1
|
Tang J, Chen S, Zhong Y, Deng Y, Huang D, Liu J, Zheng Y, Xu J, Xue B, Wang F, Zhou Y, Wang H, Yang Q, Chen X. Development of a reporter HBoV1 strain for antiviral drug screening and life cycle studies. Virol Sin 2025; 40:275-283. [PMID: 40147635 DOI: 10.1016/j.virs.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Human bocavirus 1 (HBoV1; family: Parvoviridae) causes a wide spectrum of respiratory diseases in children and gastroenteritis in adults. A lack of sensitive cell lines and efficient animal models hinders research on HBoV, including the development of anti-HBoV drugs or vaccines. Although the construction of a wild-type HBoV1 infectious clone has been reported, generating HBoV1 infectious clone carrying foreign reporter genes with suitable insertion sites in its genome while retaining replicative ability remains challenging. Here, HBoV1 infectious clones harboring the 11-amino-acid HiBiT tag at five distinct insertion sites were constructed and evaluated. Only the recombinant HBoV1 carrying the HiBiT tag in the N-terminus of the NS1 protein (HBoV1-HiBiTNS1) displayed comparable characteristics to wild-type HBoV1 as determined via the analysis of viral DNA copy number, NanoLuc activity, viral protein expression, and the formation of replication intermediates. Notably, the replication kinetics of HBoV1-HiBiTNS1 could be examined by monitoring NanoLuc activity, which was noted to be correlated with the viral DNA level. Additionally, we successfully applied HiBiT-tagged HBoV1 for the evaluation of antiviral drug activity and identified ivermectin (EC50 = 2.27 μM) as a potent anti-HBoV1 replication drug. Overall, our study demonstrated that the HBoV1-HiBiTNS1 reporter can serve as a convenient platform for screening candidate drugs targeting HBoV1 replication and may also be useful for investigating the life cycle of the virus.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China.
| | - Sijie Chen
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Zhong
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Dan Huang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yi Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiyuan Xu
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
2
|
Tang J, Chen S, Deng Y, Liu J, Huang D, Fu M, Xue B, Liu C, Wu C, Wang F, Zhou Y, Yang Q, Chen X. MA104 cell line is permissive for human bocavirus 1 infection. J Virol 2025; 99:e0153924. [PMID: 39846742 PMCID: PMC11852709 DOI: 10.1128/jvi.01539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Human bocavirus 1 (HBoV1) has appeared as an emerging pathogen, causing mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children and immunocompromised individuals. The lack of cell lines suitable for culturing replicative viruses hinders research on HBoV1. Here, we characterized the susceptibility to HBoV1 of 29 human and 7 animal cell lines, and identified a permissive cell line, MA104. The complete HBoV1 life cycle was achieved in MA104 cells, including viral entry, complete replication, and infectious progeny virion production. Additionally, the suppression of the interferon pathway facilitated the viral genome replication in MA104 cells. RNA-sequencing showed that innate immunity, inflammation, the PI3K-Akt and MAPK signaling pathways, and the cellular membrane system were mobilized in response to HBoV1 infection. Overall, our study is the first to identify a cell line, MA104, that supports the complete HBoV1 life cycle, which will promote research on HBoV1 virology and pathogenesis and benefit drug and vaccine development.IMPORTANCEHBoV1 is an emerging pathogen that mainly causes respiratory tract infections, while the lack of cell lines suitable for culture replicative viruses hindered research on HBoV1. Here, we identify a permissive cell line for HBoV1 infection, MA104, and reveal that the complete life cycle of HBoV1 was supported in MA104 cells. Our findings provide a suitable cell model for the study of HBoV1 and explore its application for antiviral drug evaluation, which is vital for research on HBoV1 virology and pathogenesis, as well as for drug and vaccine development.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Dan Huang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Yang Z, Li Y, Jiang Y, Wu J, Guan Z, Ge J, Zhao L. A developed TaqMan probe-based qPCR was used to quantify the distribution of AMDV in various tissues of infected mink and its prevalence in northern China. Front Vet Sci 2025; 11:1498481. [PMID: 39840339 PMCID: PMC11746015 DOI: 10.3389/fvets.2024.1498481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Aleutian mink disease (mink plasmacytosis) is a severe immune complex-mediated condition caused by the Aleutian Mink Disease Virus (AMDV), the most significant pathogen affecting mink health in the industry. Several studies have shown that AMDV epidemics can result in millions to tens of millions of dollars in economic losses worldwide each year. In this study, we developed a TaqMan probe-based real-time PCR technology (TaqMan-qPCR) for the specific, sensitive, and reproducible detection and quantification of AMDV in mink tissues by the VP2 gene, achieving detection limits as low as 1.69 × 101 copies/uL of plasmid DNA and 8.50 × 10-3 ng/uL of viral DNA, and the established TaqMan-qPCR assay is 100 times more sensitive than PCR. Clinical samples of mink from different provinces showed a high prevalence of AMDV infection, 89.55% in Heilongjiang, 90.74% in Shandong, 80.23% in Hebei, 83.70% in Jilin, and 82.35% in Liaoning Province. Tissue distribution analysis showed that viral loads were generally high in all organs, especially in the mesenteric lymph nodes and spleen, and the virus was also detected in non-lymphoid tissues such as the brain, confirming the widespread distribution of AMDV throughout the body of mink. The established TaqMan-qPCR assay will become an important diagnostic tool for the prevention and control of AMDV, which is essential for disease management in mink populations.
Collapse
Affiliation(s)
- Zaixing Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yifan Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuxuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingqi Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lili Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Aksu Kuz C, Ning K, Hao S, Cheng F, Qiu J. Role of the membrane-associated accessory protein (MAAP) in adeno-associated virus (AAV) infection. J Virol 2024; 98:e0063324. [PMID: 38775479 PMCID: PMC11237668 DOI: 10.1128/jvi.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Adeno-associated viruses (AAVs) package a single-stranded (ss) DNA genome of 4.7 kb in their capsid of ~20 nm in diameter. AAV replication requires co-infection of a helper virus, such as adenovirus. During the optimization of recombinant AAV production, a small viral nonstructural protein, membrane-associated accessory protein (MAAP), was identified. However, the function of the MAAP in the context of AAV infection remains unknown. Here, we investigated the expression strategy and function of the MAAP during infection of both AAV2 and AAV5 in human embryonic kidney (HEK)293 cells. We found that AAV2 MAAP2 and AAV5 MAAP5 are expressed from the capsid gene (cap)-transcribing mRNA spliced from the donor to the second splice site that encodes VP2 and VP3. Thus, this AAV cap gene transcribes a multicistronic mRNA that can be translated to four viral proteins, MAAP, VP2, AAP, and VP3 in order. In AAV2 infection, MAAP2 predominantly localized in the cytoplasm, alongside the capsid, near the nuclear and plasma membranes, but a fraction of MAAP2 exhibited nuclear localization. In AAV5 infection, MAAP5 revealed a distinct pattern, predominantly localizing within the nucleus. In the cells infected with an MAAP knockout mutant of AAV2 or AAV5, both viral DNA replication and virus replication increased, whereas virus egress decreased, and the decrease in virus egress can be restored by providing MAAP in trans. In summary, MAAP, a novel AAV nonstructural protein translated from a multicistronic viral cap mRNA, not only facilitates cellular egress of AAV but also likely negatively affects viral DNA replication during infection. IMPORTANCE Recombinant adeno-associated virus (rAAV) has been used as a gene delivery vector in clinical gene therapy. In current gene therapies employing rAAV, a high dose of the vector is required. Consequently, there is a high demand for efficient and high-purity vector production systems. In this study, we demonstrated that membrane-associated accessory protein (MAAP), a small viral nonstructural protein, is translated from the same viral mRNA transcript encoding VP2 and VP3. In AAV-infected cells, apart from its prevalent expression in the cytoplasm with localization near the plasma and nuclear membranes, the MAAP also exhibits notable localization within the nucleus. During AAV infection, MAAP expression increases the cellular egress of progeny virions and decreases viral DNA replication and progeny virion production. Thus, the choice of MAAP expression has pros and cons during AAV infection, which could provide a guide to rAAV production.
Collapse
Affiliation(s)
- Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Wu Y, Zhao Y, Zhang X, Wei T, Peng Q, Wang J, Liu Z, Zhu Y, Shao X. Diverse amdoparvoviruses infection of farmed Asian badgers (Meles meles). Arch Virol 2024; 169:139. [PMID: 38849620 DOI: 10.1007/s00705-024-06073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/28/2024] [Indexed: 06/09/2024]
Abstract
Amdoparvoviruses infect various carnivores, including mustelids, canids, skunks, and felids. Aleutian mink disease virus (AMDV) belongs to the prototypical species Amdoparvovirus carnivoran1. Here, we identified a novel amdoparvovirus in farmed Asian badgers (Meles meles), and we named this virus "Meles meles amdoparvovirus" (MMADV). A total of 146 clinical samples were collected from 134 individual badgers, and 30.6% (41/134) of the sampled badgers tested positive for amdoparvovirus by PCR. Viral DNA was detected in feces, blood, spleen, liver, lung, and adipose tissue from these animals. Viral sequences from eight samples were determined, five of which represented nearly full-length genome sequences (4,237-4,265 nt). Six serum samples tested positive by PCR, CIEP, and IAT, four of which had high antibody titers (> 512) against AMDV-G. Twenty-six of the 41 amdoparvovirus-positive badgers showed signs of illness, and necropsy revealed lesions in their organs. Sequence comparisons and phylogenetic analysis of the viral NS1 and VP2 genes of these badger amdoparvoviruses showed that their NS1 proteins shared 62.6%-88.8% sequence identity with known amdoparvoviruses, and they clustered phylogenetically into two related clades. The VP2 proteins shared 76.6%-97.2% identity and clustered into two clades, one of which included raccoon dog and arctic fox amdoparvovirus (RFAV), and the other of which did not include other known amdoparvoviruses. According to the NS1-protein-based criterion for parvovirus species demarcation, the MMADV isolate from farm YS should be classified as a member of a new species of the genus Amdoparvovirus. In summary, we have discovered a novel MMADV and other badger amdoparvoviruses that naturally infect Asian badgers and are possibly pathogenic in badgers.
Collapse
Affiliation(s)
- Yanhong Wu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Yongqiang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Xiuting Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Tao Wei
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Qianwen Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Jianke Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Zongyue Liu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Yanzhu Zhu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Xiqun Shao
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China.
| |
Collapse
|
6
|
Canuti M, Pénzes JJ, Lang AS. A new perspective on the evolution and diversity of the genus Amdoparvovirus (family Parvoviridae) through genetic characterization, structural homology modeling, and phylogenetics. Virus Evol 2022; 8:veac056. [PMID: 35783582 PMCID: PMC9242002 DOI: 10.1093/ve/veac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amdoparvoviruses (genus Amdoparvovirus, family Parvoviridae) are primarily viruses of carnivorans, but recent studies have indicated that their host range might also extend to rodents and chiropterans. While their classification is based on the full sequence of the major nonstructural protein (NS1), several studies investigating amdoparvoviral diversity have been focused on partial sequences, leading to difficulties in accurately determining species demarcations and leaving several viruses unclassified. In this study, while reporting the complete genomic sequence of a novel amdoparvovirus identified in an American mink (British Columbia amdoparvovirus, BCAV), we studied the phylogenetic relationships of all amdoparvovirus-related sequences and provide a comprehensive reevaluation of their diversity and evolution. After excluding recombinant sequences, phylogenetic and pairwise sequence identity analyses allowed us to define fourteen different viruses, including the five currently classified species, BCAV, and four additional viruses that fulfill the International Committee on Taxonomy of Viruses criteria to be classified as species. We show that the group of viruses historically known as Aleutian mink disease virus (species Carnivore amdoparvovirus 1) should be considered as a cluster of at least four separate viral species that have been co-circulating in mink farms, facilitating the occurrence of inter-species recombination. Genome organization, splicing donor and acceptor sites, and protein sequence motifs were surprisingly conserved within the genus. The sequence of the major capsid protein virus protein 2 (VP2) was significantly more conserved between and within species compared to NS1, a phenomenon possibly linked to antibody-dependent enhancement (ADE). Homology models suggest a remarkably high degree of conservation of the spikes located near the icosahedral threefold axis of the capsid, comprising the surface region associated with ADE. A surprisingly high number of divergent amino acid positions were found in the luminal threefold and twofold axes of the capsid, regions of hitherto unknown function. We emphasize the importance of complete genome analyses and, given the marked phylogenetic inconsistencies across the genome, advise to obtain the complete coding sequences of divergent strains. Further studies on amdoparvovirus biology and structure as well as epidemiological and virus discovery investigations are required to better characterize the ecology and evolution of this important group of viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| | - Judit J Pénzes
- Institute for Quantitative Biomedicine, Rutgers the State University of New Jersey, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| |
Collapse
|
7
|
Alex CE, Kubiski SV, Jackson KA, Wack RF, Pesavento PA. AMDOPARVOVIRUS INFECTIONS ARE PREVALENT, PERSISTENT, AND GENETICALLY DIVERSE IN ZOO-HOUSED RED PANDAS ( AILURUS FULGENS). J Zoo Wildl Med 2022; 53:83-91. [PMID: 35339152 PMCID: PMC9219412 DOI: 10.1638/2021-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 11/21/2022] Open
Abstract
Red pandas (Ailurus fulgens) are a globally endangered small carnivoran species and subjects of a robust ex situ conservation effort that includes animals housed in zoos. In 2018, red panda amdoparvovirus (RPAV) was discovered by metagenomics analyses of tissues from two geriatric red pandas, and in one case it was associated with significant lesions. Because RPAV was discovered in a single zoo cohort, it was unclear whether these infections represented a widely distributed, enzootic virus of red pandas or a localized 'spillover' from a different host species into this collection. The first goal of this study was to estimate the prevalence of RPAV in US zoos. The authors amplified RPAV from feces of 104 individual red pandas from 37 US zoos, and the virus was detected in 52/104 samples (50.0%). Next, to establish persistence of infection in individual animals, the authors tested serial samples in a single cohort over a 4.5-yr period, and virus was consistently shed by infected animals throughout the sampling period. Finally, full viral coding sequences were amplified and sequenced from three cases, and partial sequences of both the nonstructural and capsid genes were obtained for an additional 19 cases. RPAV is a genetically diverse but monophyletic viral species, and multiple viral lineages are present in US zoo-housed red pandas. The authors do not know how red pandas were originally infected, but RPAV is very common in red pandas in the United States, and infections are persistent-presumably for the lifetime of the animal.
Collapse
Affiliation(s)
- Charles E Alex
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
| | - Steven V Kubiski
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
- San Diego Zoo Wildlife Alliance, San Diego, CA 92112, USA
| | - Kenneth A Jackson
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
| | - Raymund F Wack
- Karen C. Drayer Wildlife Health Center, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA, and Sacramento Zoo, Sacramento, CA 95822
| | - Patricia A Pesavento
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA,
| |
Collapse
|
8
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
10
|
Tong M, Sun N, Cao Z, Cheng Y, Zhang M, Cheng S, Yi L. Molecular epidemiology of Aleutian mink disease virus from fecal swab of mink in northeast China. BMC Microbiol 2020; 20:234. [PMID: 32738897 PMCID: PMC7395569 DOI: 10.1186/s12866-020-01910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/19/2020] [Indexed: 11/15/2022] Open
Abstract
Background Aleutian mink disease parvovirus (AMDV) causes Aleutian mink disease (AMD), which is a serious infectious disease of mink. The aim of this study was to get a better understanding of the molecular epidemiology of AMDV in northeast China to control and prevent AMD from further spreading. This study for the first time isolated AMDV from fecal swab samples of mink in China. Results A total of 157/291 (54.0%) of the fecal swab samples were positive for AMDV. Of these, 23 AMDV positive samples were randomly selected for sequence alignment and phylogenetic analysis based on the acquired partial fragments of VP2 gene with the hypervariable region. Comparative DNA sequence analysis of 23 AMDV isolates with a reference nonpathogenic (AMDV-G) strain revealed 8.3% difference in partial VP2 nucleotide sequences. Amino acid alignment indicated the presence of several genetic variants, as well as one single amino acid residue deletion. The most concentrated area of variation was located in the hypervariable region of VP2 protein. According to phylogenetic analysis, the Chinese AMDV strains and the other reference AMDV strains from different countries clustered into three groups (clades A, B and C). Most of the newly sequenced strains were found to form a Chinese-specific group, which solely consisted of Chinese AMDV strains. Conclusion These findings indicated that a high genetic diversity was found in Chinese AMDV strains and the virus distribution were not dependent on geographical origin. Both local and imported AMDV positive species were prevalent in the Chinese mink farming population. The genetic evidence of AMDV variety and epidemic isolates have importance in mink farming practice.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi province, P. R. China.,Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China
| | - Na Sun
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China
| | - Zhigang Cao
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China
| | - Yuening Cheng
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China
| | - Miao Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China
| | - Shipeng Cheng
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China.
| | - Li Yi
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130122, Jilin Province, P. R. China.
| |
Collapse
|
11
|
RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers. mBio 2020; 11:mBio.00192-20. [PMID: 32156816 PMCID: PMC7064759 DOI: 10.1128/mbio.00192-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human parvovirus B19 (B19V) is a human pathogen that causes severe hematological disorders in immunocompromised individuals. B19V infection has a remarkable tropism with respect to human erythroid progenitor cells (EPCs) in human bone marrow and fetal liver. During B19V infection, only one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter of the viral genome and is alternatively spliced and alternatively polyadenylated, a process which plays a key role in expression of viral proteins. Our studies revealed that a cellular RNA binding protein, RBM45, binds to two intron splicing enhancers and is essential for the maturation of the small nonstructural protein 11-kDa-encoding mRNA. The 11-kDa protein plays an important role not only in B19V infection-induced apoptosis but also in viral DNA replication. Thus, the identification of the RBM45 protein and its cognate binding site in B19V pre-mRNA provides a novel target for antiviral development to combat B19V infection-caused severe hematological disorders. During infection of human parvovirus B19 (B19V), one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter and is alternatively spliced and alternatively polyadenylated. Here, we identified a novel cis-acting sequence (5′-GUA AAG CUA CGG GAC GGU-3′), intronic splicing enhancer 3 (ISE3), which lies 72 nucleotides upstream of the second splice acceptor (A2-2) site of the second intron that defines the exon of the mRNA encoding the 11-kDa viral nonstructural protein. RNA binding motif protein 45 (RBM45) specifically binds to ISE3 with high affinity (equilibrium dissociation constant [KD] = 33 nM) mediated by its RNA recognition domain and 2-homo-oligomer assembly domain (RRM2-HOA). Knockdown of RBM45 expression or ectopic overexpression of RRM2-HOA in human erythroid progenitor cells (EPCs) expanded ex vivo significantly decreased the level of viral mRNA spliced at the A2-2 acceptor but not that of the mRNA spliced at A2-1 that encodes VP2. Moreover, silent mutations of ISE3 in an infectious DNA of B19V significantly reduced 11-kDa expression. Notably, RBM45 also specifically interacts in vitro with ISE2, which shares the octanucleotide (GGGACGGU) with ISE3. Taken together, our results suggest that RBM45, through binding to both ISE2 and ISE3, is an essential host factor for maturation of 11-kDa-encoding mRNA.
Collapse
|
12
|
Canuti M, Todd M, Monteiro P, Van Osch K, Weir R, Schwantje H, Britton AP, Lang AS. Ecology and Infection Dynamics of Multi-Host Amdoparvoviral and Protoparvoviral Carnivore Pathogens. Pathogens 2020; 9:pathogens9020124. [PMID: 32075256 PMCID: PMC7168296 DOI: 10.3390/pathogens9020124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Amdoparvovirus and Protoparvovirus are monophyletic viral genera that infect carnivores. We performed surveillance for and sequence analyses of parvoviruses in mustelids in insular British Columbia to investigate parvoviral maintenance and cross-species transmission among wildlife. Overall, 19.1% (49/256) of the tested animals were parvovirus-positive. Aleutian mink disease virus (AMDV) was more prevalent in mink (41.6%, 32/77) than martens (3.1%, 4/130), feline panleukopenia virus (FPV) was more prevalent in otters (27.3%, 6/22) than mink (5.2%, 4/77) or martens (2.3%, 3/130), and canine parvovirus 2 (CPV-2) was found in one mink, one otter, and zero ermines (N = 27). Viruses were endemic and bottleneck events, founder effects, and genetic drift generated regional lineages. We identified two local closely related AMDV lineages, one CPV-2 lineage, and five FPV lineages. Highly similar viruses were identified in different hosts, demonstrating cross-species transmission. The likelihood for cross-species transmission differed among viruses and some species likely represented dead-end spillover hosts. We suggest that there are principal maintenance hosts (otters for FPV, raccoons for CPV-2/FPV, mink for AMDV) that enable viral persistence and serve as sources for other susceptible species. In this multi-host system, viral and host factors affect viral persistence and distribution, shaping parvoviral ecology and evolution, with implications for insular carnivore conservation.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| | - Melissa Todd
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Paige Monteiro
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Kalia Van Osch
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Richard Weir
- British Columbia Ministry of Environment and Climate Change Strategy, PO Box 9338 STN Prov Govt, Victoria, BC V8W 9M2, Canada;
| | - Helen Schwantje
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Wildlife Health Program, Wildlife and Habitat Branch, 2080 Labieux Rd., Nanaimo, BC V9T 6J9, Canada;
| | - Ann P. Britton
- Animal Health Center, British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, BC V3G 2M3, Canada;
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| |
Collapse
|
13
|
Virtanen J, Aaltonen K, Vapalahti O, Sironen T. Development and validation of nucleic acid tests to diagnose Aleutian mink disease virus. J Virol Methods 2019; 279:113776. [PMID: 31726112 DOI: 10.1016/j.jviromet.2019.113776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 01/15/2023]
Abstract
Aleutian disease (AD), caused by Aleutian mink disease virus (AMDV), causes significant welfare problems to mink, and financial losses to the farmers. As there is no vaccine or treatment available, reliable diagnostics is important for disease control. Here, we set up a probe-based real-time PCR (NS1-probe-PCR) to detect all strains of AMDV. PCR was validated and compared to two other real-time PCR methods (pan-AMDV- and pan-AMDO-PCR) currently used for AMDV diagnostics in Finland. The NS1-probe-PCR had a similar detection limit of 20 copies/reaction based on plasmid dilution series, and similar or better diagnostic sensitivity, when evaluated using spleen samples from mink, and stool samples from mink and foxes. None of the three PCR tests cross-reacted with other parvoviruses. The NS1-probe-PCR also showed a significantly higher specificity than the pan-AMDO-PCR with spleen samples and the best specificity with stool samples. Furthermore, it produced the results more rapidly than the other two PCRs making it a promising tool for both diagnostic and research purposes.
Collapse
Affiliation(s)
- Jenni Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Kirsi Aaltonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Olli Vapalahti
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
14
|
Liu X, Wang H, Liu X, Li Y, Chen J, Zhang J, Wang X, Shen S, Wang H, Deng F, Wang M, Guan W, Hu Z. Genomic and transcriptional analyses of novel parvoviruses identified from dead peafowl. Virology 2019; 539:80-91. [PMID: 31706163 DOI: 10.1016/j.virol.2019.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/26/2019] [Indexed: 01/20/2023]
Abstract
To identify potential pathogens responsible for a disease outbreak of cultured peafowls in China in 2013, metagenomic sequencing was conducted. The genomes of two closely related parvoviruses, namely peafowl parvovirus 1 (PePV1) and PePV2, were identified with size of 4428 bp and 4348 bp, respectively. Phylogenetic analysis revealed that both viruses are novel parvoviruses, belonging to the proposed genus Chapparvovirus of Parvoviridae. The transcriptional profile of PePV1 was analyzed by transfecting a nearly complete PePV1 genome into HEK-293T cells. Results revealed that PePV1 employs one promoter and two polyadenylation sites to start and terminate its transcriptions, with one donor site and two acceptor sites for pre-mRNA splicing. PePV1 DNA and structural protein were detected in several tissues of a dead peafowl, which appeared to have suffered enteritis, pneumonia and viremia. These results provide novel information of chapparvoviruses, and call for attention to the potential pathogens.
Collapse
Affiliation(s)
- Xiaoping Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoqian Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Li
- Hubei Wildlife Rescue Center, China
| | | | | | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
15
|
Li L, Hu Z, Sun J, Guo K, Chu X, Wang X, Lu Y. Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus. J Virol Methods 2019; 275:113751. [PMID: 31639372 DOI: 10.1016/j.jviromet.2019.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop a rapid, sensitive and specific EvaGreen (EG)-based real-time PCR assay capable of detecting Aleutian mink disease virus (AMDV) and to evaluate the reliability of the assay for analysis of blood or tissue samples. For this assay, a pair of primers was designed based on a nonstructural protein (NS)-encoding gene of AMDV, and the identity of PCR products was identified based on a melting temperature of 82.8°C. The EG-based real-time PCR assay did not detect canine distemper virus or mink enteritis virus, and the assay could be used to detect Chinese and American AMDV strains, in contrast to a commercial TaqMan kit that could only detect American AMDV strains. The amplification efficiencies of the EG assay were 104.8% for the Chinese strain and 94.4% for the American strain, and the detection limit was 1 copy/μL of AMDV plasmid or 3 pg/μL of viral DNA (Chinese strain). The intra- and inter-assay variation coefficients of melting temperature were all lower than 0.15%, confirming the high reproducibility of the assay. Forty-five clinical blood samples were simultaneously analyzed using the EG real-time PCR, TaqMan kit and conventional PCR, and the detection rates were 91.1%, 0.0% and 86.7%, respectively. Serum samples were also collected from the corresponding blood samples and tested using the counterimmunoelectrophoresis (CIEP) assay, where positive samples accounted for 24.4% of the 45 samples. In conclusion, EG-based real-time PCR is a rapid, sensitive, universal assay that can be effectively utilized as a reliable and specific tool for detection and quantitation of AMDV.
Collapse
Affiliation(s)
- Li Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Harbin Customs District P.R. China, 88 Songshan Road, Harbin 150008, PR China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Jinhui Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China; College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Kui Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaoyu Chu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.
| |
Collapse
|
16
|
Virtanen J, Smura T, Aaltonen K, Moisander-Jylhä AM, Knuuttila A, Vapalahti O, Sironen T. Co-circulation of highly diverse Aleutian mink disease virus strains in Finland. J Gen Virol 2018; 100:227-236. [PMID: 30526739 DOI: 10.1099/jgv.0.001187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is the causative agent of Aleutian disease (AD), which affects mink of all genotypes and also infects other mustelids such as ferrets, martens and badgers. Previous studies have investigated diversity in Finnish AMDV strains, but these studies have been restricted to small parts of the virus genome, and mostly from newly infected farms and free-ranging mustelids. Here, we investigated the diversity and evolution of Finnish AMDV strains by sequencing the complete coding sequences of 31 strains from mink originating from farms differing in their virus history, as well as from free-ranging mink. The data set was supplemented with partial genomes obtained from 26 strains. The sequences demonstrate that the Finnish AMDV strains have considerable diversity, and that the virus has been introduced to Finland in multiple events. Frequent recombination events were observed, as well as variation in the evolutionary rate in different parts of the genome and between different branches of the phylogenetic tree. Mink in the wild carry viruses with high intra-host diversity and are occasionally even co-infected by two different strains, suggesting that free-ranging mink tolerate chronic infections for extended periods of time. These findings highlight the need for further sampling to understand the mechanisms playing a role in the evolution and pathogenesis of AMDV.
Collapse
Affiliation(s)
- Jenni Virtanen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Teemu Smura
- 2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Kirsi Aaltonen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Anna-Maria Moisander-Jylhä
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
| | - Anna Knuuttila
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,†Present address: Anna Knuuttila, Fimmic Oy, Helsinki, Finland
| | - Olli Vapalahti
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Tarja Sironen
- 1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.,2Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
17
|
Wang Z, Cheng F, Engelhardt JF, Yan Z, Qiu J. Development of a Novel Recombinant Adeno-Associated Virus Production System Using Human Bocavirus 1 Helper Genes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:40-51. [PMID: 30397626 PMCID: PMC6205362 DOI: 10.1016/j.omtm.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/27/2018] [Indexed: 01/13/2023]
Abstract
Human bocavirus 1 (HBoV1), an autonomous parvovirus, is a helper virus supporting replication of wild-type adeno-associated virus 2 (AAV2). In this study, we compared the helper functions from HBoV1 with those from adenovirus (Ad) for the production of recombinant AAV (rAAV) vector in HEK293 cells. We demonstrated that triple plasmids transfection of (1) a cloned HBoV1 helper minigenome (pBocaHelper) that expresses HBoV1 genes NP1, NS2, and BocaSR, (2) pAAV transfer plasmid, and (3) pAAVRepCap supports rAAV production in HEK293 cells. Despite a production yield of 1–2 log lower than that using pAdHelper (expressing Ad genes E2A, E4, and VA), rAAV vector produced using pBocaHelper transduced cells as efficiently as that produced using pAdHelper. The low vector production is largely due to the inefficient expression of the AAV Rep52 and capsid proteins, as well as reduced rAAV genome replication. When the AAV capsid proteins and Rep52 were ectopically expressed under strong promoters, the enhanced protein expression significantly improved the rAAV production using pBocaHelper, approaching a level of 50%–70% of that produced using pAdHelper. Through further dissection of the helper functions from pAdHelper in a five-plasmid transfection system, we found that the addition of the Ad E2A gene to the above HBoV1 helper system significantly increased rAAV DNA replication, which increased the rAAV vector production to a level of 3–7 times higher than that using pAdHelper. We finally combined HBoV1 NP1 and NS2 genes with Ad helper genes to create a novel dual helper plasmid (pABHelper) for rAAV vector production in the conventional three-plasmid transfection system. The pABHelper facilitated rAAV production at a yield ∼2 times higher than that using the pAdHelper.
Collapse
Affiliation(s)
- Zekun Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.,Center for Gene Therapy, University of Iowa, Iowa City, IA 52242, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.,Center for Gene Therapy, University of Iowa, Iowa City, IA 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Pénzes JJ, Marsile-Medun S, Agbandje-McKenna M, Gifford RJ. Endogenous amdoparvovirus-related elements reveal insights into the biology and evolution of vertebrate parvoviruses. Virus Evol 2018; 4:vey026. [PMID: 30443409 PMCID: PMC6232428 DOI: 10.1093/ve/vey026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amdoparvoviruses (family Parvoviridae: genus Amdoparvovirus) infect carnivores, and are a major cause of morbidity and mortality in farmed animals. In this study, we systematically screened animal genomes to identify endogenous parvoviral elements (EPVs) disclosing a high degree of similarity to amdoparvoviruses, and investigated their genomic, phylogenetic and protein structural features. We report the first examples of full-length, amdoparvovirus-derived EPVs in the genome of the Transcaucasian mole vole (Ellobius lutescens). We also identify four EPVs in mammal and reptile genomes that are intermediate between amdoparvoviruses and their sister genus (Protoparvovirus) in terms of their phylogenetic placement and genomic features. In particular, we identify a genome-length EPV in the genome of a pit viper (Protobothrops mucrosquamatus) that is more similar to a protoparvovirus than an amdoparvovirus in terms of its phylogenetic placement and the structural features of its capsid protein (as revealed by homology modeling), yet exhibits characteristically amdoparvovirus-like genome features including: (1) a putative middle ORF gene; (2) a capsid gene that lacks a phospholipase A2 domain; (3) a genome structure consistent with an amdoparvovirus-like mechanism of capsid gene expression. Our findings indicate that amdoparvovirus host range extends to rodents, and that parvovirus lineages possessing a mixture of proto- and amdoparvovirus-like characteristics have circulated in the past. In addition, we show that EPV sequences in the mole vole and pit viper encode intact, expressible replicase genes that have potentially been co-opted or exapted in these host species.
Collapse
Affiliation(s)
- Judit J Pénzes
- University of Florida McKnight Brain Institute, 1149 Newell Dr, Gainesville, USA
| | - Soledad Marsile-Medun
- Agrocampus Ouest, 65 Rue de Saint-Brieuc, Rennes, France
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, UK
| | | | - Robert James Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, UK
| |
Collapse
|
19
|
Kashtanov SN, Salnikova LE. Aleutian Mink Disease: Epidemiological and Genetic Aspects. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079086418020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Leng X, Liu D, Li J, Shi K, Zeng F, Zong Y, Liu Y, Sun Z, Zhang S, Liu Y, Du R. Genetic diversity and phylogenetic analysis of Aleutian mink disease virus isolates in north-east China. Arch Virol 2018; 163:1241-1251. [DOI: 10.1007/s00705-018-3754-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/06/2018] [Indexed: 02/02/2023]
|
21
|
Lu T, Wang Y, Ge J, Ma Q, Yan W, Zhang Y, Zhao L, Chen H. Identification and characterization of a novel B-cell epitope on Aleutian Mink Disease virus capsid protein VP2 using a monoclonal antibody. Virus Res 2017; 248:74-79. [PMID: 29278728 DOI: 10.1016/j.virusres.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
Aleutian mink disease is caused by a highly contagious parvovirus (Aleutian mink disease virus, AMDV). This disease is one of the most commercially important infectious disease worldwide and causes considerable economic losses to mink farmers. The capsid protein VP2 is the major immunogenic antigenic protein of AMDV, and is involved in viral tropism, pathogenicity, and host selection. However, few reports have described the use of VP2-specific monoclonal antibodies (mAbs) in B-cell epitope identification and immunological detection. In this study, we produced a specific mAb, 1G5, against AMDV VP2 protein (amino acids: 200 ∼ 588) and characterized its specificity and relative affinity. Six partially overlapping truncated recombinant proteins and seven synthetized peptides were used to identify the epitopes recognized by 1G5. The results indicate that mAb 1G5 can distinguish AMDV, MEV and CPV2 with high affinity (Ka = 5.37 × 109), and the minimal linear epitope is located in amino acid residues 459EEEGWPAASGTHFED473. Sequence alignments demonstrated that the linear epitope was completely conserved among most Amdoparvoviruses except the bat parvovirus, where three substitutions (463W-463F, 466A-466G and 471F-471Y) were noted. Our results reveal that the identified epitope might be a common B-cell epitope of AMDV antibodies, and the 1G5 mAb can be used to identify the cleavage of the capsid proteins during AMDV infection. This is also the first report of a B-cell epitope on AMDV capsid protein VP2 (VP2: 459-473) using a mAb. These findings have potential applications in the development of new diagnostic tools for AMDV.
Collapse
Affiliation(s)
- Taofeng Lu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanzhi Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Junwei Ge
- Veterinary Department, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Qin Ma
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Wenzhuo Yan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanyuan Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
22
|
Xi J, Zhang Y, Wang J, Yu Y, Zhang X, Li Z, Cui S, Liu W. Generation of an infectious clone of AMDV and identification of capsid residues essential for infectivity in cell culture. Virus Res 2017; 242:58-65. [DOI: 10.1016/j.virusres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
23
|
Connolly PF, Fearnhead HO. Viral hijacking of host caspases: an emerging category of pathogen-host interactions. Cell Death Differ 2017; 24:1401-1410. [PMID: 28524855 PMCID: PMC5520459 DOI: 10.1038/cdd.2017.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Viruses co-evolve with their hosts, and many viruses have developed mechanisms to suppress or modify the host cell apoptotic response for their own benefit. Recently, evidence has emerged for the opposite strategy. Some viruses have developed the ability to co-opt apoptotic caspase activity to facilitate their own proliferation. In these strategies, viral proteins are cleaved by host caspases to create cleavage products with novel activities which facilitate viral replication. This represents a novel and interesting class of viral-host interactions, and also represents a new group of non-apoptotic roles for caspases. Here we review the evidence for such strategies, and discuss their origins and their implications for our understanding of the relationship between viral pathogenesis and programmed cell death.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
24
|
Canuti M, Doyle HE, P Britton A, Lang AS. Full genetic characterization and epidemiology of a novel amdoparvovirus in striped skunk (Mephitis mephitis). Emerg Microbes Infect 2017; 6:e30. [PMID: 28487558 PMCID: PMC5520478 DOI: 10.1038/emi.2017.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 11/09/2022]
Abstract
Amdoparvovirus is a newly defined parvoviral genus that contains four species (Carnivore amdoparvovirus 1-4), including the well-known Aleutian mink disease virus (AMDV). Amdoparvoviruses cause an immune-associated and often lethal wasting syndrome in Mustelidae and Caninae hosts. In this study, we molecularly investigated amdoparvoviruses detected in 44 striped skunks (Mephitis mephitis) found dead in and around Vancouver, British Columbia, Canada. Some of the animals exhibited pathological changes compatible with amdoparvovirus-associated disease. The nearly complete genomic sequence was obtained for seven different strains and our analyses show how this virus, which we named skunk amdoparvovirus (SKAV), should be classified as a separate species within the genus (proposed Carnivore amdoparvovirus 5). We detected co-infections, recombinant genomes, at least three separate viral lineages, and preliminary evidence for geographic segregation of lineages. Furthermore, we proved that similar viruses, only partially characterized in previous studies and labeled as AMDV, circulate in skunks from other distant areas of North America (Ontario and California) and found evidence for spillover events in mink (Neovison vison). Although SKAVs are capable of causing disease in infected animals, a high proportion of sub-clinical infections has been observed, suggesting these animals might act as asymptomatic carriers and pose a threat to wild and captive carnivores. Finally, we highlight the need for more specific diagnostic tests and further molecular investigations to clarify the epidemiology and host- and geographical distributions of amdoparvoviruses in terrestrial carnivores, especially because the whole spectrum of viral diversity in this group is likely still unknown.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B3X9, Canada
| | - Hillary E Doyle
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B3X9, Canada
| | - Ann P Britton
- Animal Health Centre, BC Ministry of Agriculture, Abbotsford, BC V3G2M3, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B3X9, Canada
| |
Collapse
|
25
|
Hagberg EE, Krarup A, Fahnøe U, Larsen LE, Dam-Tuxen R, Pedersen AG. A fast and robust method for whole genome sequencing of the Aleutian Mink Disease Virus (AMDV) genome. J Virol Methods 2016; 234:43-51. [PMID: 27060623 DOI: 10.1016/j.jviromet.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
Aleutian Mink Disease Virus (AMDV) is a frequently encountered pathogen associated with commercial mink breeding. AMDV infection leads to increased mortality and compromised animal health and welfare. Currently little is known about the molecular evolution of the virus, and the few existing studies have focused on limited regions of the viral genome. This paper describes a robust, reliable, and fast protocol for amplification of the full AMDV genome using long-range PCR. The method was used to generate next generation sequencing data for the non-virulent cell-culture adapted AMDV-G strain as well as for the virulent AMDV-Utah strain. Comparisons at nucleotide- and amino acid level showed that, in agreement with existing literature, the highest variability between the two virus strains was found in the left open reading frame, which encodes the non-structural (NS1-3) genes. This paper also reports a number of differences that potentially can be linked to virulence and host range. To the authors' knowledge, this is the first study to apply next generation sequencing on the entire AMDV genome. The results from the study will facilitate the development of new diagnostic tools and can form the basis for more detailed molecular epidemiological analyses of the virus.
Collapse
Affiliation(s)
- Emma E Hagberg
- Kopenhagen Diagnostics, Kopenhagen Fur, Glostrup, Denmark; Department of Systems biology, Technical University of Denmark, Lyngby, Denmark.
| | - Anders Krarup
- Kopenhagen Diagnostics, Kopenhagen Fur, Glostrup, Denmark
| | - Ulrik Fahnøe
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | | | - Anders G Pedersen
- Department of Systems biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
26
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
27
|
Canuti M, O’Leary KE, Hunter BD, Spearman G, Ojkic D, Whitney HG, Lang AS. Driving forces behind the evolution of the Aleutian mink disease parvovirus in the context of intensive farming. Virus Evol 2016; 2:vew004. [PMID: 27774297 PMCID: PMC4989880 DOI: 10.1093/ve/vew004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aleutian mink disease virus (AMDV) causes plasmacytosis, an immune complex-associated syndrome that affects wild and farmed mink. The virus can also infect other small mammals (e.g., ferrets, skunks, ermines, and raccoons), but the disease in these hosts has been studied less. In 2007, a mink plasmacytosis outbreak began on the Island of Newfoundland, and the virus has been endemic in farms since then. In this study, we evaluated the molecular epidemiology of AMDV in farmed and wild animals of Newfoundland since before the beginning of the outbreak and investigated the epidemic in a global context by studying AMDV worldwide, thereby examining its diffusion and phylogeography. Furthermore, AMDV evolution was examined in the context of intensive farming, where host population dynamics strongly influence viral evolution. Partial NS1 sequences and several complete genomes were obtained from Newfoundland viruses and analyzed along with numerous sequences from other locations worldwide that were either obtained as part of this study or from public databases. We observed very high viral diversity within Newfoundland and within single farms, where high rates of co-infection, recombinant viruses and polymorphisms were observed within single infected individuals. Worldwide, we documented a partial geographic distribution of strains, where viruses from different countries co-exist within clades but form country-specific subclades. Finally, we observed the occurrence of recombination and the predominance of negative selection pressure on AMDV proteins. A surprisingly low number of immunoepitopic sites were under diversifying pressure, possibly because AMDV gains no benefit by escaping the immune response as viral entry into target cells is mediated through interactions with antibodies, which therefore contribute to cell infection. In conclusion, the high prevalence of AMDV in farms facilitates the establishment of co-infections that can favor the occurrence of recombination and enhance viral diversity. Viruses are then exchanged between different farms and countries and can be introduced into the wild, with the rapidly evolving viruses producing many parallel lineages.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland and Labrador, A1B 3X9, Canada
| | - Kimberly E. O’Leary
- Animal Health Division, Forestry and Agrifoods Agency, P.O. Box 7400, St. John’s, Newfoundland and Labrador, A1E 3Y5, Canada
| | - Bruce D. Hunter
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Grant Spearman
- Department of Agriculture, Animal Health Laboratory, 65 River Rd., Truro, Nova Scotia, B2N 5E3, Canada and
| | - Davor Ojkic
- Animal Health Laboratory, 419 Gordon Street, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hugh G. Whitney
- Animal Health Division, Forestry and Agrifoods Agency, P.O. Box 7400, St. John’s, Newfoundland and Labrador, A1E 3Y5, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland and Labrador, A1B 3X9, Canada
| |
Collapse
|
28
|
Canuti M, Whitney HG, Lang AS. Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol 2015; 6:1119. [PMID: 26528267 PMCID: PMC4600916 DOI: 10.3389/fmicb.2015.01119] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Many new viruses have been discovered recently, thanks in part to the advent of next-generation sequencing technologies. Among the Parvoviridae, three novel members of the genus Amdoparvovirus have been described in the last 4 years, expanding this genus that had contained a single species since its discovery, Aleutian mink disease virus. The increasing number of molecular and epidemiological studies on these viruses around the world also highlights the growing interest in this genus. Some aspects of amdoparvoviruses have been well characterized, however, many other aspects still need to be elucidated and the most recent reviews on this topic are outdated. We provide here an up-to-date overview of what is known and what still needs to be investigated about these scientifically and clinically relevant animal viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
29
|
Abstract
UNLABELLED Human bocavirus 1 (HBoV1) is a single-stranded DNA parvovirus that causes lower respiratory tract infections in young children worldwide. In this study, we identified novel splice acceptor and donor sites, namely, A1' and D1', in the large nonstructural protein (NS1)-encoding region of the HBoV1 precursor mRNA. The novel small NS proteins (NS2, NS3, and NS4) were confirmed to be expressed following transfection of an HBoV1 infectious proviral plasmid and viral infection of polarized human airway epithelium cultured at an air-liquid interface (HAE-ALI). We constructed mutant pIHBoV1 infectious plasmids which harbor silent mutations (sm) smA1' and smD1' at the A1' and D1' splice sites, respectively. The mutant infectious plasmids maintained production of HBoV1 progeny virions at levels less than five times lower than that of the wild-type plasmid. Importantly, the smA1' mutant virus that does not express NS3 and NS4 replicated in HAE-ALI as effectively as the wild-type virus; however, the smD1' mutant virus that does not express NS2 and NS4 underwent an abortive infection in HAE-ALI. Thus, our study identified three novel NS proteins, NS2, NS3, and NS4, and suggests an important function of the NS2 protein in HBoV1 replication in HAE-ALI. IMPORTANCE Human bocavirus 1 infection causes respiratory diseases, including acute wheezing in infants, of which life-threatening cases have been reported. In vitro, human bocavirus 1 infects polarized human bronchial airway epithelium cultured at an air-liquid interface that mimics the environment of human lower respiratory airways. Viral nonstructural proteins are often important for virus replication and pathogenesis in infected tissues or cells. In this report, we identified three new nonstructural proteins of human bocavirus 1 that are expressed during infection of polarized human bronchial airway epithelium. Among them, we proved that one nonstructural protein is critical to the replication of the virus in polarized human bronchial airway epithelium. The creation of nonreplicating infectious HBoV1 mutants may have particular utility in vaccine development for this virus.
Collapse
|
30
|
Dhar AK, Robles-Sikisaka R, Saksmerprome V, Lakshman DK. Biology, genome organization, and evolution of parvoviruses in marine shrimp. Adv Virus Res 2014; 89:85-139. [PMID: 24751195 DOI: 10.1016/b978-0-12-800172-1.00003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in the Americas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses.
Collapse
Affiliation(s)
| | | | - Vanvimon Saksmerprome
- Centex Shrimp, Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Dilip K Lakshman
- USDA-ARS, Floral & Nursery Plants Research Unit, Beltsville, Maryland, USA
| |
Collapse
|
31
|
Abstract
Parvoviruses are small, rugged, nonenveloped protein particles containing a linear, nonpermuted, single-stranded DNA genome of ∼5 kb. Their limited coding potential requires optimal adaptation to the environment of particular host cells, where entry is mediated by a variable program of capsid dynamics, ultimately leading to genome ejection from intact particles within the host nucleus. Genomes are amplified by a continuous unidirectional strand-displacement mechanism, a linear adaptation of rolling circle replication that relies on the repeated folding and unfolding of small hairpin telomeres to reorient the advancing fork. Progeny genomes are propelled by the viral helicase into the preformed capsid via a pore at one of its icosahedral fivefold axes. Here we explore how the fine-tuning of this unique replication system and the mechanics that regulate opening and closing of the capsid fivefold portals have evolved in different viral lineages to create a remarkably complex spectrum of phenotypes.
Collapse
Affiliation(s)
| | - Peter Tattersall
- Departments of 1Laboratory Medicine and.,Genetics, Yale University Medical School, New Haven, Connecticut 06510;
| |
Collapse
|
32
|
Molecular epidemiology of Aleutian mink disease virus in China. Virus Res 2014; 184:14-9. [DOI: 10.1016/j.virusres.2014.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 11/20/2022]
|
33
|
Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 2014; 452-453:23-31. [PMID: 24606679 DOI: 10.1016/j.virol.2014.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Aleutian mink disease virus (AMDV) is the only member in genus Amdovirus of the family Parvoviridae. During AMDV infection, six species of viral transcripts are generated from one precursor mRNA through alternative splicing and alternative polyadenylation. In addition to the large non-structural protein NS1, two small non-structural proteins, NS2 and NS3, are putatively encoded (Qiu J, et al., 2006. J. Virol. 80 654-662). However, these two proteins have not been experimentally demonstrated during virus infection, and nothing is known about their function. Here, we studied the nonstructural protein expression profile of AMDV, and for the first time, confirmed expression of NS2 and NS3 during infection, and identified their intracellular localization. More importantly, we provided evidence that both NS2 and NS3 are necessary for AMDV replication.
Collapse
|
34
|
Characterization of the nonstructural proteins of the bocavirus minute virus of canines. J Virol 2012; 87:1098-104. [PMID: 23135724 DOI: 10.1128/jvi.02627-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a detailed characterization of a single-cycle infection of the bocavirus minute virus of canines (MVC) in canine WRD cells. This has allowed identification of an additional smaller NS protein that derives from an mRNA spliced within the NS gene that had not been previously reported. In addition, we have identified a role for the viral NP1 protein during infection. NP1 is required for read-through of the MVC internal polyadenylation site and, thus, access of the capsid gene by MVC mRNAs. Although the mechanism of NP1's action has not yet been fully elucidated, it represents the first parvovirus protein to be implicated directly in viral RNA processing.
Collapse
|
35
|
Huang Q, Deng X, Yan Z, Cheng F, Luo Y, Shen W, Lei-Butters DCM, Chen AY, Li Y, Tang L, Söderlund-Venermo M, Engelhardt JF, Qiu J. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. PLoS Pathog 2012; 8:e1002899. [PMID: 22956907 PMCID: PMC3431310 DOI: 10.1371/journal.ppat.1002899] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis. Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. HBoV1 productively infects polarized primary human airway epithelia. However, no cell lines permissive to HBoV1 infection have yet been established. More importantly, the sequences at both ends of the HBoV1 genome have remained unknown. We have resolved both of these issues in this study. We have sequenced a full-length HBoV1 genome and cloned it into a plasmid. We further demonstrated that this HBoV1 plasmid replicated and produced viruses in human embryonic kidney 293 cells. Infection of these HBoV1 progeny virions produced obvious cytopathogenic effects in polarized human airway epithelia, which were represented by disruption of the epithelial barrier. Moreover, we identified an airway epithelial cell line supporting HBoV1 infection, when it was polarized. This is the first study to obtain the full-length HBoV1 genome, to demonstrate pathogenesis of HBoV1 infection in human airway epithelia, and to identify the first cell line to support productive HBoV1 infection.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Ziying Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diana C. M. Lei-Butters
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yi Li
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | | | - John F. Engelhardt
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nituch LA, Bowman J, Wilson P, Schulte-Hostedde AI. Molecular epidemiology of Aleutian disease virus in free-ranging domestic, hybrid, and wild mink. Evol Appl 2012; 5:330-40. [PMID: 25568054 PMCID: PMC3353359 DOI: 10.1111/j.1752-4571.2011.00224.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/26/2022] Open
Abstract
Aleutian mink disease (AMD) is a prominent infectious disease in mink farms. The AMD virus (AMDV) has been well characterized in Europe where American mink (Neovison vison) are an introduced species; however, in North America, where American mink are native and the disease is thought to have originated, the virus’ molecular epidemiology is unknown. As such, we characterized viral isolates from Ontario free-ranging mink of domestic, hybrid, and wild origin at two proteins: NS1, a nonstructural protein, and VP2, a capsid protein. AMDV DNA was detected in 25% of free-ranging mink (45 of 183), indicating prevalent active infection. Median-joining networks showed that Ontario AMDV isolates formed two subgroups in the NS1 region and three in the VP2 region, which were somewhat separate from, but closely related to, AMDVs circulating in domestic mink worldwide. Molecular analyses showed evidence of AMDV crossing from domestic to wild mink. Our results suggest that AMDV isolate grouping is linked to both wild endogenous reservoirs and the long-term global trade in domestic mink, and that AMD spills back and forth between domestic and wild mink. As such, biosecurity on mink farms is warranted to prevent transmission of the disease between mink farms and the wild.
Collapse
Affiliation(s)
- Larissa A Nituch
- Environmental and Life Sciences, Trent University Peterborough, ON, Canada
| | - Jeff Bowman
- Ontario Ministry of Natural Resources, Trent University Peterborough, ON, Canada
| | - Paul Wilson
- Department of Biology, Trent University Peterborough, ON, Canada
| | | |
Collapse
|
37
|
Genetic characterization of Aleutian mink disease viruses isolated in China. Virus Genes 2012; 45:24-30. [PMID: 22415541 DOI: 10.1007/s11262-012-0733-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complex mediated disease in minks. To understand the genetic characterization of AMDV in China, the genomic sequences of three isolates, ADV-LN1, ADV-LN2, and ADV-LN3, from different farms in the Northern China were analyzed. The results showed that the lengths of genomic sequences of three isolates were 4,543, 4,566, and 4,566 bp, respectively. They shared only 95.5-96.3 % nucleotide identity with each other. The nucleotide and amino acid homology of genome sequence between the Chinese isolates and European or American strains (ADV-G, ADV-Utah1, and ADV-SL3) were 92.4-95.0 % and 92.1-93.8 %, respectively. The amino acid substitutions randomly distributed in the genome, especially NS gene. ADV-LN1 strain had a 9-amino-acid deletion at amino acid positions 70 and 72-79 in the VP1 gene, comparing with ADV-G strain; ADV-LN2 and ADV-LN3 strains had 1-amino-acid deletion at amino acid positions 70 in the VP1. Some potential glycosylation site mutations in VP and NS genes were also observed. Phylogenetic analysis results showed that the three strains belonged to two different branches based on the complete coding sequence of VP2 gene. However, they all were in the same group together with the strains from United States based on the NS1 sequence. It indicated that Chinese AMDV isolates had genetic diversity. The origin of the ancestors of the Chinese AMDV strains might be associated with the American strains.
Collapse
|
38
|
Huang Q, Deng X, Best SM, Bloom ME, Li Y, Qiu J. Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production. Virology 2012; 426:167-77. [PMID: 22361476 DOI: 10.1016/j.virol.2012.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Aleutian Mink Disease Virus (AMDV) is the only virus in the genus Amdovirus of family Parvoviridae. In adult mink, AMDV causes a persistent infection associated with severe dysfunction of the immune system. Cleavage of AMDV capsid proteins has been previously shown to play a role in regulating progeny virus production (Fang Cheng et al., J. Virol. 84:2687-2696, 2010). The present study shows that AMDV has evolved a second strategy to limit expression of capsid proteins by preventing processing of the full-length capsid protein-encoding mRNA transcripts. Characterization of the cis-elements of the proximal polyadenylation site [(pA)p] in the infectious clone of AMDV revealed that polyadenylation at the (pA)p site is controlled by an upstream element (USE) of 200 nts in length, the AAUAAA signal, and a downstream element (DSE) of 40 nts. A decrease in polyadenylation at the (pA)p site, either by mutating the AAUAAA signal or the DSE, which does not affect the encoding of amino acids in the infectious clone, increased the expression of capsid protein VP1/VP2 and thereby increased progeny virus production approximately 2-3-fold. This increase was accompanied by enhanced replication of the AMDV genome. Thus, this study reveals correlations among internal polyadenylation, capsid production, viral DNA replication and progeny virus production of AMDV, indicating that internal polyadenylation is a limiting step for parvovirus replication and progeny virus production.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
39
|
Li L, Pesavento PA, Woods L, Clifford DL, Luff J, Wang C, Delwart E. Novel amdovirus in gray foxes. Emerg Infect Dis 2012; 17:1876-8. [PMID: 22000359 PMCID: PMC3310670 DOI: 10.3201/eid1710.110233] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We used viral metagenomics to identify a novel parvovirus in tissues of a gray fox (Urocyon cinereoargenteus). Nearly full genome characterization and phylogenetic analyses showed this parvovirus (provisionally named gray fox amdovirus) to be distantly related to Aleutian mink disease virus, representing the second viral species in the Amdovirus genus.
Collapse
Affiliation(s)
- Linlin Li
- Blood Systems Research Institute, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lou S, Xu B, Huang Q, Zhi N, Cheng F, Wong S, Brown K, Delwart E, Liu Z, Qiu J. Molecular characterization of the newly identified human parvovirus 4 in the family Parvoviridae. Virology 2012; 422:59-69. [PMID: 22044541 PMCID: PMC3229647 DOI: 10.1016/j.virol.2011.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 01/27/2023]
Abstract
Human parvovirus 4 (PARV4) is an emerging human virus, and little is known about the molecular aspects of PARV4 apart from its incomplete genome sequence, which lacks information of the termini. We analyzed the gene expression profile of PARV4 using a nearly full-length HPV4 genome in a replication competent system in 293 cells. We found that PARV4 utilizes two promoters to transcribe non-structural protein- and structural protein-encoding mRNAs, respectively, which were polyadenylated at the right end of the genome. Three major proteins, including the large non-structural protein NS1a, whose mRNA is spliced, and capsid proteins VP1 and VP2, were detected. Additional functional analysis of the NS1a revealed its capability to induce cell cycle arrest at G2/M phase in ex vivo-generated human hematopoietic stem cells. Taken together, our characterization of the molecular features of PARV4 suggests that PARV4 represents a new genus in the family Parvoviridae.
Collapse
Affiliation(s)
- Sai Lou
- Department of Infectious Diseases First Affiliated Hospital, School of Medicine Xi'an Jiaotong University Xi'an, China
| | - Baoyan Xu
- Hematology Branch National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD, USA
| | - Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center Kansas City, KS, USA
| | - Ning Zhi
- Hematology Branch National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center Kansas City, KS, USA
| | - Susan Wong
- Hematology Branch National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD, USA
| | - Kevin Brown
- Hematology Branch National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Zhengwen Liu
- Department of Infectious Diseases First Affiliated Hospital, School of Medicine Xi'an Jiaotong University Xi'an, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
41
|
Kivovich V, Gilbert L, Vuento M, Naides SJ. The putative metal coordination motif in the endonuclease domain of human Parvovirus B19 NS1 is critical for NS1 induced S phase arrest and DNA damage. Int J Biol Sci 2011; 8:79-92. [PMID: 22211107 PMCID: PMC3248650 DOI: 10.7150/ijbs.8.79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.
Collapse
Affiliation(s)
- Violetta Kivovich
- Pennsylvania State College of Medicine/ Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
42
|
Guan W, Huang Q, Cheng F, Qiu J. Internal polyadenylation of the parvovirus B19 precursor mRNA is regulated by alternative splicing. J Biol Chem 2011; 286:24793-805. [PMID: 21622561 DOI: 10.1074/jbc.m111.227439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative processing of parvovirus B19 (B19V) pre-mRNA is critical to generating appropriate levels of B19V mRNA transcripts encoding capsid proteins and small nonstructural proteins. Polyadenylation of the B19V pre-mRNA at the proximal polyadenylation site ((pA)p), which prevents generation of full-length capsid proteins encoding mRNA transcripts, has been suggested as a step that blocks B19V permissiveness. We report here that efficient splicing of the B19V pre-mRNA within the first intron (upstream of the (pA)p site) stimulated the polyadenylation; in contrast, splicing of the B19V pre-mRNA within the second intron (in which the (pA)p site resides) interfered with the polyadenylation, leading to the generation of a sufficient number of B19V mRNA transcripts polyadenylated at the distal polyadenylation site ((pA)d). We also found that splicing within the second intron and polyadenylation at the (pA)p site compete during processing of the B19V pre-mRNA. Furthermore, we discovered that the U1 RNA that binds to the 5' splice donor site of the second intron is fully responsible for inhibiting polyadenylation at the (pA)p site, whereas actual splicing, and perhaps assembly of the functional spliceosome, is not required. Finally, we demonstrated that inhibition of B19V pre-mRNA splicing within the second intron by targeting an intronic splicing enhancer using a Morpholino antisense oligonucleotide prevented B19V mRNA transcripts polyadenylated at the (pA)d site during B19V infection of human erythroid progenitors. Thus, our study reveals the mechanism by which alternative splicing coordinates alternative polyadenylation to generate full-length B19V mRNA transcripts at levels sufficient to support productive B19V infection.
Collapse
Affiliation(s)
- Wuxiang Guan
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
43
|
Inclusion of the central exon of parvovirus B19 precursor mRNA is determined by multiple splicing enhancers in both the exon and the downstream intron. J Virol 2010; 85:2463-8. [PMID: 21159861 DOI: 10.1128/jvi.01708-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing of the precursor mRNA (pre-mRNA) of human parvovirus B19 (B19V) plays a key role in posttranscriptional regulation of B19V gene expression. We report that the central exon of the B19V pre-mRNA is defined by three GAA motif-containing exonic splicing enhancers and a G/GU-rich intronic splicing enhancer that lies adjacent to the second donor site. Moreover, targeting of morpholino antisense oligonucleotides to the two splicing enhancers surrounding the second donor site led to a significant reduction in splicing at this donor site during B19V infection of permissive CD36(+) erythroid progenitor cells.
Collapse
|
44
|
Chen Z, Chen AY, Cheng F, Qiu J. Chipmunk parvovirus is distinct from members in the genus Erythrovirus of the family Parvoviridae. PLoS One 2010; 5:e15113. [PMID: 21151930 PMCID: PMC2997070 DOI: 10.1371/journal.pone.0015113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/22/2010] [Indexed: 02/02/2023] Open
Abstract
The transcription profile of chipmunk parvovirus (ChpPV), a tentative member of the genus Erythrovirus in the subfamily Parvovirinae of the family Parvoviridae, was characterized by transfecting a nearly full-length genome. We found that it is unique from the profiles of human parvovirus B19 and simian parvovirus, the members in the genus Erythrovirus so far characterized, in that the small RNA transcripts were not processed for encoding small non-structural proteins. However, like the large non-structural protein NS1 of the human parvovirus B19, the ChpPV NS1 is a potent inducer of apoptosis. Further phylogenetic analysis of ChpPV with other parvoviruses in the subfamily Parvovirinae indicates that ChpPV is distinct from the members in genus Erythrovirus. Thus, we conclude that ChpPV may represent a new genus in the family Parvoviridae.
Collapse
Affiliation(s)
- Zhaojun Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 2010; 171:81-5. [PMID: 20951744 DOI: 10.1016/j.jviromet.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
Abstract
Aleutian mink disease virus (AMDV) is a severe progressive disease causing multiple different clinical syndromes in mink. In Denmark, the disease is notifiable and under official control. The control programme, based on serological screening, has confined successfully AMDV to the northern part of Denmark. However, re-infections and new introductions of virus into farms require a confirmatory virological test to verify the positive test results of single animals and ultimately to investigate disease transmission. A one step PCR amplifying a 374-base fragment of the NS1 gene of AMDV was compared to the counter-current immune electrophoresis (CIE) routinely used in the serological screening programme. Mink organs (n=299) obtained from 55 recently infected farms and 8 non-infected farms from 2008 to 2010 were tested by PCR, and the results were found to have a high correlation with the serological status of the mink. The relative diagnostic sensitivity of the PCR was 94.7%, and the relative diagnostic specificity was 97.9% when read in parallel with the CIE. PCR positive samples were sequenced and phylogenetic analysis revealed high similarity within the analysed AMDV strains and to AMDV strains described previously.
Collapse
|
46
|
Abstract
The first human parvoviruses to be described (1960s) were the adeno-associated viruses (AAVs, now classed as dependoviruses), originally identified as contaminants of cell cultures, followed by parvovirus B19 (B19V) in 1974, the first parvovirus to be definitively shown to be pathogenic. More recently two new groups of parvoviruses, the human bocaviruses (HuBoV) and the Parv4 viruses have been identified. These four groups of human viruses are all members of different genera within the Parvovirus family, and have very different biology, epidemiology and disease associations from each other. This review will provide an overview of the virological, pathogenic and clinical features of the different human paroviruses, and how these new viruses and their variants fit into the current understanding of parvovirus infection.
Collapse
Affiliation(s)
- Kevin E Brown
- Virus Reference Department, Centre for Infection, Health Protection Agency, London, UK.
| |
Collapse
|
47
|
Chen AY, Cheng F, Lou S, Luo Y, Liu Z, Delwart E, Pintel D, Qiu J. Characterization of the gene expression profile of human bocavirus. Virology 2010; 403:145-54. [PMID: 20457462 PMCID: PMC2879452 DOI: 10.1016/j.virol.2010.04.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/16/2022]
Abstract
We have generated a quantitative transcription profile of human bocavirus type 1 (HBoV1) by transfecting a nearly full-length clone in human lung epithelial A549 cells as well as in a replication competent system in 293 cells. The overall transcription profile of HBoV1 is similar to that of two other members of genus Bocavirus, minute virus of canines and bovine parvovirus 1. In particular, a spliced NS1-transcript that was not recognized previously expressed the large non-structural protein NS1 at approximately 100kDa; and the NP1-encoding transcripts were expressed abundantly. In addition, the protein expression profile of human bocavirus type 2 (HBoV2) was examined in parallel by transfection of a nearly full-length clone in A549 cells, which is similar to that of HBoV1. Moreover, our results showed that, unlike human parvovirus B19 infection, expression of the HBoV1 proteins only does not induce cell cycle arrest and apoptosis of A549 cells.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Sai Lou
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Zhengwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
| | - David Pintel
- Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
48
|
Dhar AK, Kaizer KN, Lakshman DK. Transcriptional analysis of Penaeus stylirostris densovirus genes. Virology 2010; 402:112-20. [PMID: 20381108 DOI: 10.1016/j.virol.2010.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 11/16/2022]
Abstract
Penaeus stylirostris densovirus (PstDNV) genome contains three open reading frames (ORFs), left, middle, and right, which encode a non-structural (NS) protein, an unknown protein, and a capsid protein (CP), respectively. Transcription mapping revealed that P2, P11 and P61 promoters transcribe the left, middle and right ORFs. NS transcript uses the D1/A1 donor/acceptor sites for splicing and has two alternate transcription termination sites (TTS) that were different from the previously predicted TTS. The transcription initiation site (TIS) and the TTS for the middle and the right ORFs conform to predicted sites. PstDNV transcript quantification in infected shrimp revealed that the NS and CP transcripts were expressed at an equivalent level and significantly higher than the middle ORF transcript. In vitro assay showed that P2 had the highest promoter activity followed by P11 and P61. Transcription mapping data provided new insights into PstDNV gene expression strategy.
Collapse
Affiliation(s)
- Arun K Dhar
- Viracine Therapeutics Corporation, 7155-H Columbia Gateway Dr., Columbia, MD 21046, USA.
| | | | | |
Collapse
|
49
|
The capsid proteins of Aleutian mink disease virus activate caspases and are specifically cleaved during infection. J Virol 2009; 84:2687-96. [PMID: 20042496 DOI: 10.1128/jvi.01917-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37 degrees C but not at 31.8 degrees C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV.
Collapse
|
50
|
The small 11 kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood 2009; 115:1070-80. [PMID: 19861680 DOI: 10.1182/blood-2009-04-215756] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human parvovirus B19 (B19V) infection shows a strong erythroid tropism and drastically destroys erythroid progenitor cells, thus leading to most of the disease outcomes associated with B19V infection. In this study, we systematically examined the 3 B19V nonstructural proteins, 7.5 kDa, 11 kDa, and NS1, for their function in inducing apoptosis in transfection of primary ex vivo-expanded erythroid progenitor cells, in comparison with apoptosis induced during B19V infection. Our results show that 11 kDa is a more significant inducer of apoptosis than NS1, whereas 7.5 kDa does not induce apoptosis. Furthermore, we determined that caspase-10, an initiator caspase in death receptor signaling, is the most active caspase in apoptotic erythroid progenitors induced by 11 kDa and NS1 as well as during B19V infection. More importantly, cytoplasm-localized 11 kDa is expressed at least 100 times more than nucleus-localized NS1 at the protein level in primary erythroid progenitor cells infected with B19V; and inhibition of 11 kDa expression using antisense oligos targeting specifically to the 11 kDa-encoding mRNAs reduces apoptosis significantly during B19V infection of erythroid progenitor cells. Taken together, these results demonstrate that the 11 kDa protein contributes to erythroid progenitor cell death during B19V infection.
Collapse
|