1
|
Kataoka S, Manandhar P, Lee J, Workman CJ, Banerjee H, Szymczak-Workman AL, Kvorjak M, Lohmueller J, Kane LP. The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Sci Signal 2021; 14:eaba0717. [PMID: 34131021 PMCID: PMC9741863 DOI: 10.1126/scisignal.aba0717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3-mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)-dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Asahi Kasei Pharma Corporation, Shizuoka, Japan
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judong Lee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Michael Kvorjak
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason Lohmueller
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Bayliss RJ, Piguet V. Masters of manipulation: Viral modulation of the immunological synapse. Cell Microbiol 2018; 20:e12944. [PMID: 30123959 PMCID: PMC6492149 DOI: 10.1111/cmi.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
In order to thrive, viruses have evolved to manipulate host cell machinery for their own benefit. One major obstacle faced by pathogens is the immunological synapse. To enable efficient replication and latency in immune cells, viruses have developed a range of strategies to manipulate cellular processes involved in immunological synapse formation to evade immune detection and control T-cell activation. In vitro, viruses such as human immunodeficiency virus 1 and human T-lymphotropic virus type 1 utilise structures known as virological synapses to aid transmission of viral particles from cell to cell in a process termed trans-infection. The formation of the virological synapse provides a gateway for virus to be transferred between cells avoiding the extracellular space, preventing antibody neutralisation or recognition by complement. This review looks at how viruses are able to subvert intracellular signalling to modulate immune function to their advantage and explores the role synapse formation has in viral persistence and cell-to-cell transmission.
Collapse
Affiliation(s)
- Rebecca J. Bayliss
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
| | - Vincent Piguet
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of DermatologyWomen's College HospitalTorontoOntarioCanada
| |
Collapse
|
3
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
4
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
5
|
Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res 2015; 2015:395371. [PMID: 26539553 PMCID: PMC4619936 DOI: 10.1155/2015/395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.
Collapse
|
6
|
Species restriction of Herpesvirus saimiri and Herpesvirus ateles: Human lymphocyte transformation correlates with distinct signaling properties of viral oncoproteins. Virus Res 2012; 165:179-89. [DOI: 10.1016/j.virusres.2012.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 01/05/2023]
|
7
|
Katsch K, de Jong SJ, Albrecht JC, Steger J, Genth H, Posern G, Biesinger B. Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip. Cell Commun Signal 2012; 10:5. [PMID: 22385615 PMCID: PMC3310822 DOI: 10.1186/1478-811x-10-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/03/2012] [Indexed: 01/05/2023] Open
Abstract
Serum response factor (SRF) acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs) or myocardin-related transcription factors (MRTFs). Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE). Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis.
Collapse
Affiliation(s)
- Kristin Katsch
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Inhibition of human papillomavirus DNA replication by an E1-derived p80/UAF1-binding peptide. J Virol 2012; 86:3486-500. [PMID: 22278251 DOI: 10.1128/jvi.07003-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 helicase is recruited by E2 to the viral origin, where it assembles into a double hexamer that orchestrates replication of the viral genome. We previously identified the cellular WD40 repeat-containing protein p80/UAF1 as a novel interaction partner of E1 from anogenital human papillomavirus (HPV) types. p80 was found to interact with the first 40 residues of HPV type 31 (HPV31) E1, and amino acid substitutions within this domain abrogated the maintenance of the viral episome in keratinocytes. In this study, we report that these p80-binding substitutions reduce by 70% the ability of E1 to support transient viral DNA replication without affecting its interaction with E2 and assembly at the origin in vivo. Microscopy studies revealed that p80 is relocalized from the cytoplasm to discrete subnuclear foci by E1 and E2. Chromatin immunoprecipitation assays further revealed that p80 is recruited to the viral origin in an E1- and E2-dependent manner. Interestingly, overexpression of a 40-amino-acid-long p80-binding peptide, derived from HPV31 E1, was found to inhibit viral DNA replication by preventing the recruitment of endogenous p80 to the origin. Mutant peptides defective for p80 interaction were not inhibitory, demonstrating the specificity of this effect. Characterization of this E1 peptide by nuclear magnetic resonance (NMR) showed that it is intrinsically disordered in solution, while mapping studies indicated that the WD repeats of p80 are required for E1 interaction. These results provide additional evidence for the requirement for p80 in anogenital HPV DNA replication and highlight the potential of E1-p80 interaction as a novel antiviral target.
Collapse
|
9
|
Kim Y, Kwon EK, Jeon JH, So I, Kim IG, Choi MS, Kim IS, Choi JK, Jung JU, Cho NH. Activation of the STAT6 transcription factor in Jurkat T-cells by the herpesvirus saimiri Tip protein. J Gen Virol 2011; 93:330-340. [PMID: 22012462 DOI: 10.1099/vir.0.036087-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herpesvirus saimiri (HVS), a T-lymphotropic monkey herpesvirus, induces fulminant T-cell lymphoma in non-natural primate hosts. In addition, it can immortalize human T-cells in vitro. HVS tyrosine kinase-interacting protein (Tip) is an essential viral gene required for T-cell transformation both in vitro and in vivo. In this study, we found that Tip interacts with the STAT6 transcription factor and induces phosphorylation of STAT6 in T-cells. The interaction with STAT6 requires the Tyr(127) residue and Lck-binding domain of Tip, which are indispensable for interleukin (IL)-2-independent T-cell transformation by HVS. It was also demonstrated that Tip induces nuclear translocation of STAT6, as well as activation of STAT6-dependent transcription in Jurkat T-cells. Interestingly, the phosphorylated STAT6 mainly colocalized with vesicles containing Tip within T-cells, but was barely detectable in the nucleus. However, nuclear translocation of phospho-STAT6 and transcriptional activation of STAT6 by IL-4 stimulation were not affected significantly in T-cells expressing Tip. Collectively, these findings suggest that the constitutive activation of STAT6 by Tip in T-cells may contribute to IL-2-independent T-cell transformation by HVS.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jae Ung Jung
- Molecular Microbiology and Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, CA 90033, USA
| | - Nam-Hyuk Cho
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kingston D, Chang H, Ensser A, Lee HR, Lee J, Lee SH, Jung JU, Cho NH. Inhibition of retromer activity by herpesvirus saimiri tip leads to CD4 downregulation and efficient T cell transformation. J Virol 2011; 85:10627-38. [PMID: 21849449 PMCID: PMC3187508 DOI: 10.1128/jvi.00757-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer is an evolutionally conserved protein complex composed of a vacuolar protein sorting trimer (Vps 26/29/35) that participates in cargo recognition and a sorting nexin (SNX) dimer that binds to endosomal membranes. The retromer plays an important role in efficient retrograde transport for endosome-to-Golgi retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR), a receptor for lysosomal hydrolases, and other endosomal proteins. This ultimately contributes to the control of cell growth, cell adhesion, and cell migration. The herpesvirus saimiri (HVS) tyrosine kinase-interacting protein (Tip), required for the immortalization of primary T lymphocytes, targets cellular signaling molecules, including Lck tyrosine kinases and the p80 endosomal trafficking protein. Despite the pronounced effects of HVS Tip on T cell signal transduction, the details of its activity on T cell immortalization remain elusive. Here, we report that the amino-terminal conserved, glutamate-rich sequence of Tip specifically interacts with the retromer subunit Vps35 and that this interaction not only causes the redistribution of Vps35 from the early endosome to the lysosome but also drastically inhibits retromer activity, as measured by decreased levels of CI-MPR and lower activities of cellular lysosomal hydrolases. Physiologically, the inhibition of intracellular retromer activity by Tip is ultimately linked to the downregulation of CD4 surface expression and to the efficient in vitro immortalization of primary human T cells to interleukin-2 (IL-2)-independent permanent growth. Therefore, HVS Tip uniquely targets the retromer complex to impair the intracellular trafficking functions of infected cells, ultimately contributing to efficient T cell transformation.
Collapse
Affiliation(s)
- Dior Kingston
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Heesoon Chang
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hye-Ra Lee
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Jongsoo Lee
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Sun-Hwa Lee
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Jae Ung Jung
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Nam-Hyuk Cho
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Department of Microbiology and Immunology, Seoul National University College of Medicine, and Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
| |
Collapse
|
11
|
Petrovic D, Stamataki Z, Dempsey E, Golden-Mason L, Freeley M, Doherty D, Prichard D, Keogh C, Conroy J, Mitchell S, Volkov Y, McKeating JA, O'Farrelly C, Kelleher D, Long A. Hepatitis C virus targets the T cell secretory machinery as a mechanism of immune evasion. Hepatology 2011; 53:1846-53. [PMID: 21452285 DOI: 10.1002/hep.24327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 03/18/2011] [Indexed: 12/13/2022]
Abstract
UNLABELLED T cell activation and the resultant production of interleukin (IL-2) is a central response of the adaptive immune system to pathogens, such as hepatitis C virus (HCV). HCV uses several mechanisms to evade both the innate and adaptive arms of the immune response. Here we demonstrate that liver biopsy specimens from individuals infected with HCV had significantly lower levels of IL-2 compared with those with other inflammatory liver diseases. Cell culture-grown HCV particles inhibited the production of IL-2 by normal peripheral blood mononuclear cells, as did serum from HCV-infected patients. This process was mediated by the interaction of HCV envelope protein E2 with tetraspanin CD81 coreceptor. HCV E2 attenuated IL-2 production at the level of secretion and not transcription by targeting the translocation of protein kinase C beta (PKCβ), which is essential for IL-2 secretion, to lipid raft microdomains. The lipid raft disruptor methyl-β-cyclodextrin reversed HCV E2-mediated inhibition of IL-2 secretion, but not in the presence of a PKCβ-selective inhibitor. HCV E2 further inhibited the secretion of other cytokines, including interferon-γ. CONCLUSION These data suggest that HCV E2-mediated disruption of the association of PKCβ with the cellular secretory machinery represents a novel mechanism for HCV to evade the human immune response and to establish persistent infection.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vesicle traffic to the immunological synapse: a multifunctional process targeted by lymphotropic viruses. Curr Top Microbiol Immunol 2010; 340:191-207. [PMID: 19960315 DOI: 10.1007/978-3-642-03858-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The site of contact between T lymphocytes and antigen-presenting cells becomes, upon antigen recognition, an organized junction named the immunological synapse. Various T cell organelles polarize, together with microtubules, toward the antigen-presenting cell. Among them, intracellular vesicular compartments, such as the Golgi apparatus, the recycling endosomal compartment, or cytotoxic granules help to build the immunological synapse and ensure effector functions, such as polarized secretion of cytokines by helper T cells, or exocytosis of lytic granules by cytotoxic T cells. Lymphotropic retroviruses, such as the human immunodeficiency virus type 1, the human T cell leukemia virus type 1, or the Herpesvirus saimiri, can subvert some of the vesicle traffic mechanisms impeding the generation and function of the immunological synapses. This review focuses on the polarization of vesicle traffic, its regulation, and its role in maintaining the structure and function of the immunological synapse. We discuss how some lymphotropic viruses target the vesicle traffic in T lymphocytes, inhibiting the formation of immunological synapses and modulating the response of infected T cells.
Collapse
|
13
|
The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009; 28:3903-14. [PMID: 19718044 PMCID: PMC2774296 DOI: 10.1038/onc.2009.249] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although frequently expressed in Epstein-Barr virus (EBV)-positive malignancies, the role that latent membrane protein 2A and 2B (LMP2A and LMP2B) have in the oncogenic process remains obscure. Here we show a novel function for these proteins in epithelial cells, namely, their ability to modulate signalling from type I/II interferon receptors (IFNRs). We show that LMP2A- and LMP2B-expressing epithelial cells show decreased responsiveness to interferon (IFN)alpha and IFNgamma, as assessed by STAT1 phosphorylation, ISGF3 and GAF-mediated binding to IFN-stimulated response element and IFNgamma-activated factor sequence elements and luciferase reporter activation. Transcriptional profiling highlighted the extent of this modulation, with both viral proteins impacting 'globally' on IFN-stimulated gene expression. Although not affecting the levels of cell-surface IFNRs, LMP2A and LMP2B accelerated the turnover of IFNRs through processes requiring endosome acidification. This function may form part of EBV's strategy to limit anti-viral responses and define a novel function for LMP2A and LMP2B in modulating signalling from receptors that participate in innate immune responses.
Collapse
|
14
|
Min CK, Bang SY, Cho BA, Choi YH, Yang JS, Lee SH, Seong SY, Kim KW, Kim S, Jung JU, Choi MS, Kim IS, Cho NH. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation. PLoS Pathog 2008; 4:e1000209. [PMID: 19023411 PMCID: PMC2581436 DOI: 10.1371/journal.ppat.1000209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Sun-Young Bang
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Bon-A Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Yun-Hui Choi
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Jae-Seong Yang
- Department of Life Science and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Sun-Hwa Lee
- Seoul National University Hospital, Innovative Research Institute for Cell Therapy, Chongno-Gu, Seoul, Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
- Seoul National University Hospital, Innovative Research Institute for Cell Therapy, Chongno-Gu, Seoul, Korea
| | - Ki Woo Kim
- National Instrumentation Center for Environmental Management, Seoul National University, Gwanak-Gu, Seoul, Korea
| | - Sanguk Kim
- Department of Life Science and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Jae Ung Jung
- Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| |
Collapse
|
15
|
Noisakran S, Dechtawewat T, Avirutnan P, Kinoshita T, Siripanyaphinyo U, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Association of dengue virus NS1 protein with lipid rafts. J Gen Virol 2008; 89:2492-2500. [PMID: 18796718 DOI: 10.1099/vir.0.83620-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.
Collapse
Affiliation(s)
- Sansanee Noisakran
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Thanyaporn Dechtawewat
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute of Microbial Diseases, Osaka University, Osaka, Japan
| | - Uamporn Siripanyaphinyo
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand
| | - Chunya Puttikhunt
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Watchara Kasinrerk
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Prida Malasit
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Sanchez-Pulido L, Devos D, Sung ZR, Calonje M. RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BMC Genomics 2008; 9:308. [PMID: 18588675 PMCID: PMC2447854 DOI: 10.1186/1471-2164-9-308] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins are a set of chromatin-modifying proteins that play a key role in epigenetic gene regulation. The PcG proteins form large multiprotein complexes with different activities. The two best-characterized PcG complexes are the PcG repressive complex 1 (PRC1) and 2 (PRC2) that respectively possess histone 2A lysine 119 E3 ubiquitin ligase and histone 3 lysine 27 methyltransferase activities. While PRC2-like complexes are conserved throughout the eukaryotic kingdoms, PRC1-like complexes have only been described in Drosophila and vertebrates. Since both complexes are required for the gene silencing mechanism in Drosophila and vertebrates, how PRC1 function is realized in organisms that apparently lack PRC1 such as plants, is so far unknown. In vertebrates, PRC1 includes three proteins, Ring1B, Ring1A, and Bmi-1 that form an E3 ubiquitin ligase complex. These PRC1 proteins have an N-terminally located Ring finger domain associated to a poorly characterized conserved C-terminal region. RESULTS We obtained statistically significant evidences of sequence similarity between the C-terminal region of the PRC1 Ring finger proteins and the ubiquitin (Ubq)-like family proteins, thus defining a new Ubq-like domain, the RAWUL domain. In addition, our analysis revealed the existence of plant and worm proteins that display the conserved combination of a Ring finger domain at the N-terminus and a RAWUL domain at the C-terminus. CONCLUSION Analysis of the conserved domain architecture among PRC1 Ring finger proteins revealed the existence of long sought PRC1 protein orthologs in these organisms, suggesting the functional conservation of PRC1 throughout higher eukaryotes.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Centro Nacional de Biotecnología (CNB-CSIC). Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
NF-kappaB activation by the viral oncoprotein StpC enhances IFN-gamma production in T cells. Immunol Cell Biol 2008; 86:622-30. [PMID: 18560378 DOI: 10.1038/icb.2008.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferon-gamma (IFN-gamma) is an essential regulator of innate and adaptive immune responses and a hallmark of the Th1 T-cell subset. It is produced at high levels by human T lymphocytes upon transformation with Herpesvirus saimiri, which depends on the expression of the viral oncoproteins saimiri transformation-associated protein of subgroup C (StpC) and tyrosine kinase-interacting protein (Tip). Here, we show that IFN-gamma production was induced by Tip in Jurkat T cells. StpC by itself did not affect IFN-gamma expression, but enhanced the effect of Tip. Our results substantiated the findings that StpC induces NF-kappaB activation and demonstrated that other transcription factors, including NFAT, AP-1 and serum response element regulators, were not activated by StpC in unstimulated T cells. Studies using StpC mutants deficient in NF-kappaB activation, dominant negative IkappaBalpha and constitutively active IKK2, established the importance of NF-kappaB in StpC-mediated upregulation of IFN-gamma production. These observations suggest that NF-kappaB induction by StpC contributes to the Th1-like phenotype of virus-transformed human T cells.
Collapse
|
18
|
Abstract
Lipid rafts are liquid-ordered (lo) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating lo-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are often required for protein function, implicating rafts in a variety of cell processes.
Collapse
Affiliation(s)
- Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|