1
|
BacMam Expressing Highly Glycosylated Porcine Interferon Alpha Induces Robust Antiviral and Adjuvant Effects against Foot-and-Mouth Disease Virus in Pigs. J Virol 2022; 96:e0052822. [PMID: 35604219 DOI: 10.1128/jvi.00528-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.
Collapse
|
2
|
Baculovirus Vectors Induce the Production of Interferons in Swine: Their Potential in the Development of Antiviral Strategies. Vet Sci 2021; 8:vetsci8110278. [PMID: 34822651 PMCID: PMC8617851 DOI: 10.3390/vetsci8110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The huge variety of viruses affecting swine represents a global threat. Since vaccines against highly contagious viruses last several days to induce protective immune responses, antiviral strategies for rapid control of outbreak situations are needed. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an insect virus, has been demonstrated to be an effective vaccine vector for mammals. Besides the ability to display or transduce heterologous antigens, it also induces strong innate immune responses and provides IFN-mediated protection against lethal challenges with viruses like foot-and-mouth disease virus (FMDV) in mice. Thus, the aim of this study was to evaluate the ability of AcMNPV to induce IFN production and elicit antiviral activity in porcine peripheral blood mononuclear cells (PBMCs). Our results demonstrated that AcMNPV induced an IFN-α-mediated antiviral activity in PBMCs in vitro. Moreover, the inoculation of AcMNPV in piglets led to the production of type I and II IFNs in sera from inoculated animals and antiviral activities against vesicular stomatitis virus (VSV) and FMDV measured by in vitro assays. Finally, it was demonstrated that the pseudotyping of AcMNPV with VSV-G protein, but not the enrichment of the AcMNPV genome with specific immunostimulatory CpG motifs for the porcine TLR9, improved the ability to induce IFN-α production in PBMCs in vitro. Together, these results suggest that AcMNPV is a promising tool for the induction of IFNs in antiviral strategies, with the potential to be biotechnologically improved.
Collapse
|
3
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Alfonso V, Amalfi S, López MG, Taboga O. Effects of deletion of the ac109 gene of Autographa californica nucleopolyhedrovirus on interactions with mammalian cells. Arch Virol 2016; 162:835-840. [PMID: 27868165 DOI: 10.1007/s00705-016-3142-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022]
Abstract
Baculoviruses are able to enter into mammalian cells, where they can express a transgene that is placed under an appropriate promoter, without producing infectious progeny. ORF109 encodes an essential baculovirus protein that participates in the interaction of the baculovirus with mammalian cells. To date, the mechanisms underlying this interaction are not yet known. We demonstrated that although a Ac109 knock out virus maintained its ability to enter into BHK-21 cells, there was a marked reduction in the expression efficiency of the nuclear transgene. Moreover, the amount of free cytoplasmic viral DNA, which was detected by transcription of a reporter gene, was severely diminished. These results suggest Ac109 could be involved in maintaining the integrity of the viral nucleic acid.
Collapse
Affiliation(s)
- Victoria Alfonso
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Sabrina Amalfi
- INTA, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - María Gabriela López
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Oscar Taboga
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
6
|
Liu Y, Joo KI, Lei Y, Wang P. Visualization of intracellular pathways of engineered baculovirus in mammalian cells. Virus Res 2014; 181:81-91. [PMID: 24457070 DOI: 10.1016/j.virusres.2014.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 01/02/2023]
Abstract
Baculoviruses are a promising gene delivery vector. They have the ability to express large transgenes in mammalian cells without displaying pathogenicity in humans; however, little is known about their transduction mechanisms in target cells. In this study, we use colocalization and live-cell imaging studies to elucidate the internalization and intracellular trafficking pathways of baculoviruses through direct visualization of VP39-GFP-labeled viral particles and various endocytic structures within target cells. Drug inhibition and confocal microscopy results suggested that baculoviruses enter the cells via clathrin-mediated endocytosis in a dynamin-dependent manner. Viral particles were shown to traffic through early endosomes, triggering a low-pH-dependent endosomal fusion process of viruses. Suppressed autophagy activity enhanced viral transduction and overexpression of autophagosomes reduced viral transduction, suggesting that autophagy is involved in degradation process of viral particles. Actin filaments were involved in the viral transduction, while microtubules negatively regulated viral transduction by facilitating the fusion of autophagosomes with lysosomes to form autolysosomes, where degradation of viral particles occurs. These results shed some light on the essential cellular factors limiting viral transduction, which can be used to improve the use of baculoviral vectors in cell and gene therapy.
Collapse
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Kye-Il Joo
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuning Lei
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21:739-49. [PMID: 23439502 PMCID: PMC3616530 DOI: 10.1038/mt.2012.286] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas A Kost
- Biological Reagents and Assay Development, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, USA
| | - Richard H Smith
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Kotin
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Kataoka C, Kaname Y, Taguwa S, Abe T, Fukuhara T, Tani H, Moriishi K, Matsuura Y. Baculovirus GP64-mediated entry into mammalian cells. J Virol 2012; 86:2610-20. [PMID: 22190715 PMCID: PMC3302255 DOI: 10.1128/jvi.06704-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/09/2011] [Indexed: 11/20/2022] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.
Collapse
Affiliation(s)
- Chikako Kataoka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Yuuki Kaname
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Shuhei Taguwa
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Takayuki Abe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| | - Hideki Tani
- Department of Virology I, National Institute of Infectious Diseases, Tokyo
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Yamanashi University, Yamanashi, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka
| |
Collapse
|
9
|
Abstract
There are many methods presently available to produce recombinant proteins in mammalian systems. The BacMam system is a simple straightforward method which overlaps two well-established technologies, namely the BEVS insect cell system and the transduction of mammalian cells in vitro. This chapter describes a method for the study of gene expression in mammalian cells in a series of simple steps. Protocols outlined include the design and construction of the recombinant baculovirus, cell culture techniques required to maintain both insect and mammalian cells, generation of baculovirus stocks, and methods to obtain maximal and reproducible gene expression in mammalian cells. Currently available statistical techniques using factorial design of experiment to optimize conditions for recombinant protein in vitro are outlined. Then details with respect to process scale-up in disposable bioreactors are included.
Collapse
|
10
|
Au S, Panté N. Nuclear transport of baculovirus: revealing the nuclear pore complex passage. J Struct Biol 2011; 177:90-8. [PMID: 22100338 DOI: 10.1016/j.jsb.2011.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/26/2022]
Abstract
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During an infection the capsid, containing the DNA viral genome, is released into the cytoplasm and delivers the genome into the nucleus by a mechanism that is largely unknown. Here, we used capsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus in combination with electron microscopy and discovered this capsid crosses the NPC and enters into the nucleus intact, where it releases its genome. To better illustrate the existence of this capsid through the NPC in its native conformation, we reconstructed the nuclear import event using electron tomography. In addition, using different experimental conditions, we were able to visualize the intact capsid interacting with NPC cytoplasmic filaments, as an initial docking site, and midway through the NPC. Our data suggests the NPC central channel undergoes large-scale rearrangements to allow translocation of the intact 250-nm long baculovirus capsid. We discuss our results in the light of the hypothetical models of NPC function.
Collapse
Affiliation(s)
- Shelly Au
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
11
|
Molinari P, Crespo MI, Gravisaco MJ, Taboga O, Morón G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One 2011; 6:e24108. [PMID: 21918683 PMCID: PMC3168877 DOI: 10.1371/journal.pone.0024108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination.
Collapse
Affiliation(s)
- Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - María I. Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María J. Gravisaco
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
12
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
13
|
Chen HZ, Wu CP, Chao YC, Liu CYY. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells. Biochem Biophys Res Commun 2011; 405:297-302. [PMID: 21219863 PMCID: PMC7092845 DOI: 10.1016/j.bbrc.2011.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
Abstract
The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan, ROC
| | | | | | | |
Collapse
|
14
|
Airenne KJ, Makkonen KE, Mähönen AJ, Ylä-Herttuala S. Baculoviruses mediate efficient gene expression in a wide range of vertebrate cells. Methods Mol Biol 2011; 737:279-301. [PMID: 21590402 DOI: 10.1007/978-1-61779-095-9_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Baculovirus expression vector system (BEVS) is well known as a feasible and safe technology to produce recombinant (re-)proteins in a eukaryotic milieu of insect cells. However, its proven power in gene delivery and gene therapy is still poorly recognized. The basis of BEVS lies in large enveloped DNA viruses derived from insects, the prototype virus being Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Infection of insect cell culture with a virus encoding a desired transgene under powerful baculovirus promoter leads to re-protein production in high quantities. Although the replication of AcMNPV is highly insect specific in nature, it can penetrate and transduce a wide range of cells of other origin. Efficient transduction requires only virus arming with an expression cassette active in the cells under investigation. The inherent safety, ease and speed of virus generation in high quantities, low cytotoxicity and extreme transgene capacity and tropism provides many advantages for gene delivery over the other viral vectors typically derived from human pathogens.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
15
|
Abstract
Viral vector is the most effective means of gene transfer to modify specific cell type or tissue and can be manipulated to express therapeutic genes. Several virus types are currently being investigated for use to deliver genes to cells to provide either transient or permanent transgene expression. These include adenoviruses (Ads), retroviruses (γ-retroviruses and lentiviruses), poxviruses, adeno-associated viruses, baculoviruses, and herpes simplex viruses. The choice of virus for routine clinical use will depend on the efficiency of transgene expression, ease of production, safety, toxicity, and stability. This chapter provides an introductory overview of the general characteristics of viral vectors commonly used in gene transfer and their advantages and disadvantages for gene therapy use.
Collapse
Affiliation(s)
- James N Warnock
- School of Chemical & Bioprocess Engineering and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
16
|
Airenne KJ, Laitinen OH, Mähönen AJ, Ylä-Herttuala S. Transduction of vertebrate cells with recombinant baculovirus. Cold Spring Harb Protoc 2010; 2009:pdb.prot5182. [PMID: 20147117 DOI: 10.1101/pdb.prot5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 2010; 84:5351-9. [PMID: 20219938 DOI: 10.1128/jvi.02517-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.
Collapse
|
18
|
Proteomics identification and annotation of proteins of a cell line of Bombyx mori, BmN cells. Biosci Rep 2010; 30:209-15. [DOI: 10.1042/bsr20090045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A cell line is an important experimental platform for biological sciences as it can basically reflect the biology of its original organism. In this study, we firstly characterized the proteome of cultured BmN cells, derived from Bombyx mori. Total 1478 proteins were identified with two or more peptides by using 1D (one-dimensional) SDS/PAGE and LTQ-Orbitrap. According to the gene ontology annotation, these proteins presented diverse pI values and molecular masses, involved in various molecular functions, including catalytic activity, binding, molecular transducer activity, motor activity, transcription regulator activity, enzyme regulator activity and antioxidant activity. Some proteins related to virus infection were also identified. These results provided us with useful information to understand the molecular mechanism of B. mori as well as antiviral immunity.
Collapse
|
19
|
Ihalainen TO, Laakkonen JP, Paloheimo O, Ylä-Herttuala S, Airenne KJ, Vihinen-Ranta M. Morphological characterization of baculovirus Autographa californica multiple nucleopolyhedrovirus. Virus Res 2010; 148:71-4. [DOI: 10.1016/j.virusres.2009.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
20
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mäkelä AR, Enbäck J, Laakkonen JP, Vihinen-Ranta M, Laakkonen P, Oker-Blom C. Tumor targeting of baculovirus displaying a lymphatic homing peptide. J Gene Med 2009; 10:1019-31. [PMID: 18655234 DOI: 10.1002/jgm.1222] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Tumor-associated cells and vasculature express attractive molecular markers for site-specific vector targeting. To attain tumor-selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP-1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G-protein. METHODS In the present study, we explored the specificity and kinetics of viral binding and internalization as well as in vivo tumor homing of the LyP-1 displaying virus to elucidate the applicability of baculovirus for targeted therapies. RESULTS We demonstrated that the LyP-1 peptide contributes to saturable binding of baculovirus in human MDA-MB-435 and HepG2 carcinoma cells and escalates the kinetics of viral internalization leading to earlier nuclear accumulation and enhanced transgene expression. The LyP-1 displaying virus also showed stronger competitiveness against transduction with wild-type baculovirus, suggesting involvement of a specific receptor in cellular attachment and entry. Following intravenous injections, the modified virus accumulated within the human MDA-MB-435 and MDA-MB-231 carcinoma xenografts in mice with higher specificity and efficiency than the control virus. Targeting of the modified virus was more specific in the MDA-MB-435 than in the MDA-MB-231 xenografts as demonstrated by higher tumor accumulation and lower distribution in nontarget organs. No apparent cytotoxicity was associated with the surface modification. CONCLUSIONS This first demonstration of in vivo tumor targeting of a systemically administered, tropism-modified baculoviral vector highlights the potential of baculovirus-mediated targeted therapies.
Collapse
Affiliation(s)
- Anna R Mäkelä
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
22
|
Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process. Arch Virol 2008; 153:1777-81. [PMID: 18695932 DOI: 10.1007/s00705-008-0183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
The present study investigated the effect of microtubules (MTs) and vimentin during dengue virus serotype 2 (DV2) infection. Immunostaining showed that DV2 infection induced MT and vimentin reorganization. Colocalization of DV2 antigens with MTs or vimentin were often observed in ECV304 cells. MT-disrupting agents could enhance DV2 release but did not affect other steps of virus replication. In contrast, disruption of vimentin inhibited DV2 infection. Our results suggest that an MT-dependent mechanism may not be necessary for DV2 infection, and MT disruption may promote DV2 release. However, vimentin is required for DV2 infection.
Collapse
|
23
|
Carpentier DC, Griffiths CM, King LA. The baculovirus P10 protein of Autographa californica nucleopolyhedrovirus forms two distinct cytoskeletal-like structures and associates with polyhedral occlusion bodies during infection. Virology 2008; 371:278-91. [DOI: 10.1016/j.virol.2007.09.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/24/2007] [Accepted: 09/28/2007] [Indexed: 11/28/2022]
|
24
|
|
25
|
Tani H, Abe T, Matsunaga TM, Moriishi K, Matsuura Y. Baculovirus vector for gene delivery and vaccine development. Future Virol 2008. [DOI: 10.2217/17460794.3.1.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus has been widely used not only to acheive a high level of foreign gene expression in insect cells, but also for efficient gene transduction into mammalian cells. Recombinant and pseudotyped baculoviruses possessing chimeric or foreign ligands have been constructed to improve the efficiency of gene transduction and to confer specificity for gene delivery into mammalian cells, respectively. Baculoviral DNA CpG motifs induce proinflammatory cytokines through a Toll-like receptor (TLR9)/MyD88-dependent signaling pathway. Other baculovirus components produce type I interferons via a TLR-independent pathway. Baculovirus exhibits a strong adjuvant property and recombinant baculoviruses encoding microbial antigens elicit antibodies to the antigens and provide protective immunity in mice. This review deals with recent progress in the application of baculovirus vectors to gene delivery and vaccine development, and discusses the future prospects of baculovirus vectors.
Collapse
Affiliation(s)
- Hideki Tani
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Takayuki Abe
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Tomoko M Matsunaga
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Kohji Moriishi
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Yoshiharu Matsuura
- Osaka University, Department of Molecular Virology, Research Institute for Microbial Diseases, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Laakkonen JP, Kaikkonen MU, Ronkainen PHA, Ihalainen TO, Niskanen EA, Häkkinen M, Salminen M, Kulomaa MS, Ylä-Herttuala S, Airenne KJ, Vihinen-Ranta M. Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell Microbiol 2007; 10:667-81. [PMID: 18042259 DOI: 10.1111/j.1462-5822.2007.01074.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), has the ability to transduce mammalian cell lines without replication. The general objective of this study was to detect the transcription and expression of viral immediate-early genes in human cells and to examine the interactions between viral components and subnuclear structures. Viral capsids were seen in large, discrete foci in nuclei of both dividing and non-dividing human cells. Concurrently, the transcription of viral immediate-early transregulator genes (ie-1, ie-2) and translation of IE-2 protein were detected. Quantitative microscopy imaging and analysis showed that virus transduction altered the size of promyelocytic leukaemia nuclear bodies, which are suggested to be involved in replication and transcription of various viruses. Furthermore, altered distribution of the chromatin marker Draq5 and histone core protein (H2B) in transduced cells indicated that the virus was able to induce remodelling of the host cell chromatin. To conclude, this study shows that the non-replicative insect virus, baculovirus and its proteins can induce multiple changes in the cellular machinery of human cells.
Collapse
Affiliation(s)
- Johanna P Laakkonen
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shen HC, Lee HP, Lo WH, Yang DG, Hu YC. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J Gene Med 2007; 9:470-8. [PMID: 17431924 DOI: 10.1002/jgm.1037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Baculovirus transduction of cultured mammalian cells is typically performed by incubating the cells with virus using culture medium (e.g. Dulbecco's modified Eagle's medium (DMEM)) as the surrounding solution. However, we previously uncovered that DMEM hinders the baculovirus-mediated gene transfer. METHODS In this study, we systematically explored the influences of promoter and medium constituents on the transduction efficiency by using different recombinant viruses and surrounding solutions for transduction, followed by flow cytometric analyses. Whether the key medium component impeded baculovirus binding to the cells and subsequent virus entry was investigated by immunofluorescence/confocal microscopy and quantitative real-time polymerase chain reaction (Q-PCR). RESULTS We demonstrated that the poorer transduction by using DMEM as the surrounding solution is independent of the promoter. Examination of the medium constituents group by group revealed that the balanced salt solution suppresses the baculovirus transduction. By omitting individual salt species in the balanced salt solution, we surprisingly uncovered that NaHCO(3), a common buffering agent, exerts the inhibitory effects in a concentration-dependent manner. Intriguingly, NaHCO(3) did not debilitate the baculovirus, nor did it inhibit virus binding to the cells. Instead, NaHCO(3) inhibited baculovirus transduction by reducing the intracellular virus number. CONCLUSIONS To our best knowledge, this is the first report unraveling the significance of NaHCO(3) in gene transfer. Our finding suggests that baculovirus-mediated gene transfer can be readily enhanced by omitting NaHCO(3) from the medium during the transduction period.
Collapse
Affiliation(s)
- Heng-Chun Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Mähönen AJ, Airenne KJ, Purola S, Peltomaa E, Kaikkonen MU, Riekkinen MS, Heikura T, Kinnunen K, Roschier MM, Wirth T, Ylä-Herttuala S. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 2007; 131:1-8. [PMID: 17617485 DOI: 10.1016/j.jbiotec.2007.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 05/09/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Baculoviruses can express transgenes in a wide range of vertebrate cells. However, in some cells transgene expression is weak. To enhance transgene expression, we studied the effect of the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) on baculovirus (BV)-mediated gene expression of several transgenes. A significant increase in BV-mediated gene expression was detected in several cell lines. A 10-fold increase in transgene expression was observed with the WPRE as determined by the percentage of positive cells and mean fluorescence intensity (MFI). Furthermore, a combination of optimized cell culture medium and WPRE virus led to more than a 60-fold increase in gene expression. In accordance, elevated mRNA and protein levels were detected in WPRE-virus transduced cells. In HepG2 and RaaSMC, WPRE-mediated enhancement was comparable to the previously shown positive effect of sodium butyrate on BV-mediated gene expression. Thus, inclusion of the WPRE into a baculovirus vector provides a simple means to improve BV-mediated gene expression in vertebrate cells.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsai CT, Chan ZR, Lu JT, Yang DG, Lo WH, Hu YC. Factors influencing the production and storage of baculovirus for gene delivery: An alternative perspective from the transducing titer assay. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Lee HP, Chen YL, Shen HC, Lo WH, Hu YC. Baculovirus transduction of rat articular chondrocytes: roles of cell cycle. J Gene Med 2007; 9:33-43. [PMID: 17167815 DOI: 10.1002/jgm.994] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND We have previously demonstrated highly efficient baculovirus transduction of primary rat articular chondrocytes, thus implicating the possible applications of baculovirus in gene-based cartilage tissue engineering. However, baculovirus-mediated gene expression in the chondrocytes is transient. METHODS In this study, we attempted to prolong the expression by supertransduction, but uncovered that after long-term culture the chondrocytes became more refractory to baculovirus transduction. Therefore, the correlation between baculovirus-mediated enhanced green fluorescent protein (EGFP) expression and cell cycle was investigated by comparing the cycling chondrocytes and chondrocytes rich in quiescent cells, in terms of EGFP expression, virus uptake, cell cycle distribution, nuclear import and methylation of viral DNA. RESULTS We demonstrated, for the first time, that baculovirus-mediated transduction of chondrocytes is correlated with the cell cycle. The chondrocytes predominantly in G2/M phase were approximately twice as efficient in EGFP expression as the cycling cells, while the cells in S and G1 phases expressed EGFP as efficiently as the cycling cells. Notably, the chondrocyte populations rich in quiescent cells resulted in efficient virus uptake, but less effective nuclear transport of baculoviral DNA and higher degree of methylation, and hence poorer transgene expression. CONCLUSIONS These findings unravel the practical limitations when employing baculovirus in cartilage tissue engineering. The implications and possible solutions are discussed.
Collapse
Affiliation(s)
- Hsiao-Ping Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300
| | | | | | | | | |
Collapse
|
31
|
Lee HP, Ho YC, Hwang SM, Sung LY, Shen HC, Liu HJ, Hu YC. Variation of baculovirus-harbored transgene transcription among mesenchymal stem cell-derived progenitors leads to varied expression. Biotechnol Bioeng 2007; 97:649-55. [PMID: 17115444 DOI: 10.1002/bit.21261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously demonstrated that baculovirus can efficiently transduce human mesenchymal stem cells (MSCs) and MSCs-derived adipogenic, chondrogenic, and osteogenic progenitors without compromising the differentiation capacity. Remarkably, the transgene expression level and duration varied widely with the differentiation states at which the progenitors were transduced. However, whether the variation was a general phenomenon and what caused the variation were unclear. Here we demonstrated that transduction of the MSCs and MSC-derived progenitors using baculoviruses carrying egfp driven by CMV, EF-1alpha or CAG promoter resulted in a general trend of varied expression, that is, the chondrogenic progenitors allowed for the poorest expression while the adipogenic progenitors conferred the best expression. Quantification of the nuclear and cytoplasmic egfp gene copy numbers by quantitative real-time PCR revealed that the varied expression did not arise from the discrepancies in gene delivery efficiency nor was it due to the disparities in nuclear transport efficiency. In contrast, the transcription levels paralleled the overall expression levels. These data suggested that although the egfp genes could be efficiently delivered into the nuclei of chondrogenic progenitors, they were not transcribed as well as they were in the adipogenic progenitors. In conclusion, the rapidly altering cellular transcription machinery in the course of differentiation progression predominantly led to the varied expression levels.
Collapse
Affiliation(s)
- Hsiao-Ping Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Mäkelä AR, Matilainen H, White DJ, Ruoslahti E, Oker-Blom C. Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J Virol 2006; 80:6603-11. [PMID: 16775347 PMCID: PMC1488948 DOI: 10.1128/jvi.00528-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/20/2006] [Indexed: 01/05/2023] Open
Abstract
Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 peptide inhibited viral binding to MDA-MB-435 cells with a greater magnitude and specificity than the CGKRK and F3 peptides. Maximal 7- and 24-fold increases in transduction, determined by transgene expression level, were achieved for the MDA-MB-435 and HepG2 cells, respectively. The internalization of each virus was inhibited by ammonium chloride treatment, suggesting the use of a similar endocytic entry route. The LyP-1 and F3 peptides showed an apparent inhibitory effect in transduction of HepG2 cells with the corresponding display viruses. Together, these results imply that the efficiency of baculovirus-mediated gene delivery can be significantly enhanced in vitro when tumor-targeting ligands are used and therefore highlight the potential of baculovirus vectors in cancer gene therapy.
Collapse
Affiliation(s)
- Anna R Mäkelä
- NanoScience Center, Department of Biological and Environmental Science, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
33
|
Ho YC, Lee HP, Hwang SM, Lo WH, Chen HC, Chung CK, Hu YC. Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther 2006; 13:1471-9. [PMID: 16763663 DOI: 10.1038/sj.gt.3302796] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that baculovirus can efficiently transduce human mesenchymal stem cells (MSCs). In this study, we further demonstrated, for the first time, that baculovirus can transduce adipogenic, chondrogenic and osteogenic progenitors originating from MSCs. The transduction efficiency (21-90%), transgene expression level and duration (7-41 days) varied widely with the differentiation lineages and stages of the progenitors, as determined by flow cytometry. The variation stemmed from differential transgene transcription (as revealed by real-time reverse transcription-polymerase chain reaction), rather than from variability in virus entry or cell cycle (as determined by quantitative real-time PCR and flow cytometry). Nonetheless, the baculovirus-transduced cells remained capable of differentiating into adipogenic, osteogenic and chondrogenic pathways. The susceptibility to baculovirus transduction was higher for adipogenic and osteogenic progenitors, but was lower for chondrogenic progenitors. In particular, the duration of transgene expression was prolonged in the transduced adipogenic and osteogenic progenitors (as opposed to the MSCs), implicating the possibility of extending transgene expression via a proper transduction strategy design. Taken together, baculovirus may be an attractive alternative to genetically modify adipogenic and osteogenic progenitors in the ex vivo setting for cell therapy or tissue engineering.
Collapse
Affiliation(s)
- Y-C Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kitajima M, Hamazaki H, Miyano-Kurosaki N, Takaku H. Characterization of baculovirus Autographa californica multiple nuclear polyhedrosis virus infection in mammalian cells. Biochem Biophys Res Commun 2006; 343:378-84. [PMID: 16545777 DOI: 10.1016/j.bbrc.2006.02.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 02/27/2006] [Indexed: 11/20/2022]
Abstract
The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
Since the discovery that baculoviruses can efficiently transduce mammalian cells, baculoviruses have been extensively studied as potential vectors for both in vitro and in vivo gene therapy. This chapter reviews the history of this research area, cells permissive to baculovirus transduction, factors influencing transduction and transgene expression, efforts to improve transduction, mechanisms of virus entry and intracellular trafficking, applications for in vivo and ex vivo gene therapy, as well as advantages, limitations, and safety issues concerning use of baculoviruses as gene therapy vectors. Recent progress and efforts directed toward overcoming existing bottlenecks are emphasized.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University Hsinchu, Taiwan 300
| |
Collapse
|
36
|
Matilainen H, Rinne J, Gilbert L, Marjomäki V, Reunanen H, Oker-Blom C. Baculovirus entry into human hepatoma cells. J Virol 2005; 79:15452-9. [PMID: 16306616 PMCID: PMC1316037 DOI: 10.1128/jvi.79.24.15452-15459.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 09/26/2005] [Indexed: 12/22/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a prototype member of the Baculoviridae family, has gained increasing interest as a potential vector candidate for mammalian gene delivery applications. AcMNPV is known to enter both dividing and nondividing mammalian cell lines in vitro, but the mode and kinetics of entry as well as the intracellular transport of the virus in mammalian cells is poorly understood. The general objective of this study was to characterize the entry steps of AcMNPV- and green fluorescent protein-displaying recombinant baculoviruses in human hepatoma cells. The viruses were found to bind and transduce the cell line efficiently, and electron microscopy studies revealed that virions were located on the cell surface in pits with an electron-dense coating resembling clathrin. In addition, virus particles were found in larger noncoated plasma membrane invaginations and in intracellular vesicles resembling macropinosomes. In double-labeling experiments, virus particles were detected by confocal microscopy in early endosomes at 30 min and in late endosomes starting at 45 min posttransduction. Viruses were also seen in structures specific for early endosomal as well as late endosomal/lysosomal markers by nanogold preembedding immunoelectron microscopy. No indication of viral entry into recycling endosomes or the Golgi complex was observed by confocal microscopy. In conclusion, these results suggest that AcMNPV enters mammalian cells via clathrin-mediated endocytosis and possibly via macropinocytosis. Thus, the data presented here should enable future design of baculovirus vectors suitable for more specific and enhanced delivery of genetic material into mammalian cells.
Collapse
Affiliation(s)
- Heli Matilainen
- University of Jyväskylä, Nano Science Center, Department of Biological and Environmental Science, PO Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|