amyloids appearance in degenerative disorders, such as Alzheimer's and Parkinson's diseases. Another pathological event, in which protein assembly cascade is a fundamental process, is the formation of virus particles. In the late stage of the virus life cycle, capsid proteins self-assemble into highly-ordered cores, which encapsulate the viral genome, consequently protect genome integrity and mediate infectivity. In this study, we examined the effect of different groups of chemical chaperones on viral capsid assembly in vitro, focusing on HIV-1 capsid protein as a system model. We found that while polyols and sugars markedly inhibited capsid assembly, methylamines dramatically enhanced the assembly rate. Moreover, chemical chaperones that inhibited capsid core formation, also stabilized capsid structure under thermal denaturation. Correspondingly, trimethylamine N-oxide, which facilitated formation of high-order assemblies, clearly destabilized capsid structure under similar conditions. In contrast to the prevailing hypothesis suggesting that chemical chaperones affect proteins through preferential exclusion, the observed dual effects imply that different chaperones modify capsid assembly and stability through different mechanisms. Furthermore, our results indicate a correlation between the folding state of capsid to its tendency to assemble into highly-ordered structures.
Collapse
Affiliation(s)
- Ayala Lampel
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bram
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levy-Sakin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EB); (EG)
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EB); (EG)
| |
Collapse
|
48
|
Hung M, Niedziela-Majka A, Jin D, Wong M, Leavitt S, Brendza KM, Liu X, Sakowicz R. Large-scale functional purification of recombinant HIV-1 capsid. PLoS One 2013; 8:e58035. [PMID: 23472130 PMCID: PMC3589475 DOI: 10.1371/journal.pone.0058035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/27/2013] [Indexed: 01/21/2023] Open
Abstract
During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.
Collapse
Affiliation(s)
- Magdeleine Hung
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Debi Jin
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Melanie Wong
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Stephanie Leavitt
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Xiaohong Liu
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences Inc., Foster City, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly. PLoS One 2013; 8:e56424. [PMID: 23457565 PMCID: PMC3574121 DOI: 10.1371/journal.pone.0056424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/10/2013] [Indexed: 12/27/2022] Open
Abstract
The Feline Immunodeficiency Virus (FIV) capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS) and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.
Collapse
|
50
|
Zhou HX. Influence of crowded cellular environments on protein folding, binding, and oligomerization: biological consequences and potentials of atomistic modeling. FEBS Lett 2013; 587:1053-61. [PMID: 23395796 DOI: 10.1016/j.febslet.2013.01.064] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 02/05/2023]
Abstract
Recent experiments inside cells and in cytomimetic conditions have demonstrated that the crowded environments found therein can significantly reshape the energy landscapes of individual protein molecules and their oligomers. The resulting shifts in populations of conformational and oligomeric states have numerous biological consequences, e.g., concerning the efficiency of replication and transcription, the development of aggregation-related diseases, and the efficacy of small-molecule drugs. Some of the effects of crowding can be anticipated from hard-particle theoretical models, but the in vitro and in vivo measurements indicate that these effects are often subtle and complex. These observations, coupled with recent computational studies at the atomistic level, suggest that the latter detailed modeling may be required to yield a quantitative understanding on the influence of crowded cellular environments.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|