1
|
Eigemann J, Janda A, Schuetz C, Lee-Kirsch MA, Schulz A, Hoenig M, Furlan I, Jacobsen EM, Zinngrebe J, Peters S, Drewes C, Siebert R, Rump EM, Führer M, Lorenz M, Pannicke U, Kölsch U, Debatin KM, von Bernuth H, Schwarz K, Felgentreff K. Non-Skewed X-inactivation Results in NF-κB Essential Modulator (NEMO) Δ-exon 5-autoinflammatory Syndrome (NEMO-NDAS) in a Female with Incontinentia Pigmenti. J Clin Immunol 2024; 45:1. [PMID: 39264518 PMCID: PMC11393190 DOI: 10.1007/s10875-024-01799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Genetic hypomorphic defects in X chromosomal IKBKG coding for the NF-κB essential modulator (NEMO) lead to ectodermal dysplasia and immunodeficiency in males and the skin disorder incontinentia pigmenti (IP) in females, respectively. NF-κB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NEMO-NDAS) is a systemic autoinflammatory disease caused by alternative splicing and increased proportion of NEMO-Δex5. We investigated a female carrier presenting with IP and NEMO-NDAS due to non-skewed X-inactivation. METHODS IKBKG transcripts were quantified in peripheral blood mononuclear cells isolated from the patient, her mother, and healthy controls using RT-PCR and nanopore sequencing. Corresponding proteins were analyzed by western blotting and flow cytometry. Besides toll-like receptor (TLR) and tumor necrosis factor (TNF) signaling, the interferon signature, cytokine production and X-inactivation status were investigated. RESULTS IP and autoinflammation with recurrent fever, oral ulcers, hepatitis, and neutropenia, but no immunodeficiency was observed in a female patient. Besides moderately reduced NEMO signaling function, type I interferonopathy, and elevated IL-18 and CXCL10 were found. She and her mother both carried the heterozygous variant c.613 C > T p.(Gln205*) in exon 5 of IKBKG previously reported in NEMO-deficient patients. However, X-inactivation was skewed in the mother, but not in the patient. Alternative splicing led to increased ratios of NEMO-Dex5 over full-length protein in peripheral blood cell subsets causing autoinflammation. Clinical symptoms partially resolved under treatment with TNF inhibitors. CONCLUSION Non-skewed X-inactivation can lead to NEMO-NDAS in females with IP carrying hypomorphic IKBKG variants due to alternative splicing and increased proportions of NEMO-∆ex5.
Collapse
Affiliation(s)
- Jessica Eigemann
- Master's Program of Molecular Medicine, Medical Faculty of Ulm University, Ulm, Germany
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Rump
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Nember of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Klaus Schwarz
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Choi S, Cho N, Kim KK. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp Mol Med 2023; 55:755-766. [PMID: 37009804 PMCID: PMC10167241 DOI: 10.1038/s12276-023-00981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
Cells produce multiple mRNAs through alternative splicing, which ensures proteome diversity. Because most human genes undergo alternative splicing, key components of signal transduction pathways are no exception. Cells regulate various signal transduction pathways, including those associated with cell proliferation, development, differentiation, migration, and apoptosis. Since proteins produced through alternative splicing can exhibit diverse biological functions, splicing regulatory mechanisms affect all signal transduction pathways. Studies have demonstrated that proteins generated by the selective combination of exons encoding important domains can enhance or attenuate signal transduction and can stably and precisely regulate various signal transduction pathways. However, aberrant splicing regulation via genetic mutation or abnormal expression of splicing factors negatively affects signal transduction pathways and is associated with the onset and progression of various diseases, including cancer. In this review, we describe the effects of alternative splicing regulation on major signal transduction pathways and highlight the significance of alternative splicing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Sehrawat S, Garcia-Blanco MA. RNA virus infections and their effect on host alternative splicing. Antiviral Res 2023; 210:105503. [PMID: 36572191 PMCID: PMC9852092 DOI: 10.1016/j.antiviral.2022.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
It is evident that viral infection dramatically alters host gene expression, and these alterations have both pro- and anti-viral functions. While the effects of viral infection on transcription and translation have been comprehensively reviewed, less attention has been paid to the impact on alternative splicing of pre-messenger RNAs. Here we review salient examples of how viral infection leads to changes in alternative splicing and discuss how these changes impact infection.
Collapse
Affiliation(s)
- Sapna Sehrawat
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77550, USA; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
4
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
5
|
Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, Hsu AP, Zilberman-Rudenko J, Cao S, Enos C, Brooks SR, Deng Z, Lin B, de Jesus AA, Hupalo DN, Piotto DG, Terreri MT, Dimitriades VR, Dalgard CL, Holland SM, Goldbach-Mansky R, Siegel RM, Hanson EP. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest 2022; 132:128808. [PMID: 35289316 PMCID: PMC8920334 DOI: 10.1172/jci128808] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Collapse
Affiliation(s)
- Younglang Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Alex W Wessel
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Jiazhi Xu
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Julia G Reinke
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Eries Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Somin M Kim
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jevgenia Zilberman-Rudenko
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Clinton Enos
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel N Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniela Gp Piotto
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victoria R Dimitriades
- Division of Infectious Diseases, Immunology & Allergy University of California Davis Health, Sacramento, California, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research WSJ, Basel, Switzerland
| | - Eric P Hanson
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Bellon M, Yuan Y, Nicot C. Transcription Independent Stimulation of Telomerase Enzymatic Activity by HTLV-I Tax Through Stimulation of IKK. JOURNAL OF CANCER SCIENCES 2021; 8. [PMID: 34938859 PMCID: PMC8691565 DOI: 10.13188/2377-9292.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The persistence and spreading of HTLV-I infected cells relies upon their clonal expansion through cellular replication. The development of adult T cell leukemia (ATLL) occurs decades following primary infection by HTLV-I. Moreover, identical provirus integration sites have been found in samples recovered several years apart from infected individuals. These observations suggest that infected cells persist in the host for an extended period of time. To endure long term proliferation, HTLV-I pre-leukemic cells must acquire critical oncogenic events, two of which are the bypassing of apoptosis and replicative senescence. In the early stages of disease, interleukin-2 (IL-2)/IL-2R signaling likely plays a major role in combination with activation of anti-apoptotic pathways. Avoidance of replicative senescence in HTLV-I infected cells is achieved through reactivation of human telomerase (hTERT). We have previously shown that HTLV-I viral Tax transcriptionally activates the hTERT promoter. In this study we demonstrate that Tax can stimulate hTERT enzymatic activity independently of its transcriptional effects. We further show that this occurs through Tax-mediated NF-KB activating functions. Our results suggest that in ATLL cells acquire Tax-transcriptional and post-transcriptional events to elevate telomerase activity.
Collapse
Affiliation(s)
- M Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Y Yuan
- Department of Pharmacology, Baylor College of Medicine, USA
| | - C Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| |
Collapse
|
7
|
Lark T, Keck F, Narayanan A. Interactions of Alphavirus nsP3 Protein with Host Proteins. Front Microbiol 2018; 8:2652. [PMID: 29375517 PMCID: PMC5767282 DOI: 10.3389/fmicb.2017.02652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Alphaviruses are members of the Togaviridae family and are grouped into two categories: arthritogenic and encephalitic. Arthritogenic alphavirus infections, as the name implies, are associated with arthritic outcomes while encephalitic alphavirus infections can lead to encephalitic outcomes in the infected host. Of the non-structural proteins (nsPs) that the viruses code for, nsP3 is the least understood in terms of function. Alphavirus nsP3s are characterized by regions with significantly conserved domain structure along with regions of high variability. Interactions of nsP3 with several host proteins have been documented including, stress granule-related proteins, dead box proteins, heat shock proteins, and kinases. In some cases, in addition to the interaction, requirement of the interaction to support infection has been demonstrated. An understanding of the proteomic network of nsP3 and the mechanisms by which these interactions support the establishment of a productive infection would make alphavirus nsP3 an interesting target for design of effective medical countermeasures.
Collapse
Affiliation(s)
- Tyler Lark
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Forrest Keck
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Fairfax, VA, United States
| |
Collapse
|
8
|
Amaya M, Keck F, Bailey C, Narayanan A. The role of the IKK complex in viral infections. Pathog Dis 2014; 72:32-44. [PMID: 25082354 PMCID: PMC7108545 DOI: 10.1111/2049-632x.12210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023] Open
Abstract
The NF‐κB signal transduction pathway is a critical regulator of multiple cellular functions that ultimately shift the balance between cell survival and death. The cascade is activated by many intrinsic and extrinsic stimuli, which is transduced via adaptor proteins to phosphorylate the IκB kinase (IKK) complex, which in turn phosphorylates the inhibitory IκBα protein to undergo proteasomal degradation and sets in motion nuclear events in response to the initial stimulus. Viruses are important modulators of the NF‐κB cascade and have evolved multiple mechanisms to activate or inhibit this pathway in a manner conducive to viral multiplication and establishment of a productive infectious cycle. This is a subject of extensive research by multiple laboratories whereby unraveling the interactions between specific viral components and members of the NF‐κB signal transduction cascade can shed unique perspectives on infection associated pathogenesis and novel therapeutic targets. In this review, we highlight the interactions between components of the IKK complex and multiple RNA and DNA viruses with the emphasis on mechanisms by which the interaction feeds the infection. Understanding these interactions will shed light on the exploitative capabilities of viruses to maintain an environment favorable for a productive infection.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
9
|
Amaya M, Voss K, Sampey G, Senina S, de la Fuente C, Mueller C, Calvert V, Kehn-Hall K, Carpenter C, Kashanchi F, Bailey C, Mogelsvang S, Petricoin E, Narayanan A. The role of IKKβ in Venezuelan equine encephalitis virus infection. PLoS One 2014; 9:e86745. [PMID: 24586253 PMCID: PMC3929299 DOI: 10.1371/journal.pone.0086745] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/13/2013] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ(-/-) cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be critically involved in VEEV replication.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Kelsey Voss
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Gavin Sampey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Claudius Mueller
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Valerie Calvert
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Calvin Carpenter
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | | | - Emanuel Petricoin
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
11
|
Liu P, Lu M, Tian B, Li K, Garofalo RP, Prusak D, Wood TG, Brasier AR. Expression of an IKKgamma splice variant determines IRF3 and canonical NF-kappaB pathway utilization in ssRNA virus infection. PLoS One 2009; 4:e8079. [PMID: 19956647 PMCID: PMC2778955 DOI: 10.1371/journal.pone.0008079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-kappaB and IRF3 pathways. Recent work has shown that the IkappaB kinase (IKK)gamma scaffolding protein is the final common adapter protein required by RIG-I.MAVS to activate divergent rate-limiting kinases downstream controlling the NF-kappaB and IRF3 pathways. Previously we discovered a ubiquitous IKKgamma splice-variant, IKKgammaDelta, that exhibits distinct signaling properties. METHODOLOGY/PRINCIPAL FINDINGS We examined the regulation and function of IKKgamma splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKgamma-WT mRNA expression. In IKKgammaDelta-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKgamma-WT. IKKgammaDelta fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I.MAVS or TNFalpha-induced canonical NF-kappaB activation is preserved in IKKgammaDelta expressing cells. Increasing relative levels of IKKgamma-WT to IKKgammaDelta (while keeping total IKKgamma constant) results in increased type I IFN expression. Conversely, overexpressing IKKgammaDelta (in a background of constant IKKgamma-WT expression) shows IKKgammaDelta functions as a dominant-negative IRF3 signaling inhibitor. IKKgammaDelta binds both IKK-alpha and beta, but not TANK and IKKepsilon, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKgammaDelta displaces IKKgammaWT from MAVS explaining its domainant negative effect. CONCLUSIONS/SIGNIFICANCE Relative endogenous IKKgammaDelta expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Muping Lu
- Department of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Bing Tian
- Department of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Kui Li
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Deborah Prusak
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Thomas G. Wood
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Allan R. Brasier
- Department of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Brasier AR. Expanding role of cyclin dependent kinases in cytokine inducible gene expression. Cell Cycle 2008; 7:2661-6. [PMID: 18728388 DOI: 10.4161/cc.7.17.6594] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Positive Transcriptional Elongation Factor b (P-TEFb), a heterodimer of CDK9 and Cyclin T1, is widely implicated in control of basal gene expression. Here, P-TEFb is involved in transitioning paused RNA polymerase II to enter productive transcriptional elongation mode by phosphorylating negative elongation factors and Ser(2) of the heptad repeat in the RNA Pol II COOH terminal domain (CTD). This perspective will examine recent work in two unrelated inducible signaling pathways that illustrate the central role of P-TEFb in mediating cytokine inducible transcription networks. Specifically, P-TEFb has been recently discovered to play a key role in TNF-inducible NFkappaB activation and IL-6-inducible STAT3 signaling. In these signaling cascades, P-TEFb forms protein complexes with the activated nuclear RelA and STAT3 transcription factor in the cellular nucleoplasm, an association important for P-TEFb's promoter targeting. Studies using siRNA-mediated knockdown and/or selective CDK inhibitors show that P-TEFb plays a functional role in activation of a subset of NFkappaB-dependent targets and all STAT3-dependent genes studied to date. Interestingly, cytokine inducible genes that are sensitive to P-TEFb inhibition share an induction mechanism requiring inducible RNA Pol II recruitment. Chromatin immunoprecipitation studies have preliminarily indicated that this recruitment is dependent on CDK enzymatic activity. The potential of inhibiting P-TEFb as an anti-inflammatory therapy in innate immunity and systemic inflammation will be discussed.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA.
| |
Collapse
|
13
|
Leeman JR, Gilmore TD. Alternative splicing in the NF-kappaB signaling pathway. Gene 2008; 423:97-107. [PMID: 18718859 DOI: 10.1016/j.gene.2008.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Activation of transcription factor NF-kappaB can affect the expression of several hundred genes, many of which are involved in inflammation and immunity. The proper NF-kappaB transcriptional response is primarily regulated by post-translational modification of NF-kappaB signaling constituents. Herein, we review the accumulating evidence suggesting that alternative splicing of NF-kappaB signaling components is another means of controlling NF-kappaB signaling. Several alternative splicing events in both the tumor necrosis factor and Toll/interleukin-1 NF-kappaB signaling pathways can inhibit the NF-kappaB response, whereas others enhance NF-kappaB signaling. Alternative splicing of mRNAs encoding some NF-kappaB signaling components can be induced by prolonged exposure to an NF-kappaB-activating signal, such as lipopolysaccharide, suggesting a mechanism for negative feedback to dampen excessive NF-kappaB signaling. Moreover, some NF-kappaB alternative splicing events appear to be specific for certain diseases, and could serve as therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Joshua R Leeman
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
14
|
Liu P, Jamaluddin M, Li K, Garofalo RP, Casola A, Brasier AR. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 2007; 81:1401-11. [PMID: 17108032 PMCID: PMC1797494 DOI: 10.1128/jvi.01740-06] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/08/2006] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viral pathogens causing severe lower respiratory tract infections in infants and young children. Infected host cells detect and respond to RNA viruses using different mechanisms in a cell-type-specific manner, including retinoic acid-inducible gene I (RIG-I)-dependent and Toll-like receptor (TLR)-dependent pathways. Because the relative contributions of these two pathways in the recognition of RSV infection are unknown, we examined their roles in this study. We found that RIG-I helicase binds RSV transcripts within 12 h of infection. Short interfering RNA (siRNA)-mediated RIG-I "knockdown" significantly inhibited early nuclear factor-kappaB (NF-kappaB) and interferon response factor 3 (IRF3) activation 9 h postinfection (p.i.). Consistent with this finding, RSV-induced beta interferon (IFN-beta), interferon-inducible protein 10 (IP-10), chemokine ligand 5 (CCL-5), and IFN-stimulated gene 15 (ISG15) expression levels were decreased in RIG-I-silenced cells during the early phase of infection but not at later times (18 h p.i.). In contrast, siRNA-mediated TLR3 knockdown did not affect RSV-induced NF-kappaB binding but did inhibit IFN-beta, IP-10, CCL-5, and ISG15 expression at late times of infection. Further studies revealed that TLR3 knockdown significantly reduced NF-kappaB/RelA transcription by its ability to block the activating phosphorylation of NF-kappaB/RelA at serine residue 276. We further found that TLR3 induction following RSV infection was regulated by RIG-I-dependent IFN-beta secreted from infected airway epithelial cells and was mediated by both IFN response-stimulated element (ISRE) and signal transducer and activator of transcription (STAT) sites in its proximal promoter. Together these findings indicate distinct temporal roles of RIG-I and TLR3 in mediating RSV-induced innate immune responses, which are coupled to distinct pathways controlling NF-kappaB activation.
Collapse
Affiliation(s)
- Ping Liu
- Departments of Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Transcription factors of the NF-kappaB family regulate hundreds of genes in the context of multiple important physiological and pathological processes. NF-kappaB activation depends on phosphorylation-induced proteolysis of inhibitory IkappaB molecules and NF-kappaB precursors by the ubiquitin-proteasome system. Most of the diverse signaling pathways that activate NF-kappaB converge on IkappaB kinases (IKK), which are essential for signal transmission. Many important details of the composition, regulation and biological function of IKK have been revealed in the last years. This review summarizes current aspects of structure and function of the regular stoichiometric components, the regulatory transient protein interactions of IKK and the mechanisms that contribute to its activation, deactivation and homeostasis. Both phosphorylation and ubiquitinatin (destructive as well as non-destructive) are crucial post-translational events in these processes. In addition to controlling induced IkappaB degradation in the cytoplasm and processing of the NF-kappaB precursor p100, nuclear IKK components have been found to act directly at the chromatin level of induced genes and to mediate responses to DNA damage. Finally, IKK is engaged in cross talk with other pathways and confers functions independently of NF-kappaB.
Collapse
|