1
|
Mattos M, Sacramento CQ, Ferreira AC, Fintelman-Rodrigues N, Pereira-Dutra FS, de Freitas CS, Gesto JSM, Temerozo JR, Silva ADPDD, Moreira MTG, Silva RSC, Silveira GPE, Pinto DP, Pereira HM, Fonseca LB, Alves Ferreira M, Blanco C, Viola JPB, Bou-Habib DC, Bozza PT, Souza TML. Newly Proposed Dose of Daclatasvir to Prevent Lethal SARS-CoV-2 Infection in Human Transgenic ACE-2 Mice. Viruses 2024; 16:1856. [PMID: 39772165 PMCID: PMC11680164 DOI: 10.3390/v16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance. It is thus necessary to study novel and repurposed antivirals for the treatment of COVID-19. We previously demonstrated that daclatasvir (DCV), an inhibitor of the hepatitis C virus (HCV) NS5A protein, impairs SARS-CoV-2 replication by targeting viral RNA polymerase and exonuclease, but the doses of DCV used to inhibit the new coronavirus are greater than the standard human plasma exposure for hepatitis C. Because any potential use of DCV against SARS-CoV-2 would be shorter than that reported here and short-term toxicological studies on DCV show that higher doses are tolerable, we searched for doses of DCV that could protect transgenic mice expressing the human ACE2 receptor (K18-hACE-2) from lethal challenge with SARS-CoV-2. We found that a dose of 60 mg/kg/day provides this protection by reducing virus replication and virus-induced lung insult. This dose is tolerable in different animal models. Taken together, our data provide preclinical evidence that can support phase I clinical trials to confirm the safety, tolerability, and pharmacokinetics of new doses of daclatasvir for a short duration in humans to further advance this compound's utility against COVID-19.
Collapse
Affiliation(s)
- Mayara Mattos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
- Laboratório de Pesquisas Pré-Clínicas, Departamento de Ciências Biológicas, Universidade Iguaçu, Nova Iguaçu 26275-580, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Filipe S. Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
| | - Caroline Souza de Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - João S. M. Gesto
- SESI Innovation Center for Occupational Health, Rio de Janeiro 22735-280, RJ, Brazil; (J.S.M.G.); (D.C.B.-H.)
| | - Jairo R. Temerozo
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil;
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Aline de Paula Dias Da Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Mariana T. G. Moreira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Rafael S. C. Silva
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Gabriel P. E. Silveira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Douglas P. Pinto
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Heliana M. Pereira
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Laís B. Fonseca
- Equivalence and Pharmacokinetics Service (SEFAR), Vice-Presidency of Production and Innovation in Health (VPPIS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil; (M.T.G.M.); (R.S.C.S.); (G.P.E.S.); (D.P.P.); (H.M.P.); (L.B.F.)
| | - Marcelo Alves Ferreira
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - Camilla Blanco
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20230-130, RJ, Brazil;
| | - Dumith Chequer Bou-Habib
- SESI Innovation Center for Occupational Health, Rio de Janeiro 22735-280, RJ, Brazil; (J.S.M.G.); (D.C.B.-H.)
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil;
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil; (M.M.); (C.Q.S.); (A.C.F.); (N.F.-R.); (F.S.P.-D.); (C.S.d.F.); (A.d.P.D.D.S.); (C.B.); (P.T.B.)
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil;
| |
Collapse
|
2
|
Guasch MB, Krapivsky PL, Antal T. Error-induced extinction in a multi-type critical birth-death process. J Math Biol 2024; 89:36. [PMID: 39222150 PMCID: PMC11369052 DOI: 10.1007/s00285-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Extreme mutation rates in microbes and cancer cells can result in error-induced extinction (EEX), where every descendant cell eventually acquires a lethal mutation. In this work, we investigate critical birth-death processes with n distinct types as a birth-death model of EEX in a growing population. Each type-i cell divides independently ( i ) → ( i ) + ( i ) or mutates ( i ) → ( i + 1 ) at the same rate. The total number of cells grows exponentially as a Yule process until a cell of type-n appears, which cell type can only divide or die at rate one. This makes the whole process critical and hence after the exponentially growing phase eventually all cells die with probability one. We present large-time asymptotic results for the general n-type critical birth-death process. We find that the mass function of the number of cells of type-k has algebraic and stationary tail( size ) - 1 - χ k , withχ k = 2 1 - k , for k = 2 , ⋯ , n , in sharp contrast to the exponential tail of the first type. The same exponents describe the tail of the asymptotic survival probability( time ) - ξ k . We present applications of the results for studying extinction due to intolerable mutation rates in biological populations.
Collapse
Affiliation(s)
- Meritxell Brunet Guasch
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - P L Krapivsky
- Department of Physics, Boston University, Boston, MA, 02215, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Tibor Antal
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
3
|
Garte S. Accurate phenotypic self-replication as a necessary cause for biological evolution. Biosystems 2024; 237:105154. [PMID: 38346554 DOI: 10.1016/j.biosystems.2024.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Since the Origin of Species, it has been known that evolution depends on what Darwin called the "strong principle of inheritance." Highly accurate replication of cellular phenotype is a universal phenomenon in all of life since LUCA and is often taken for granted as a constant in evolutionary theory. It is not known how self-replication arose during the origin of life. In this report I use the simple mathematics of evolutionary theory to investigate the dynamics of self-replication accuracy and allelic selection. Results indicate that the degree of self-replication accuracy must be greater than a threshold related to the selection coefficients of the alleles in a population in order for evolution to occur. Accurate replication of cellular phenotype and of the molecules involved in genotype/phenotype linkage is necessary for the origin of evolution and may be considered the fundamental principle of life.
Collapse
Affiliation(s)
- Seymour Garte
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
| |
Collapse
|
4
|
Sanderson T, Hisner R, Donovan-Banfield I, Hartman H, Løchen A, Peacock TP, Ruis C. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 2023; 623:594-600. [PMID: 37748513 PMCID: PMC10651478 DOI: 10.1038/s41586-023-06649-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.
Collapse
Affiliation(s)
| | - Ryan Hisner
- Department of Bioinformatics, University of Cape Town, Cape Town, South Africa
| | - I'ah Donovan-Banfield
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, National Institute for Health and Care Research, Liverpool, UK
| | | | | | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- The Pirbright Institute, Pirbright, UK
| | - Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council-Laboratory of Molecular Biology, Cambridge, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Chatterjee S, Bhattacharya M, Dhama K, Lee SS, Chakraborty C. Molnupiravir's mechanism of action drives "error catastrophe" in SARS-CoV-2: A therapeutic strategy that leads to lethal mutagenesis of the virus. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:49-52. [PMID: 37397276 PMCID: PMC10300273 DOI: 10.1016/j.omtn.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
6
|
Scott AD, King DM, Ordway SW, Bahar S. Phase transitions in evolutionary dynamics. CHAOS (WOODBURY, N.Y.) 2022; 32:122101. [PMID: 36587338 DOI: 10.1063/5.0124274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Sharp changes in state, such as transitions from survival to extinction, are hallmarks of evolutionary dynamics in biological systems. These transitions can be explored using the techniques of statistical physics and the physics of nonlinear and complex systems. For example, a survival-to-extinction transition can be characterized as a non-equilibrium phase transition to an absorbing state. Here, we review the literature on phase transitions in evolutionary dynamics. We discuss directed percolation transitions in cellular automata and evolutionary models, and models that diverge from the directed percolation universality class. We explore in detail an example of an absorbing phase transition in an agent-based model of evolutionary dynamics, including previously unpublished data demonstrating similarity to, but also divergence from, directed percolation, as well as evidence for phase transition behavior at multiple levels of the model system's evolutionary structure. We discuss phase transition models of the error catastrophe in RNA virus dynamics and phase transition models for transition from chemistry to biochemistry, i.e., the origin of life. We conclude with a review of phase transition dynamics in models of natural selection, discuss the possible role of phase transitions in unraveling fundamental unresolved questions regarding multilevel selection and the major evolutionary transitions, and assess the future outlook for phase transitions in the investigation of evolutionary dynamics.
Collapse
Affiliation(s)
- Adam D Scott
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Dawn M King
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Stephen W Ordway
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Sonya Bahar
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| |
Collapse
|
7
|
Melka AB, Louzoun Y. High fraction of silent recombination in a finite-population two-locus neutral birth-death-mutation model. Phys Rev E 2022; 106:024409. [PMID: 36109958 DOI: 10.1103/physreve.106.024409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
A precise estimate of allele and haplotype polymorphism is of great interest in theoretical population genetics, but also has practical applications, such as bone marrow registries management. Allele polymorphism is driven mainly by point mutations, while haplotype polymorphism is also affected by recombination. Current estimates treat recombination as mutations in an infinite site model. We here show that even in the simple case of two loci in a haploid individual, for a finite population, most recombination events produce existing haplotypes, and as such are silent. Silent recombination considerably reduces the total number of haplotypes expected from the infinite site model for populations that are not much larger than one over the mutation rate. Moreover, in contrast with mutations, the number of haplotypes does not grow linearly with the population size. We hence propose a more accurate estimate of the total number of haplotypes that takes into account silent recombination. We study large-scale human leukocyte antigen (HLA) haplotype frequencies from human populations to show that the current estimated recombination rate in the HLA region is underestimated.
Collapse
Affiliation(s)
- A B Melka
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Y Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
8
|
Gan SKE, Phua SX, Yeo JY. Sagacious epitope selection for vaccines, and both antibody-based therapeutics and diagnostics: tips from virology and oncology. Antib Ther 2022; 5:63-72. [PMID: 35372784 PMCID: PMC8972324 DOI: 10.1093/abt/tbac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The target of an antibody plays a significant role in the success of antibody-based therapeutics and diagnostics, and vaccine development. This importance is focused on the target binding site—epitope, where epitope selection as a part of design thinking beyond traditional antigen selection using whole cell or whole protein immunization can positively impact success. With purified recombinant protein production and peptide synthesis to display limited/selected epitopes, intrinsic factors that can affect the functioning of resulting antibodies can be more easily selected for. Many of these factors stem from the location of the epitope that can impact accessibility of the antibody to the epitope at a cellular or molecular level, direct inhibition of target antigen activity, conservation of function despite escape mutations, and even non-competitive inhibition sites. By incorporating novel computational methods for predicting antigen changes to model-informed drug discovery and development, superior vaccines and antibody-based therapeutics or diagnostics can be easily designed to mitigate failures. With detailed examples, this review highlights the new opportunities, factors and methods of predicting antigenic changes for consideration in sagacious epitope selection.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd, Singapore 439444, Singapore
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
9
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
10
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
11
|
Garte S. The Continuity Principle and the Evolution of Replication Fidelity. Acta Biotheor 2021; 69:303-318. [PMID: 33249536 DOI: 10.1007/s10441-020-09399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022]
Abstract
Evolution in modern life requires high replication fidelity to allow for natural selection. A simulation model utilizing simulated phenotype data on cellular probability of survival was developed to determine how self-replication fidelity could evolve in early life. The results indicate that initial survivability and replication fidelity both contribute to overall fitness as measured by growth rates of the cell population. Survival probability was the more dominant feature, and evolution was possible even with zero replication fidelity. A derived formula for the relationship of survival probability and replication fidelity with growth rate was consistent with the simulated empirical data. Quantitative assessment of continuity and other evidence was obtained for a saltation (non-continuous) evolutionary process starting from low to moderate levels of survival probability and self-replication fidelity to reach the high levels seen in modern life forms.
Collapse
Affiliation(s)
- Seymour Garte
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
| |
Collapse
|
12
|
Ebrahimi S, Nonacs P. Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer progression. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202219. [PMID: 34035948 PMCID: PMC8097216 DOI: 10.1098/rsos.202219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
In viral infections and cancer tumours, negative health outcomes often correlate with increasing genetic diversity. Possible evolutionary processes for such relationships include mutant lineages escaping host control or diversity, per se, creating too many immune system targets. Another possibility is social heterosis where mutations and replicative errors create clonal lineages varying in intrinsic capability for successful dispersal; improved environmental buffering; resource extraction or effective defence against immune systems. Rather than these capabilities existing in one genome, social heterosis proposes complementary synergies occur across lineages in close proximity. Diverse groups overcome host defences as interacting 'social genomes' with group genetic tool kits exceeding limited individual plasticity. To assess the possibility of social heterosis in viral infections and cancer progression, we conducted extensive literature searches for examples consistent with general and specific predictions from the social heterosis hypothesis. Numerous studies found supportive patterns in cancers across multiple tissues and in several families of RNA viruses. In viruses, social heterosis mechanisms probably result from long coevolutionary histories of competition between pathogen and host. Conversely, in cancers, social heterosis is a by-product of recent mutations. Investigating how social genomes arise and function in viral quasi-species swarms and cancer tumours may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| |
Collapse
|
13
|
Yeo JY, Koh DWS, Yap P, Goh GR, Gan SKE. Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types. Int J Mol Sci 2020; 22:E370. [PMID: 33396460 PMCID: PMC7796399 DOI: 10.3390/ijms22010370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Darius Wen-Shuo Koh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Ping Yap
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Ghin-Ray Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Samuel Ken-En Gan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648, Singapore
| |
Collapse
|
14
|
Chisholm PJ, Busch JW, Crowder DW. Effects of life history and ecology on virus evolutionary potential. Virus Res 2019; 265:1-9. [PMID: 30831177 DOI: 10.1016/j.virusres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
The life history traits of viruses pose many consequences for viral population structure. In turn, population structure may influence the evolutionary trajectory of a virus. Here we review factors that affect the evolutionary potential of viruses, including rates of mutation and recombination, bottlenecks, selection pressure, and ecological factors such as the requirement for hosts and vectors. Mutation, while supplying a pool of raw genetic material, also results in the generation of numerous unfit mutants. The infection of multiple host species may expand a virus' ecological niche, although it may come at a cost to genetic diversity. Vector-borne viruses often experience a diminished frequency of positive selection and exhibit little diversity, and resistance against vector-borne viruses may thus be more durable than against non-vectored viruses. Evidence indicates that adaptation to a vector is more evolutionarily difficult than adaptation to a host. Overall, a better understanding of how various factors influence viral dynamics in both plant and animal pathosystems will lead to more effective anti-viral treatments and countermeasures.
Collapse
Affiliation(s)
- Paul J Chisholm
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| |
Collapse
|
15
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
16
|
Bagaya BS, Tian M, Nickel GC, Vega JF, Li Y, He P, Klein K, Mann JFS, Jiang W, Arts EJ, Gao Y. An in vitro Model to Mimic Selection of Replication-Competent HIV-1 Intersubtype Recombination in Dual or Superinfected Patients. J Mol Biol 2017; 429:2246-2264. [PMID: 28472629 PMCID: PMC6202033 DOI: 10.1016/j.jmb.2017.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022]
Abstract
The low frequency of HIV-1 recombinants within entire viral populations in both individual patients and culture-based infection models impedes investigation of the underlying factors contributing to either the occurrence of recombinants or the survival of recombinants once they are formed. So far, most of the related studies have no consideration of recombinants' functionality. Here, we established a functional recombinant production (FRP) system to produce pure and functional HIV-1 intersubtype Env recombinants and utilized 454 pyrosequencing to investigate the distribution of over 4000 functional and non-functional recombination breakpoints from either the FRP system or dual infection cultures. The results revealed that most of the breakpoints converged in gp41 (62%) and C1 (25.3%) domains of gp120, which has strong correlation with the similarity between the two recombining sequences. Yet, the breakpoints also appeared in C2 (5.2%) and C5 (4.6%) domains not correlated with the recombining sequence similarity. Interestingly, none of the intersubtype gp120 recombinants recombined between C1 and gp41 regions either from the FRP system or from the dual infection culture, and very few from the HIV epidemic were functional. The present study suggests that the selection of functional Env recombinants is one of the reasons for the predominance of C1 and gp41 Env recombinants in the HIV epidemic, and it provides an in vitro model to mimic the selection of replication-competent HIV-1 intersubtype recombination in dual or superinfected patients.
Collapse
Affiliation(s)
- Bernard S Bagaya
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, N6A 3K7, Uganda
| | - Meijuan Tian
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Gabrielle C Nickel
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - José F Vega
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yuejin Li
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ping He
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Katja Klein
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric J Arts
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Yong Gao
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
17
|
Abstract
Models of viral population dynamics have contributed enormously to our understanding of the pathogenesis and transmission of several infectious diseases, the coevolutionary dynamics of viruses and their hosts, the mechanisms of action of drugs, and the effectiveness of interventions. In this chapter, we review major advances in the modeling of the population dynamics of the human immunodeficiency virus (HIV) and briefly discuss adaptations to other viruses.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
18
|
Koonin EV. Defining life: an exercise in semantics or a route to biological insights? J Biomol Struct Dyn 2016; 29:603-5. [PMID: 22208253 DOI: 10.1080/073911012010525000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health Bethesda, MD, USA.
| |
Collapse
|
19
|
Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors. Viruses 2016; 8:100. [PMID: 27089358 PMCID: PMC4848594 DOI: 10.3390/v8040100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective antivirals to enable quick responses during outbreaks until new vaccines become available. The RNA-dependent RNA polymerase (RdRp) is a primary target for the development of such antiviral drugs. In this study, we used cell-free in vitro assays to examine the biochemical characteristics of two rabbit calicivirus RdRps and the effects of several antivirals that were previously identified as human norovirus RdRp inhibitors. The non-nucleoside inhibitor NIC02 was identified as a potential scaffold for further drug development against rabbit caliciviruses. Our experiments revealed an unusually high temperature optimum (between 40 and 45 °C) for RdRps derived from both a pathogenic and a non-pathogenic rabbit calicivirus, possibly demonstrating an adaptation to a host with a physiological body temperature of more than 38 °C. Interestingly, the in vitro polymerase activity of the non-pathogenic calicivirus RdRp was at least two times higher than that of the RdRp of the highly virulent RHDV.
Collapse
|
20
|
[KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis. Mol Cell 2015; 60:651-60. [PMID: 26590718 DOI: 10.1016/j.molcel.2015.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation.
Collapse
|
21
|
Jones BA, Lessler J, Bianco S, Kaufman JH. Statistical Mechanics and Thermodynamics of Viral Evolution. PLoS One 2015; 10:e0137482. [PMID: 26422205 PMCID: PMC4589373 DOI: 10.1371/journal.pone.0137482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022] Open
Abstract
This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature "disordered" phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness) to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.
Collapse
Affiliation(s)
- Barbara A. Jones
- Almaden Research Center, IBM, San Jose, California, United States of America
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Simone Bianco
- Almaden Research Center, IBM, San Jose, California, United States of America
| | - James H. Kaufman
- Almaden Research Center, IBM, San Jose, California, United States of America
| |
Collapse
|
22
|
Hart GR, Ferguson AL. Error catastrophe and phase transition in the empirical fitness landscape of HIV. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032705. [PMID: 25871142 DOI: 10.1103/physreve.91.032705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 06/04/2023]
Abstract
We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Abstract
RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal mutagenesis.
Collapse
|
24
|
Gross R, Fouxon I, Lancet D, Markovitch O. Quasispecies in population of compositional assemblies. BMC Evol Biol 2014; 14:265. [PMID: 25547629 PMCID: PMC4357159 DOI: 10.1186/s12862-014-0265-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The quasispecies model refers to information carriers that undergo self-replication with errors. A quasispecies is a steady-state population of biopolymer sequence variants generated by mutations from a master sequence. A quasispecies error threshold is a minimal replication accuracy below which the population structure breaks down. Theory and experimentation of this model often refer to biopolymers, e.g. RNA molecules or viral genomes, while its prebiotic context is often associated with an RNA world scenario. Here, we study the possibility that compositional entities which code for compositional information, intrinsically different from biopolymers coding for sequential information, could show quasispecies dynamics. RESULTS We employed a chemistry-based model, graded autocatalysis replication domain (GARD), which simulates the network dynamics within compositional molecular assemblies. In GARD, a compotype represents a population of similar assemblies that constitute a quasi-stationary state in compositional space. A compotype's center-of-mass is found to be analogous to a master sequence for a sequential quasispecies. Using single-cycle GARD dynamics, we measured the quasispecies transition matrix (Q) for the probabilities of transition from one center-of-mass Euclidean distance to another. Similarly, the quasispecies' growth rate vector (A) was obtained. This allowed computing a steady state distribution of distances to the center of mass, as derived from the quasispecies equation. In parallel, a steady state distribution was obtained via the GARD equation kinetics. Rewardingly, a significant correlation was observed between the distributions obtained by these two methods. This was only seen for distances to the compotype center-of-mass, and not to randomly selected compositions. A similar correspondence was found when comparing the quasispecies time dependent dynamics towards steady state. Further, changing the error rate by modifying basal assembly joining rate of GARD kinetics was found to display an error catastrophe, similar to the standard quasispecies model. Additional augmentation of compositional mutations leads to the complete disappearance of the master-like composition. CONCLUSIONS Our results show that compositional assemblies, as simulated by the GARD formalism, portray significant attributes of quasispecies dynamics. This expands the applicability of the quasispecies model beyond sequence-based entities, and potentially enhances validity of GARD as a model for prebiotic evolution.
Collapse
Affiliation(s)
- Renan Gross
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Itzhak Fouxon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Omer Markovitch
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
25
|
The place of RNA in the origin and early evolution of the genetic machinery. Life (Basel) 2014; 4:1050-91. [PMID: 25532530 PMCID: PMC4284482 DOI: 10.3390/life4041050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.
Collapse
|
26
|
Clinical Aspects of Hepatitis C Virus Infection. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Phylogeny and evolution of RNA structure. Methods Mol Biol 2014. [PMID: 24639167 DOI: 10.1007/978-1-62703-709-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.
Collapse
|
28
|
Gerrish PJ, Colato A, Sniegowski PD. Genomic mutation rates that neutralize adaptive evolution and natural selection. J R Soc Interface 2013; 10:20130329. [PMID: 23720539 DOI: 10.1098/rsif.2013.0329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When mutation rates are low, natural selection remains effective, and increasing the mutation rate can give rise to an increase in adaptation rate. When mutation rates are high to begin with, however, increasing the mutation rate may have a detrimental effect because of the overwhelming presence of deleterious mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution may be neutralized, resulting in a zero (or negative) adaptation rate despite the continued availability of adaptive and/or compensatory mutations, or (ii) natural selection may be neutralized, because the fitness of lineages bearing adaptive and/or compensatory mutations--whether established or newly arising--is eroded by excessive mutation, causing such lineages to decline in frequency. We apply these two criteria to a standard model of asexual adaptive evolution and derive mathematical expressions--some new, some old in new guise--delineating the mutation rates under which either adaptive evolution or natural selection is neutralized. The expressions are simple and require no a priori knowledge of organism- and/or environment-specific parameters. Our discussion connects these results to each other and to previous theory, showing convergence or equivalence of the different results in most cases.
Collapse
Affiliation(s)
- Philip J Gerrish
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, 230 Castetter Hall, MSC03-2020, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
29
|
Tripathi K, Balagam R, Vishnoi NK, Dixit NM. Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Comput Biol 2012; 8:e1002684. [PMID: 23028282 PMCID: PMC3441496 DOI: 10.1371/journal.pcbi.1002684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 07/22/2012] [Indexed: 12/22/2022] Open
Abstract
The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, , however, is not known. Application of the quasispecies theory to determine poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and . We found that with small mutation rates, the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that quantitatively captured data of viral diversification in HIV-1 patients, we estimated to be substitutions/site/replication, ∼2–6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-based approaches to describing HIV-1 evolution. Further, increased with the recombination rate, rendering HIV-1 less susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of may serve as a quantitative guideline for the use of mutagenic drugs against HIV-1. Currently available antiretroviral drugs curtail HIV infection but fail to eradicate the virus. A strategy of intervention radically different from that employed by current drugs has been proposed by the molecular quasispecies theory. The theory predicts that increasing the viral mutation rate beyond a critical value, called the error threshold, would cause a severe loss of genetic information, potentially leading to viral clearance. Several chemical mutagens are now being developed that can increase the mutation rate of HIV-1. Their success depends on reliable estimates of the error threshold of HIV-1, which are currently lacking. The quasispecies theory cannot be applied directly to HIV-1: the theory considers an infinitely large population of asexually reproducing haploid individuals, whereas HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We employed detailed stochastic simulations that overcome the limitations of the quasispecies theory and accurately mimic HIV-1 evolution in vivo. With these simulations, we estimated the error threshold of HIV-1 to be ∼2–6-fold higher than its natural mutation rate, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs.
Collapse
Affiliation(s)
- Kushal Tripathi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rajesh Balagam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | | | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
30
|
Iwami S, Haeno H, Michor F. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi)genetic instability. PLoS Comput Biol 2012; 8:e1002370. [PMID: 22359489 PMCID: PMC3280962 DOI: 10.1371/journal.pcbi.1002370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/20/2011] [Indexed: 02/04/2023] Open
Abstract
The human immune system functions to provide continuous body-wide surveillance to detect and eliminate foreign agents such as bacteria and viruses as well as the body's own cells that undergo malignant transformation. To counteract this surveillance, tumor cells evolve mechanisms to evade elimination by the immune system; this tumor immunoescape leads to continuous tumor expansion, albeit potentially with a different composition of the tumor cell population ("immunoediting"). Tumor immunoescape and immunoediting are products of an evolutionary process and are hence driven by mutation and selection. Higher mutation rates allow cells to more rapidly acquire new phenotypes that help evade the immune system, but also harbor the risk of an inability to maintain essential genome structure and functions, thereby leading to an error catastrophe. In this paper, we designed a novel mathematical framework, based upon the quasispecies model, to study the effects of tumor immunoediting and the evolution of (epi)genetic instability on the abundance of tumor and immune system cells. We found that there exists an optimum number of tumor variants and an optimum magnitude of mutation rates that maximize tumor progression despite an active immune response. Our findings provide insights into the dynamics of tumorigenesis during immune system attacks and help guide the choice of treatment strategies that best inhibit diverse tumor cell populations.
Collapse
Affiliation(s)
- Shingo Iwami
- PRESTO, Japan Science and Technology Agency, Graduate School of Mathematical Sciences, The University of Tokyo, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hiroshi Haeno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol 2011; 85:12227-40. [PMID: 21917974 DOI: 10.1128/jvi.00716-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lethal mutagenesis or virus transition into error catastrophe is an antiviral strategy that aims at extinguishing a virus by increasing the viral mutation rates during replication. The molecular basis of lethal mutagenesis is largely unknown. Previous studies showed that a critical substitution in the foot-and-mouth disease virus (FMDV) polymerase was sufficient to allow the virus to escape extinction through modulation of the transition types induced by the purine nucleoside analogue ribavirin. This substitution was not detected in mutant spectra of FMDV populations that had not replicated in the presence of ribavirin, using standard molecular cloning and nucleotide sequencing. Here we selectively amplify and analyze low-melting-temperature cDNA duplexes copied from FMDV genome populations passaged in the absence or presence of ribovirin Hypermutated genomes with high frequencies of A and U were present in both ribavirin -treated and untreated populations, but the major effect of ribavirin mutagenesis was to accelerate the occurrence of AU-rich mutant clouds during the early replication rounds of the virus. The standard FMDV quasispecies passaged in the absence of ribavirin included the salient transition-modulating, ribavirin resistance mutation, whose frequency increased in populations treated with ribavirin. Thus, even nonmutagenized FMDV quasispecies include a deep, mutationally biased portion of sequence space, in support of the view that the virus replicates close to the error threshold for maintenance of genetic information.
Collapse
|
32
|
Saakian DB, Biebricher CK, Hu CK. Lethal mutants and truncated selection together solve a paradox of the origin of life. PLoS One 2011; 6:e21904. [PMID: 21814563 PMCID: PMC3144202 DOI: 10.1371/journal.pone.0021904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 06/14/2011] [Indexed: 11/25/2022] Open
Abstract
Background Many attempts have been made to describe the origin of life, one of which is Eigen's cycle of autocatalytic reactions [Eigen M (1971) Naturwissenschaften 58, 465–523], in which primordial life molecules are replicated with limited accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their precursor) must be transmitted to the next generation with a minimal number of misprints. In Eigen's theory, the maximum chain length that could be maintained is restricted to nucleotides, while for the most primitive genome the length is around . This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and important problem in the theory of the origin of life. Methodology/Principal Findings We use methods of statistical physics to solve this paradox by carefully analyzing the implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming distance from the master sequence) for the critical chain length. While neutral mutants play an important role in evolution, they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-cell self-replication stages in the origin of life. Conclusions/Significance We have applied methods of statistical physics to make an important breakthrough in the molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and biological evolution.
Collapse
Affiliation(s)
- David B. Saakian
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan
- Yerevan Physics Institute, Yerevan, Armenia
- National Center for Theoretical Sciences: Physics Division, National Taiwan University, Taipei, Taiwan
| | | | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan
- Department of Physics, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Tejero H, Marín A, Montero F. The relationship between the error catastrophe, survival of the flattest, and natural selection. BMC Evol Biol 2011; 11:2. [PMID: 21205294 PMCID: PMC3037306 DOI: 10.1186/1471-2148-11-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/04/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The quasispecies model is a general model of evolution that is generally applicable to replication up to high mutation rates. It predicts that at a sufficiently high mutation rate, quasispecies with higher mutational robustness can displace quasispecies with higher replicative capacity, a phenomenon called "survival of the flattest". In some fitness landscapes it also predicts the existence of a maximum mutation rate, called the error threshold, beyond which the quasispecies enters into error catastrophe, losing its genetic information. The aim of this paper is to study the relationship between survival of the flattest and the transition to error catastrophe, as well as the connection between these concepts and natural selection. RESULTS By means of a very simplified model, we show that the transition to an error catastrophe corresponds to a value of zero for the selective coefficient of the mutant phenotype with respect to the master phenotype, indicating that transition to the error catastrophe is in this case similar to the selection of a more robust species. This correspondence has been confirmed by considering a single-peak landscape in which sequences are grouped with respect to their Hamming distant from the master sequence. When the robustness of a class is changed by modification of its quality factor, the distribution of the population changes in accordance with the new value of the robustness, although an error catastrophe can be detected at the same values as in the general case. When two quasispecies of different robustness competes with one another, the entry of one of them into error catastrophe causes displacement of the other, because of the greater robustness of the former. Previous works are explicitly reinterpreted in the light of the results obtained in this paper. CONCLUSIONS The main conclusion of this paper is that the entry into error catastrophe is a specific case of survival of the flattest acting on phenotypes that differ in the trade-off between replicative ability and mutational robustness. In fact, entry into error catastrophe occurs when the mutant phenotype acquires a selective advantage over the master phenotype. As both entry into error catastrophe and survival of the flattest are caused by natural selection when mutation rate is increased, we propose differentiating between them by the level of selection at which natural selection acts. So we propose to consider the transition to error catastrophe as a phenomenon of intra-quasispecies selection, and survival of the flattest as a phenomenon of inter-quasispecies selection.
Collapse
Affiliation(s)
- Héctor Tejero
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | - Arturo Marín
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | - Francisco Montero
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
34
|
Obermayer B, Frey E. Error thresholds for self- and cross-specific enzymatic replication. J Theor Biol 2010; 267:653-62. [DOI: 10.1016/j.jtbi.2010.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/28/2010] [Accepted: 09/09/2010] [Indexed: 11/26/2022]
|
35
|
Kirakosyan Z, Saakian DB, Hu CK. Evolution models with lethal mutations on symmetric or random fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011904. [PMID: 20866645 DOI: 10.1103/physreve.82.011904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Indexed: 05/29/2023]
Abstract
We calculate the mean fitness for evolution models, when the fitness is a function of the Hamming distance from a reference sequence, and there is a probability that this fitness is nullified (Eigen model case) or tends to the negative infinity (Crow-Kimura model case). We calculate the mean fitness of these models. The mean fitness is calculated also for the random fitnesses with logarithmic-normal distribution, reasonably describing sometimes the situation with RNA viruses.
Collapse
Affiliation(s)
- Zara Kirakosyan
- Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375036, Armenia
| | | | | |
Collapse
|
36
|
Musso F. A stochastic version of the Eigen model. Bull Math Biol 2010; 73:151-80. [PMID: 20232170 DOI: 10.1007/s11538-010-9525-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 02/18/2010] [Indexed: 11/24/2022]
Abstract
We exhibit a stochastic discrete time model that produces the Eigen model (Naturwissenschaften 58:465-523, 1971) in the deterministic and continuous time limits. The model is based on the competition among individuals differing in terms of fecundity but with the same viability. We explicitly write down the Markov matrix of the discrete time stochastic model in the two species case and compute the master sequence concentration numerically for various values of the total population. We also obtain the master equation of the model and perform a Van Kampen expansion. The results obtained in the two species case are compared with those coming from the Eigen model. Finally, we comment on the range of applicability of the various approaches described, when the number of species is larger than two.
Collapse
Affiliation(s)
- Fabio Musso
- Departamento de Física, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
37
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
38
|
Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput Biol 2009; 5:e1000536. [PMID: 19847288 PMCID: PMC2759524 DOI: 10.1371/journal.pcbi.1000536] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 09/17/2009] [Indexed: 02/07/2023] Open
Abstract
Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates. Infectious diseases vary widely in how they affect those who get infected and how they are transmitted. As an example, the duration of a single infection can range from days to years, while transmission can occur via the respiratory route, water or sexual contact. Measles and HIV are contrasting examples—both are caused by RNA viruses, but one is a genetically diverse, lethal sexually transmitted infection (STI) while the other is a relatively mild respiratory childhood disease with low antigenic diversity. We investigate why the most transmissible respiratory diseases such as measles and rubella are antigenically static, meaning immunity is lifelong, while other diseases—such as influenza, or the sexually transmitted diseases—seem to trade transmissibility for the ability to generate multiple diverse strains so as to evade host immunity. We use mathematical models of disease progression and evolution within the infected host coupled with models of transmission between hosts to explore how transmission modes, host contact rates and network structure determine antigenic diversity, infectiousness and duration of infection. In doing so, we classify infections into three types—measles-like (high transmissibility, but antigenically static), flu-like (lower transmissibility, but more antigenically diverse), and STI-like (very antigenically diverse, long lived infection, but low overall transmissibility).
Collapse
|
39
|
Tejero H, Marín A, Montero F. Effect of lethality on the extinction and on the error threshold of quasispecies. J Theor Biol 2009; 262:733-41. [PMID: 19833133 DOI: 10.1016/j.jtbi.2009.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account.
Collapse
Affiliation(s)
- Hector Tejero
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
40
|
Saakian DB, Biebricher CK, Hu CK. Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041905. [PMID: 19518254 DOI: 10.1103/physreve.79.041905] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 11/24/2008] [Indexed: 05/27/2023]
Abstract
Using methods of statistical physics, we present rigorous theoretical calculations of Eigen's quasispecies theory with the truncated fitness landscape which dramatically limits the available sequence space of information carriers. As the mutation rate is increased from small values to large values, one can observe three phases: the first (I) selective (also known as ferromagnetic) phase, the second (II) intermediate phase with some residual order, and the third (III) completely randomized (also known as paramagnetic) phase. We calculate the phase diagram for these phases and the concentration of information carriers in the master sequence (also known as peak configuration) x0 and other classes of information carriers. As the phase point moves across the boundary between phase I and phase II, x0 changes continuously; as the phase point moves across the boundary between phase II and phase III, x0 has a large change. Our results are applicable for the general case of a fitness landscape.
Collapse
Affiliation(s)
- David B Saakian
- Yerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia
| | | | | |
Collapse
|
41
|
Abstract
RNA viruses exhibit increased mutation frequencies relative to other organisms. Recent work has attempted to exploit this unique feature by increasing the viral mutation frequency beyond an extinction threshold, an antiviral strategy known as lethal mutagenesis. A number of novel nucleoside analogs have been designed around this premise. Herein, we review the quasispecies nature of RNA viruses and survey the antiviral, biological and biochemical characteristics of mutagenic nucleoside analogs, including clinically-used ribavirin. Biological implications of modulating viral replication fidelity are discussed in the context of translating lethal mutagenesis into a clinically-useful antiviral strategy.
Collapse
Affiliation(s)
- Jason D Graci
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ 07080, USA, Tel.: +1 908 912 9249; Fax: +1 908 222 0567;
| | - Craig E Cameron
- The Pennsylvania State University, Department of Biochemistry & Molecular Biology, 201 Althouse Laboratory, University Park, PA 16802, USA, Tel:. +1 814 863 8705; Fax: +1 814 863 7024;
| |
Collapse
|
42
|
Effects of mutagenic and chain-terminating nucleotide analogs on enzymes isolated from hepatitis C virus strains of various genotypes. Antimicrob Agents Chemother 2008; 52:1901-11. [PMID: 18391043 DOI: 10.1128/aac.01496-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The development of effective therapies for hepatitis C virus (HCV) must take into account genetic variation among HCV strains. Response rates to interferon-based treatments, including the current preferred treatment of pegylated alpha interferon administered with ribavirin, are genotype specific. Of the numerous HCV inhibitors currently in development as antiviral drugs, nucleoside analogs that target the conserved NS5B active site seem to be quite effective against diverse HCV strains. To test this hypothesis, we examined the effects of a panel of nucleotide analogs, including ribavirin triphosphate (RTP) and several chain-terminating nucleoside triphosphates, on the activities of purified HCV NS5B polymerases derived from genotype 1a, 1b, and 2a strains. Unlike the genotype-specific effects on NS5B activity reported previously for nonnucleoside inhibitors (F. Pauwels, W. Mostmans, L. M. Quirynen, L. van der Helm, C. W. Boutton, A. S. Rueff, E. Cleiren, P. Raboisson, D. Surleraux, O. Nyanguile, and K. A. Simmen, J. Virol. 81:6909-6919, 2007), only minor differences in inhibition were observed among the various genotypes; thus, nucleoside analogs that are current drug candidates may be more promising for treatment of a broader variety of HCV strains. We also examined the effects of RTP on the HCV NS3 helicase/ATPase. As with the polymerase, only minor differences were observed among 1a-, 1b-, and 2a-derived enzymes. RTP did not inhibit the rate of NS3 helicase-catalyzed DNA unwinding but served instead as a substrate to fuel unwinding. NS3 added to RNA synthesis reactions relieved inhibition of the polymerase by RTP, presumably due to RTP hydrolysis. These results suggest that NS3 can limit the incorporation of ribavirin into viral RNA, thus reducing its inhibitory or mutagenic effects.
Collapse
|
43
|
Pillai SK, Wong JK, Barbour JD. Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3). Retrovirology 2008; 5:26. [PMID: 18339206 PMCID: PMC2323022 DOI: 10.1186/1742-4690-5-26] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.
Collapse
Affiliation(s)
- Satish K Pillai
- Department of Medicine, University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
44
|
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267-76. [PMID: 18319742 DOI: 10.1038/nrg2323] [Citation(s) in RCA: 1052] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.
Collapse
Affiliation(s)
- Siobain Duffy
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
45
|
Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 2008; 23:188-93. [PMID: 18295930 PMCID: PMC7125972 DOI: 10.1016/j.tree.2007.11.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 11/30/2022]
Abstract
RNA viruses have an extremely high mutation rate, and we argue that the most plausible explanation for this is a trade-off with replication speed. We suggest that research into further increasing this mutation rate artificially as an antiviral treatment requires a theoretical reevaluation, especially relating to the so-called error threshold. The main evolutionary consequence of a high mutation rate appears to have been to restrict RNA viruses to a small genome; they thus rapidly exploit a limited array of possibilities. Investigating this constraint to their evolution, and how it is occasionally overcome, promises to be fruitful. We explain the many terms used in investigating RNA viral evolution and highlight the specific experimental and comparative work that needs to be done.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
46
|
Elena SF, Sanjuán R. Virus Evolution: Insights from an Experimental Approach. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095637] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 València, Spain;
| | - Rafael Sanjuán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 València, Spain;
| |
Collapse
|
47
|
Chung DH, Sun Y, Parker WB, Arterburn JB, Bartolucci A, Jonsson CB. Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus. J Virol 2007; 81:11722-9. [PMID: 17699579 PMCID: PMC2168817 DOI: 10.1128/jvi.00874-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The broad spectrum of antiviral activity of ribavirin (RBV) lies in its ability to inhibit IMP dehydrogenase, which lowers cellular GTP. However, RBV can act as a potent mutagen for some RNA viruses. Previously we have shown a lack of correlation between antiviral activity and GTP repression for Hantaan virus (HTNV) and evidence for RBV's ability to promote error-prone replication. To further explore the mechanism of RBV, GTP levels, specific infectivity, and/or mutation frequency was measured in the presence of RBV, mycophenolic acid (MPA), selenazofurin, or tiazofurin. While all four drugs resulted in a decrease in the GTP levels and infectious virus, only RBV increased the mutation frequency of viral RNA (vRNA). MPA, however, could enhance RBV's mutagenic effect, which suggests distinct mechanisms of action for each. Therefore, a simple drop in GTP levels does not drive the observed error-prone replication. To further explore RBV's mechanism of action, we made a comprehensive analysis of the mutation frequency over several RBV concentrations. Of importance, we observed that the viral population reached a threshold after which mutation frequency did not correlate with a dose-dependent decrease in the level of vRNA, PFU, or [RTP]/[GTP] (where RTP is ribavirin-5'-triphosphate) over these same concentrations of RBV. Modeling of the relationship of mutation frequency and drug concentration showed an asymptotic relationship at this point. After this threshold, approximately 57% of the viral cDNA population was identical to the wild type. These studies revealed a lethal threshold, after which we did not observe a complete loss of the quasispecies structure of the wild-type genome, although we observed extinction of HTNV.
Collapse
Affiliation(s)
- Dong-Hoon Chung
- Department of Biochemistry and Molecular Biology, 2000 9th Avenue South, Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sallie R. Replicative homeostasis III: implications for antiviral therapy and mechanisms of response and non-response. Virol J 2007; 4:29. [PMID: 17355620 PMCID: PMC1847443 DOI: 10.1186/1743-422x-4-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 12/27/2022] Open
Abstract
While improved drug regimens have greatly enhanced outcomes for patients with chronic viral infection, antiviral therapy is still not ideal due to drug toxicities, treatment costs, primary drug failure and emergent resistance. New antiviral agents, alternative treatment strategies and a better understanding of viral pathobiology, host responses and drug action are desperately needed. Interferon (IFN) and ribavirin, are effective drugs used to treat hepatitis C (HCV), but the mechanism(s) of their action are uncertain. Error catastrophe (EC), or precipitous loss of replicative fitness caused by genomic mutation, is postulated to mediate ribavirin action, but is a deeply flawed hypothesis lacking empirical confirmation. Paradoxically ribavirin, a proven RNA mutagen, has no impact on HCV viraemia long term, suggesting real viruses, replicating in-vitro, as opposed to mathematical models, replicating in-silico, are likely to resist EC by highly selective replication of fit (~consensus sequence) genomes mediated, in part, by replicative homeostasis (RH), an epicyclic mechanism that dynamically links RNApol fidelity and processivity and other viral protein functions. Replicative homeostasis provides a rational explanation for the various responses seen during treatment of HCV, including genotype-specific and viral load-dependent differential response rates, as well as otherwise unexplained phenomena like the transient inhibition and rebound of HCV viraemia seen during ribavirin monotherapy. Replicative homeostasis also suggests a primarily non-immunological mechanism that mediates increased immune responsiveness during treatment with ribavirin (and other nucleos(t)ide analogues), explicating the enhanced second-phase clearance of HCV ribavirin promotes and, thus, the apparent immunomodulatory action of ribavirin. More importantly, RH suggests specific new antiviral therapeutic strategies.
Collapse
|
49
|
Abstract
Evaluation of: Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R: Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006). Recent experimental studies suggest that adaptation to new environments can be aided by cooperative action of mutant ensembles, in agreement with predictions by the quasi-species theory.
Collapse
Affiliation(s)
| | - Esteban Domingo
- Centro de Biología Molecular, ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|