1
|
Dongre DS, Saha UB, Saroj SD. Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med 2025; 57:2478317. [PMID: 40096354 PMCID: PMC11915737 DOI: 10.1080/07853890.2025.2478317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND/INTRODUCTION Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation.
Collapse
Affiliation(s)
- Devyani S Dongre
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Ujjayni B Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Nguyen AT, Heitmann GB, Mertens A, Ashraf S, Rahman MZ, Ali S, Rahman M, Arnold BF, Grembi JA, Lin A, Ercumen A, Benjamin-Chung J. Pathways through which water, sanitation, hygiene, and nutrition interventions reduce antibiotic use in young children: a mediation analysis of a cohort nested within a cluster-randomized trial. EClinicalMedicine 2025; 82:103147. [PMID: 40123738 PMCID: PMC11928822 DOI: 10.1016/j.eclinm.2025.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Background Low-cost, household-level water, sanitation, and hygiene (WASH) and nutrition interventions can reduce pediatric antibiotic use, but the mechanism through which interventions reduce antibiotic use has not been investigated. Methods We conducted a causal mediation analysis using data collected between September 2013 and October 2015 from a cohort nested within the WASH Benefits Bangladesh cluster-randomized trial (NCT01590095). Among a subsample of children within the WASH, nutrition, nutrition + WASH, and control arms (N = 1409 children; 267 clusters), we recorded caregiver-reported antibiotic use at ages 14 and 28 months and collected stool at age 14 months. Our primary outcome was any caregiver-reported antibiotic use by index children within the past 30 or 90 days measured at age 14 and 28 months. Mediators included caregiver-reported child diarrhea, acute respiratory infection (ARI), and fever; and enteric pathogen carriage in stool measured by qPCR. Both intervention-mediator and mediator-outcome models were controlled for mediator-outcome confounders. Findings The receipt of any WASH or nutrition intervention reduced caregiver-reported antibiotic use through all pathways in the past month by 5.5 percentage points (95% CI 1.2, 9.9), from 49.5% (95% CI 45.9%, 53.0%) in the control group to 45.0% (95% CI 42.7%, 47.2%) in the pooled intervention group. When separating this effect into different pathways, we found that interventions reduced antibiotic use by 0.6 percentage points (95% CI 0.1, 1.3) through reduced diarrhea, 0.7 percentage points (95% CI 0.1, 1.5) through reduced ARI with fever, and 1.5 percentage points (95% CI 0.4, 3.0) through reduced prevalence of enteric viruses. Interventions reduced antibiotic use through any of these measured mediators by 2.1 percentage points (95% CI -0.3, 4.5). Interpretation WASH and nutrition interventions reduced pediatric antibiotic use through the prevention of enteric and respiratory infections in a rural, low-income population. Given that many of these infections are caused by viruses or parasites, WASH and nutrition interventions may help reduce inappropriate antibiotic use in similar settings. Funding Bill & Melinda Gates Foundation, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Anna T. Nguyen
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Gabby Barratt Heitmann
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Andrew Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sania Ashraf
- Environmental Interventions Unit, Health System and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Md Ziaur Rahman
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Shahjahan Ali
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbub Rahman
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Benjamin F. Arnold
- Francis I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica A. Grembi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Huang L, Dai W, Sun X, Pu Y, Feng J, Jin L, Sun K. Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Microbiol Res 2025; 293:128086. [PMID: 39892320 DOI: 10.1016/j.micres.2025.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/15/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks.
Collapse
Affiliation(s)
- Long Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaoyu Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingting Pu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
4
|
Yu D, Wang T, Zhang L, Gao N, Huang Y, Zhang J, Yan J. Identification of body fluid sources based on microbiome antibiotic resistance genes using high-throughput qPCR. Forensic Sci Int Genet 2025; 77:103241. [PMID: 39983320 DOI: 10.1016/j.fsigen.2025.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Identifying the origin of body fluids is a critical step in forensic investigation. Recently, the development of high-throughput sequencing technology has led to the use of microbiomes for body fluid identification in forensic studies. However, high-throughput sequencing data are difficult to analyze, the sequencing protocol is complicated. An increasing number of studies have focused on antibiotic resistance genes (ARGs) in the human microbiome. The abundance and diversity of ARGs in different parts of the human body can be detected using quantitative polymerase chain reaction (qPCR). To date, no studies have inferred the sources of body fluids based on ARGs. Therefore, we attempted to use ARGs as a tool to infer the origin of body fluids. We assessed the abundance and diversity of 64 ARGs in blood, semen, saliva, vaginal secretions (VS), nasal secretions (NS), and fecal samples using high-throughput qPCR. The results showed that ARGs were more diverse in fecal samples, which was significantly higher than those of other sample types (P < 0.05). Principal coordinate analysis (PCoA) showed that the samples clustered mainly according to their type. We constructed a random forest classification model based on 64 ARGs with a prediction accuracy of 92.68 %. Next, we evaluated the importance of the features in the random forest model (mean decrease accuracy, MDA). Subsequently, we constructed prediction models for the top 40 and 20 ARGs after sorting genes with the highest MDA, and their prediction accuracies were both 92.68 %. The accuracy of the top 10 ARGs was 87.80 %. Notably, when only the top 10 characterized ARGs were used to construct models for saliva, semen, and VS samples, the prediction accuracy reached was 95.24 %. This shows that blood, semen, saliva, NS, VS, and fecal samples can be accurately identified using ARGs. Our results suggest that ARGs are promising markers for forensic body fluid identification.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Yuqing Huang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China.
| |
Collapse
|
5
|
Kwon J, Tanner W, Kong Y, Wade M, Bitler C, Chiavegato MB, Pettigrew MM. Prospective comparison of the digestive tract resistome and microbiota in cattle raised in grass-fed versus grain-fed production systems. mSphere 2025; 10:e0073824. [PMID: 39950811 PMCID: PMC11934311 DOI: 10.1128/msphere.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Most antimicrobials sold in the United States are used in food animals. Farm management practices contribute to antibacterial resistance (AR). Controversially, grass-fed diets have been recommended over grain-fed diets to reduce AR in beef cattle. Ionophore feed additives (non-therapeutic antibiotics that enhance feed efficiency) may contribute to AR development. We used shotgun metagenomic sequencing of fecal swabs to prospectively compare the cattle gastrointestinal resistome and microbiota in two different production systems over five periods from pre-weaning to pre-harvest. Cattle were grass-fed and pasture-raised (system A, n = 33) or grain-fed with ionophore additives in feedlots (system B, n = 34). System A cattle averaged 639 lb and 22.8 months of age, and system B cattle averaged 1,173 lb and 12.4 months of age preharvest. In total, 367 antibiotic resistance genes (ARGs) and 329 bacterial species were identified. The resistome of system A cattle had higher alpha diversity than system B cattle over their lifespan (P = 0.008). Beta-diversity estimates indicated overlap in the pre-weaning resistome and microbiota in both systems, which diverged post-weaning, with increases in several medically important ARGs when system B cattle transitioned to a grain diet. Analysis of compositions of microbiomes with bias correction indicated that levels of tetracycline, macrolide, aminoglycoside, beta-lactam, and bacitracin ARGs were significantly higher in system B cattle pre-harvest. Resistome changes were highly correlated with bacterial community changes (Procrustes, M2 = 0.958; P = 0.001). Potentially modifiable farm management strategies, including diet and ionophores, may influence abundance and diversity of ARGs in fecal samples from cattle.IMPORTANCEAntibiotic resistance is a One Health threat. More antibiotics are used in agriculture than in human medicine. We compared the relative abundance of antibiotic resistance genes (ARGs) and bacterial species in cattle raised in two different cattle production systems (grass- and grain-fed). Fecal swab samples were collected at five time points spanning pre-weaning and prior to harvest. The antibiotic resistance gene and bacterial communities were relatively similar in the pre-weaning period when cattle in both systems were milking and on pasture. Resistance genes and bacterial communities diverged post-weaning when system B cattle were given a grain diet with feed additives for growth promotion containing non-medically important antibiotics (i.e., ionophores). The levels of medically important ARGs (e.g., macrolides) increased in system B grain-fed cattle post-weaning and were higher than in system A just prior to slaughter. These data provide additional evidence that farm management strategies impact the level of antibiotic resistance.
Collapse
Affiliation(s)
- Jiye Kwon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Windy Tanner
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Bioinformatics Resource at the W.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chad Bitler
- Greenacres Foundation Inc., Cincinnati, Ohio, USA
| | - Marilia B. Chiavegato
- Departments of Horticulture and Crop Science and Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Chatrizeh M, Tian J, Rogers M, Feturi F, Wu G, Firek B, Nikonov R, Cass L, Sheppeck A, Ramos-Jiménez RG, Ohja L, Caroll A, Henkel M, Azar J, Aneja RK, Campfield B, Simon D, Morowitz MJ. Plant based enteral nutrition outperforms artificial nutrition in mitigating consequences of antibiotic-induced dysbiosis in mice and humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.19.25323813. [PMID: 40166543 PMCID: PMC11957089 DOI: 10.1101/2025.03.19.25323813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Malnutrition, gut inflammation, and antibiotic induced dysbiosis (AID) are omnipresent risk factors for poor clinical outcomes among critically ill patients. We previously showed that commercially available plant-based enteral nutrition (PBEN) preserves a commensal microbiome when compared to commonly used forms of commercially available artificial enteral nutrition (AEN). This study reveals that PBEN is superior to artificial enteral nutrition (AEN) in recovering from antibiotic-induced dysbiosis (AID) in mice and humans. PBEN effectively mitigates anemia, leukopenia, restores naïve lymphocyte populations, and reduces bone marrow myeloid cell expansion. Animals randomized to PBEN also fared better in response to infectious challenges after antibiotics. A pilot clinical study validated these findings, showing increased gut commensals, reduced pathogens, and improved leukocyte balance in critically ill patients receiving PBEN compared to AEN. These results suggest PBEN offers a practical dietary approach to mitigate antibiotic-associated complications and improve clinical outcomes among hospitalized patients requiring supplemental nutrition.
Collapse
Affiliation(s)
- Mona Chatrizeh
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianmin Tian
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Firuz Feturi
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guojun Wu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roman Nikonov
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Cass
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandra Sheppeck
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Lavnish Ohja
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ali Caroll
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathew Henkel
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Justin Azar
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rajesh K Aneja
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian Campfield
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis Simon
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lead contact
| |
Collapse
|
7
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
8
|
Liang Z, Liang Z, Hu H, Howell K, Fang Z, Zhang P. Food substances alter gut resistome: Mechanisms, health impacts, and food components. Compr Rev Food Sci Food Saf 2025; 24:e70143. [PMID: 40047321 PMCID: PMC11884230 DOI: 10.1111/1541-4337.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 03/09/2025]
Abstract
Antibiotics are effective in treating bacterial infections, but their widespread use has spurred antibiotic resistance, which is linked closely with human disease. While dietary components are known to influence the gut microbiome, specific effects on the gut resistome-the collection of antibiotic-resistant genes in the gut-remain underexplored. This review outlines the mechanisms of antibiotic action and the development of resistance, emphasizing the connection between the gut resistome and human diseases such as metabolic disorders, cardiovascular disease, liver disease, and nervous system disorders. It also discusses the effects of diet habits and dietary components, including bioactive macronutrients, phytochemicals, and probiotics, on the composition of the gut resistome by enhancing antibiotic efficacy and potentially reducing resistance. This review highlights the emerging trend of increasing interest in functional foods aimed at targeting the gut resistome and a growing focus on bioactive plant compounds with the potential to modulate antibiotic resistance.
Collapse
Affiliation(s)
- Ze Liang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zijian Liang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Hang‐Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Pangzhen Zhang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
9
|
Schwartz LT, Ladouceur JG, Russell MM, Xie SYL, Bu S, Kerver JM, Comstock SS. The Relationship Between Fiber Intake and Gut Bacterial Diversity and Composition During the Third Trimester of Pregnancy. Nutrients 2025; 17:773. [PMID: 40077643 PMCID: PMC11901921 DOI: 10.3390/nu17050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES High fiber (34-36 g/day) diets are recommended during pregnancy due to inverse associations with constipation and adverse pregnancy health outcomes, including pre-eclampsia and gestational diabetes. However, the mechanism for this protective effect is poorly defined. Fiber may be protective due to its impact on the composition and function of specific bacteria within the pregnancy gut microbiome. The purpose of this analysis was to investigate whether a sub-sample of cohort study participants in their third trimester met daily dietary fiber and vegetable intake recommendations and, in turn, how this impacted bacterial composition and butyrate-producing genes within the gut microbiome. METHODS Pregnant participants (n = 52) provided stool samples and survey data, which were used to calculate fiber and vegetable intake. Genomic DNA was extracted from the stool samples, followed by PCR to amplify the V4 region of the 16S rRNA gene. Amplicons were sequenced and mapped to the RDP reference. Quantitative real-time PCR was used to measure the abundance of bacterial genes for butyrate production. RESULTS Of the pregnant participants in this sample, 84.7% and 92.3% failed to meet recommendations in the Dietary Guidelines for Americans for dietary fiber and vegetable intake, respectively. All four participants who met the vegetable recommendation were a subset of those who met the fiber recommendation. The participants who met the pregnancy fiber recommendation had gut microbiotas with greater alpha diversity (Shannon and Inverse Simpson) than those who did not. However, there was no association between dietary fiber intake and the abundance of bacterial genes for butyrate production. CONCLUSIONS This research suggests that general fiber intake during pregnancy has a modest association with the gut bacterial community. These preliminary results demonstrate a need to improve fiber intake during pregnancy. Further, studies that measure the relationship between dietary intake of specific types of fiber and associations with specific gut bacterial community members and their functions are needed.
Collapse
Affiliation(s)
- Lindsay T. Schwartz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jillian G. Ladouceur
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Madeleine M. Russell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Shiyi Y. L. Xie
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sihan Bu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Davido B, Merrick B, Kuijper E, Benech N, Biehl LM, Corcione S. How can the gut microbiome be targeted to fight multidrug-resistant organisms? THE LANCET. MICROBE 2025:101063. [PMID: 39983749 DOI: 10.1016/j.lanmic.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
The rise of antimicrobial resistance presents a challenge to public health, undermines the efficacy of antibiotics, and compromises the management of infectious diseases. Gut colonisation by multidrug-resistant organisms, such as multidrug-resistant Enterobacterales and vancomycin-resistant enterococci, is associated with increased morbidity and mortality rates, as well as health-care costs. Of late, the role of the gut microbiome in combating colonisation by multidrug-resistant organisms, which could precede invasive infection, has garnered interest. Innovative interventions, including faecal microbiota transplantation, probiotics, phage therapy, and bacterial consortia, represent potential preventive or therapeutic options to counteract colonisation by multidrug-resistant organisms. In this Personal View, we have synthesised the current findings on these interventions and elucidated their potential as solutions to the crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Benjamin Davido
- Infectious Diseases Department, Raymond-Poincaré University Hospital, AP-HP, Paris-Saclay University, Garches, France.
| | - Blair Merrick
- Clinical Infection and Diagnostics Research Group, Guy's and St Thomas' NHS Foundation Trust and King's College, London, UK
| | - Ed Kuijper
- Center for Microbiota Analysis and Therapeutics, Leiden University Center for Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolas Benech
- Hepato-Gastroenterology Department, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Claude Bernard Lyon 1 University, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Lena M Biehl
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Bonn-Cologne, Cologne, Germany
| | - Silvia Corcione
- Department of Medical Sciences, University of Turin, Torino, Italy; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Almeida-Santos AC, Duarte B, Tedim AP, Teixeira MJ, Prata JC, Azevedo RMS, Novais C, Peixe L, Freitas AR. The healthy human gut can take it all: vancomycin-variable, linezolid-resistant strains and specific bacteriocin-species interplay in Enterococcus spp. Appl Environ Microbiol 2025; 91:e0169924. [PMID: 39699199 PMCID: PMC11784074 DOI: 10.1128/aem.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Enterococcus spp. are opportunistic human pathogens colonizing the human gut and a significant reservoir for the continuous adaptation of hospital clones. However, studies on the features of enterococci species co-colonizing healthy individuals are scarce. We investigated the prevalence, antibiotic resistance, and bacteriocin profiles of Enterococcus species in fecal samples from healthy adults in Portugal using culture-based methods, WGS, and bacteriocin inhibition assays. Results were compared with data from a 2001 study in the same region. Enterococcus spp. (n = 315; 24% MDR) were recovered from all volunteers. Enterococcus lactis was the prevalent species (75%), followed by Enterococcus faecalis (65%) and Enterococcus faecium (47%). E. lactis prevalence increased 2.5-fold since 2001. Linezolid resistance genes (optrA/poxtA) were detected in E. faecium and Enterococcus thailandicus isolates, while a vancomycin-variable E. faecium was also identified. Virulence and plasmid profiles were diverse across species, with evidence of exchange of virulence markers and plasmid replicons between E. faecium and E. lactis. Bacteriocin gene repertoires were extensive and species-specific. Higher numbers of bacteriocin genes were associated with stronger inhibition profiles, and 25% of E. faecium and E. lactis isolates were capable of inhibiting relevant VRE clones. This study unveils the co-occurrence and ecological dynamics of Enterococcus species in the healthy human gut, reinforcing its role as a reservoir for key antibiotic resistance genes and potentially pathogenic strains. The shift toward E. lactis prevalence and the detection of linezolid resistance genes in healthy individuals underscore the need for ongoing surveillance of the gut microbiome to guide public health strategies and antibiotic stewardship efforts.IMPORTANCEThis study highlights the role of Enterococcus species in the healthy human gut, revealing important insights into their prevalence and antibiotic resistance. It emphasizes that the human gut serves as a significant reservoir for antibiotic-resistant strains and shows a notable increase and prevalence of Enterococcus lactis, which has been underappreciated due to identification challenges. The research also underscores the bacteriocins' role in microbial competition, where commensal strains inhibit clinical VRE, potentially aiding the restoration of the gut microbiota, after antibiotic treatment. The findings accentuate the need for ongoing surveillance to track changes in gut bacteria, especially with the emergence of resistance genes to last resort antibiotics. Such monitoring is crucial for shaping public health strategies and managing the growing threat of antibiotic-resistant infections. Profiling bacteriocins at the species and strain level can identify ecological adaptation factors and inform strategies to target high-risk clones.
Collapse
Affiliation(s)
- Ana C. Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana P. Tedim
- Grupo de Investigación Biomédica en Sepsis – BioSepsis, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES, CB22/06/00035), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria J. Teixeira
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, Portugal
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Joana C. Prata
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, Portugal
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Rui M. S. Azevedo
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, Portugal
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, Portugal
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
12
|
Ercumen A, Mertens AN, Butzin-Dozier Z, Jung DK, Ali S, Achando BS, Rao G, Hemlock C, Pickering AJ, Stewart CP, Tan ST, Grembi JA, Benjamin-Chung J, Wolfe M, Ho GG, Rahman MZ, Arnold CD, Dentz HN, Njenga SM, Meerkerk T, Chen B, Nadimpalli M, Islam MA, Hubbard AE, Null C, Unicomb L, Rahman M, Colford JM, Luby SP, Arnold BF, Lin A. Water, sanitation, handwashing, and nutritional interventions can reduce child antibiotic use: evidence from Bangladesh and Kenya. Nat Commun 2025; 16:556. [PMID: 39788996 PMCID: PMC11718192 DOI: 10.1038/s41467-024-55801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Antibiotics can trigger antimicrobial resistance and microbiome alterations. Reducing pathogen exposure and undernutrition can reduce infections and antibiotic use. We assess effects of water, sanitation, handwashing (WSH) and nutrition interventions on caregiver-reported antibiotic use in Bangladesh and Kenya, longitudinally measured at three timepoints among birth cohorts (ages 3-28 months) in a cluster-randomized trial. Over 50% of children used antibiotics at least once in the 90 days preceding data collection. In Bangladesh, the prevalence of antibiotic use was 10-14% lower in groups receiving WSH (prevalence ratio [PR] = 0.90 (0.82-0.99)), nutrition (PR = 0.86 (0.78-0.94)), and nutrition+WSH (PR = 0.86 (0.79-0.93)) interventions. The prevalence of using antibiotics multiple times was 26-35% lower in intervention arms. Reductions were largest when the birth cohort was younger. In Kenya, interventions did not affect antibiotic use. In this work, we show that improving WSH and nutrition can reduce antibiotic use. Studies should assess whether such reductions translate to reduced antimicrobial resistance.
Collapse
Affiliation(s)
- Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
| | - Andrew N Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Zachary Butzin-Dozier
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Da Kyung Jung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Shahjahan Ali
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin Hemlock
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Blum Center for Developing Economies, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christine P Stewart
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Sophia T Tan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica A Grembi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jade Benjamin-Chung
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marlene Wolfe
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gene G Ho
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Md Ziaur Rahman
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Charles D Arnold
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Holly N Dentz
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | | | | | - Belinda Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Maya Nadimpalli
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Alan E Hubbard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Clair Null
- Mathematica Policy Research, Washington, DC, USA
| | - Leanne Unicomb
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin F Arnold
- Francis I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Audrie Lin
- University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
13
|
van Wijk M, Tran HH, Vu BNT, Tacoli C, Nguyen TCT, Pham QD, Nguyen THT, Nguyen TT, Nguyen HAT, Trinh TS, Pham TD, Tran HKT, Vu DTV, Dang DA, Tran TD, Nguyen DT, van Doorn HR, Kesteman T, Lewycka S. Prevalence and determinants of faecal carriage of carbapenem- and third-generation cephalosporin-resistant Enterobacterales: a cross-sectional household survey in northern Vietnam. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 54:101281. [PMID: 39886041 PMCID: PMC11780954 DOI: 10.1016/j.lanwpc.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
Background Antimicrobial resistance (AMR) is a silent pandemic causing 1.27 million deaths in 2019, disproportionately affecting low- and middle-income countries, but resistance among commensal microbiota and the determinants of carriage have not been widely reported. This cross-sectional household study aimed to determine the prevalence of carbapenem-resistant (CRE) and third-generation cephalosporin-resistant Enterobacterales (C3GRE) in a rural community in Ha Nam northern Vietnam, as well as the socio-demographic, behavioural, and environmental determinants of carriage. Methods 1502 individuals across 324 households were surveyed between July 2018 and April 2019. Faecal samples were cultured on meropenem and ceftazidime supplemented media to identify CRE and C3GRE, respectively. Logistic regression models were used to explore risk factors for CRE and C3GRE carriage compared to susceptible strains. Findings Colonisation with C3GRE and CRE was 94.0% (95% Confidence Interval (CI) 93.5%-94.4%) and 1.9% (1.6%-2.2%), respectively. The CRE prevalence was too low to explore determinants. Antibiotic use in the last month (adjusted OR 1.22 [95% CI 0.45-3.31]) and recent illness (aOR 1.48 [0.34-6.51]) were not associated with C3GRE carriage. Variables associated with C3GRE carriage were high-income (OR 0.29 [0.12-0.74]), worse sanitary conditions (aOR 4.35 [1.07-17.43]), and frequent beef consumption (aOR 6.56 [2.16-19.98]). A protective association between C3GRE carriage and animal husbandry was observed in children under 5-years (aOR 0.27 [0.09-0.84]). For participants 5-years and older, chicken consumption was associated with increased likelihood of C3GRE carriage (aOR 3.45 [1.45-8.22]), while a protective association was observed for regular tofu (aOR 0.32 [0.14-0.74]) and fermented food consumption (aOR 0.55 [0.31-0.96]). Interpretation In this high-prevalence setting, colonisation with C3GRE was not associated with individual antibiotic use, while environmental exposures, including food and sanitary conditions, were associated with C3GRE colonisation. Further research is required to understand the mechanisms behind these associations. Funding This work was supported by Oxford University Clinical Research Unit internal grants in Vietnam from the Wellcome Trust Africa Asia Programme core grants (2015-2022-106680/Z/14/Z, and 2022-2029-225167/Z/22/Z).
Collapse
Affiliation(s)
- Max van Wijk
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Faculty of Pharmacy – University of Tours, 31 Avenue Monge, 37200, Tours, France
| | - Hoang Huy Tran
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Bich Ngoc Thi Vu
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Costanza Tacoli
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Tu Cam Thi Nguyen
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Quynh Dieu Pham
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | | | - Trang Thu Nguyen
- Faculty of Pharmacy – University of Tours, 31 Avenue Monge, 37200, Tours, France
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Tung Son Trinh
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Thai Duy Pham
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Huong Kieu Thi Tran
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Dung Tien Viet Vu
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Tien Dac Tran
- Centre for Disease Control, Ha Nam Province, Vietnam
- Department of Health, Ha Nam Province, Vietnam
| | | | - H. Rogier van Doorn
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| | - Thomas Kesteman
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| | - Sonia Lewycka
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| |
Collapse
|
14
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Oliver A, Alkan Z, Stephensen CB, Newman JW, Kable ME, Lemay DG. Diet, Microbiome, and Inflammation Predictors of Fecal and Plasma Short-Chain Fatty Acids in Humans. J Nutr 2024; 154:3298-3311. [PMID: 39173973 PMCID: PMC11600052 DOI: 10.1016/j.tjnut.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Gut microbes produce short-chain fatty acids (SCFAs), which are associated with broad health benefits. However, it is not fully known how diet and/or the gut microbiome could be modulated to improve SCFA production. OBJECTIVES The objective of this study was to identify dietary, inflammatory, and/or microbiome predictors of SCFAs in a cohort of healthy adults. METHODS SCFAs were measured in fecal and plasma samples from 359 healthy adults in the United States Department of Agriculture Nutritional Phenotyping Study. Habitual and recent diet was assessed using a Food Frequency Questionnaire and Automated Self-Administered 24-h Dietary Assesment Tool dietary recalls. Markers of systemic and gut inflammation were measured in fecal and plasma samples. The gut microbiome was assessed using shotgun metagenomics. Using statistics and machine learning, we determined how the abundance and composition of SCFAs varied with measures of diet, inflammation, and the gut microbiome. RESULTS We show that fecal pH may be a good proxy for fecal SCFA abundance. A higher Healthy Eating Index for a habitual diet was associated with a compositional increase in fecal butyrate relative to acetate and propionate. SCFAs were associated with markers of subclinical gastrointestinal (GI) inflammation. Fecal SCFA abundance was inversely related to plasma lipopolysaccharide-binding protein. When we analyzed hierarchically organized diet and microbiome data with taxonomy-aware algorithms, we observed that diet and microbiome features were far more predictive of fecal SCFA abundances compared to plasma SCFA abundances. The top diet and microbiome predictors of fecal butyrate included potatoes and the thiamine biosynthesis pathway, respectively. CONCLUSIONS These results suggest that resistant starch in the form of potatoes and microbially produced thiamine provide a substrate and essential cofactor, respectively, for butyrate synthesis. Thiamine may be a rate-limiting nutrient for butyrate production in adults. Overall, these findings illustrate the complex biology underpinning SCFA production in the gut. This trial was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Andrew Oliver
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States
| | - Zeynep Alkan
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States
| | - Charles B Stephensen
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - John W Newman
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States; Genome Center, University of California, Davis, CA, United States
| | - Mary E Kable
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Danielle G Lemay
- USDA-Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States; Genome Center, University of California, Davis, CA, United States.
| |
Collapse
|
16
|
Wilson SM, Oliver A, Larke JA, Naveja JJ, Alkan Z, Awika JM, Stephensen CB, Lemay DG. Fine-Scale Dietary Polyphenol Intake Is Associated with Systemic and Gastrointestinal Inflammation in Healthy Adults. J Nutr 2024; 154:3286-3297. [PMID: 39163972 DOI: 10.1016/j.tjnut.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Polyphenols are dietary bioactive compounds, many of which have anti-inflammatory properties. However, information on the intake of dietary polyphenols at the class and compound levels and their associations with gastrointestinal (GI) and systemic inflammation is lacking. OBJECTIVES Estimate dietary polyphenol intake in healthy adults and examine its relationship with GI and systemic inflammation markers. METHODS Healthy adults (n = 350) completed the United States Department of Agriculture Nutritional Phenotyping Study, an observational, cross-sectional study balanced for age, sex, and body mass index. Dietary intake, assessed via multiple 24-h recalls, was ingredientized and mapped to FooDB, a comprehensive food composition database. Dietary polyphenol intake (total, class, compound) was estimated and examined for its relationship to GI and systemic inflammation markers using linear models and random forest regressions. RESULTS Mean total polyphenol intake was ∼914 mg/1000 kcal/d with flavonoids as the greatest class contributor (495 mg/1000 kcal/d). Tea, coffee, and fruits were among the largest food contributors to polyphenol intake. Total polyphenol intake was negatively associated with the GI inflammation marker, fecal calprotectin (β = -0.004, P = 0.04). At the class level, polyphenols categorized as prenol lipids (β = -0.94, P < 0.01) and phenylpropanoic acids (β = -0.92, P < 0.01) were negatively associated with plasma lipopolysaccharide-binding protein, a proxy for GI permeability. Food sources of these two classes included mainly olive products. We further detected a positive association between C-reactive protein and polyphenols in the "cinnamic acids and derivatives" class using hierarchical feature engineering and random forest modeling. CONCLUSIONS Even in healthy adults, dietary polyphenol intake was negatively associated with GI inflammation and intake of prenol lipids and phenylpropanoic acids was negatively associated with GI permeability. Relationships between polyphenol intake and inflammatory outcomes varied with the resolution-total, class, compound-of polyphenol intake, suggesting a nuanced impact of polyphenols on GI and systemic inflammation. This trial was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Stephanie Mg Wilson
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States; Texas A&M AgriLife Research, Institute for Advancing Health Through Agriculture, College Station, TX, United States
| | - Andrew Oliver
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States
| | - Jules A Larke
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States
| | - José J Naveja
- 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Zeynep Alkan
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States
| | - Joseph M Awika
- Texas A&M AgriLife Research, Institute for Advancing Health Through Agriculture, College Station, TX, United States
| | - Charles B Stephensen
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Danielle G Lemay
- United States Department of Food and Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
17
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
18
|
Rusic D, Kumric M, Seselja Perisin A, Leskur D, Bukic J, Modun D, Vilovic M, Vrdoljak J, Martinovic D, Grahovac M, Bozic J. Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence. Microorganisms 2024; 12:842. [PMID: 38792673 PMCID: PMC11123121 DOI: 10.3390/microorganisms12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance is recognised as one of the top threats healthcare is bound to face in the future. There have been various attempts to preserve the efficacy of existing antimicrobials, develop new and efficient antimicrobials, manage infections with multi-drug resistant strains, and improve patient outcomes, resulting in a growing mass of routinely available data, including electronic health records and microbiological information that can be employed to develop individualised antimicrobial stewardship. Machine learning methods have been developed to predict antimicrobial resistance from whole-genome sequencing data, forecast medication susceptibility, recognise epidemic patterns for surveillance purposes, or propose new antibacterial treatments and accelerate scientific discovery. Unfortunately, there is an evident gap between the number of machine learning applications in science and the effective implementation of these systems. This narrative review highlights some of the outstanding opportunities that machine learning offers when applied in research related to antimicrobial resistance. In the future, machine learning tools may prove to be superbugs' kryptonite. This review aims to provide an overview of available publications to aid researchers that are looking to expand their work with new approaches and to acquaint them with the current application of machine learning techniques in this field.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Josipa Bukic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Department of Maxillofacial Surgery, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
19
|
Xu X, Feng Q, Zhang T, Gao Y, Cheng Q, Zhang W, Wu Q, Xu K, Li Y, Nguyen N, Taft DH, Mills DA, Lemay DG, Zhu W, Mao S, Zhang A, Xu K, Liu J. Infant age inversely correlates with gut carriage of resistance genes, reflecting modifications in microbial carbohydrate metabolism during early life. IMETA 2024; 3:e169. [PMID: 38882494 PMCID: PMC11170968 DOI: 10.1002/imt2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024]
Abstract
The infant gut microbiome is increasingly recognized as a reservoir of antibiotic resistance genes, yet the assembly of gut resistome in infants and its influencing factors remain largely unknown. We characterized resistome in 4132 metagenomes from 963 infants in six countries and 4285 resistance genes were observed. The inherent resistome pattern of healthy infants (N = 272) could be distinguished by two stages: a multicompound resistance phase (Months 0-7) and a tetracycline-mupirocin-β-lactam-dominant phase (Months 8-14). Microbial taxonomy explained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%) harboring the most resistance genes. In a further analysis with all available infants (N = 963), we found age was the strongest influencer on the resistome and was negatively correlated with the overall resistance during the first 3 years (p < 0.001). Using a random-forest approach, a set of 34 resistance genes could be used to predict age (R 2 = 68.0%). Leveraging microbial host inference analyses, we inferred the age-dependent assembly of infant resistome was a result of shifts in the gut microbiome, primarily driven by changes in taxa that disproportionately harbor resistance genes across taxa (e.g., Escherichia coli more frequently harbored resistance genes than other taxa). We performed metagenomic functional profiling and metagenomic assembled genome analyses whose results indicate that the development of gut resistome was driven by changes in microbial carbohydrate metabolism, with an increasing need for carbohydrate-active enzymes from Bacteroidota and a decreasing need for Pseudomonadota during infancy. Importantly, we observed increased acquired resistance genes over time, which was related to increased horizontal gene transfer in the developing infant gut microbiome. In summary, infant age was negatively correlated with antimicrobial resistance gene levels, reflecting a composition shift in the gut microbiome, likely driven by the changing need for microbial carbohydrate metabolism during early life.
Collapse
Affiliation(s)
- Xinming Xu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition Fudan University Shanghai China
| | - Qingying Feng
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
- Biological Engineering Division Massachusetts Institute of Technology (MIT) Cambridge Massachusetts USA
| | - Tao Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Yunlong Gao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Qu Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wanqiu Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Qinglong Wu
- Department of Pathology and Immunology Baylor College of Medicine Houston Texas USA
| | - Ke Xu
- Department of Statistics University of Chicago Chicago Illinois
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute Fudan University Shanghai China
| | - Nhu Nguyen
- Department of Food Science and Technology University of California, Davis Davis California USA
| | - Diana H Taft
- Department of Food Science and Technology University of California, Davis Davis California USA
| | - David A Mills
- Department of Food Science and Technology University of California, Davis Davis California USA
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science University of California, Davis Davis California USA
| | - Danielle G Lemay
- USDA ARS Western Human Nutrition Research Center Davis California USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu China
| | - Kelin Xu
- Department of Biostatistics, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health Fudan University Shanghai China
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science & Technology Nanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| |
Collapse
|
20
|
Zhang T, Mu Y, Gao Y, Tang Y, Mao S, Liu J. Fecal microbial gene transfer contributes to the high-grain diet-induced augmentation of aminoglycoside resistance in dairy cattle. mSystems 2024; 9:e0081023. [PMID: 38085089 PMCID: PMC10805029 DOI: 10.1128/msystems.00810-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
A high-grain (HG) diet can rapidly lower the rumen pH and thus modify the gastrointestinal microbiome in dairy cattle. Although the prevalence of antibiotic resistance is strongly linked with the gut microbiome, the influences of HG diet on animals' gut resistome remain largely unexplored. Here, we examined the impact and mechanism of an HG diet on the fecal resistome in dairy cattle by metagenomically characterizing the gut microbiome. Eight lactating Holstein cattle were randomly allocated into two groups and fed either a conventional (CON) or HG diet for 3 weeks. The fecal microbiome and resistome were significantly altered in dairy cattle from HG, demonstrating an adaptive response that peaks at day 14 after the dietary transition. Importantly, we determined that feeding an HG diet specifically elevated the prevalence of resistance to aminoglycosides (0.11 vs 0.24 RPKG, P < 0.05). This diet-induced resistance increase is interrelated with the disproportional propagation of microbes in Lachnospiraceae, indicating a potential reservoir of aminoglycosides resistance. We further showed that the prevalence of acquired resistance genes was also modified by introducing a different diet, likely due to the augmented frequency of lateral gene transfer (LGT) in microbes (CON vs HG: 254 vs 287 taxa) such as Lachnospiraceae. Consequently, we present that diet transition is associated with fecal resistome modification in dairy cattle and an HG diet specifically enriched aminoglycosides resistance that is likely by stimulating microbial LGT.IMPORTANCEThe increasing prevalence of antimicrobial resistance is one of the most severe threats to public health, and developing novel mitigation strategies deserves our top priority. High-grain (HG) diet is commonly applied in dairy cattle to enhance animals' performance to produce more high-quality milk. We present that despite such benefits, the application of an HG diet is correlated with an elevated prevalence of resistance to aminoglycosides, and this is a combined effect of the expansion of antibiotic-resistant bacteria and increased frequency of lateral gene transfer in the fecal microbiome of dairy cattle. Our results provided new knowledge in a typically ignored area by showing an unexpected enrichment of antibiotic resistance under an HG diet. Importantly, our findings laid the foundation for designing potential dietary intervention strategies to lower the prevalence of antibiotic resistance in dairy production.
Collapse
Affiliation(s)
- Tao Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingyu Mu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunlong Gao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yijun Tang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jinxin Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Silva Lagos L, Klostermann CE, López-Velázquez G, Fernández-Lainez C, Leemhuis H, Oudhuis AACML, Buwalda P, Schols HA, de Vos P. Crystal type, chain length and polydispersity impact the resistant starch type 3 immunomodulatory capacity via Toll-like receptors. Carbohydr Polym 2024; 324:121490. [PMID: 37985084 DOI: 10.1016/j.carbpol.2023.121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Food ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research. Resistant starches (RSs) can resist enzymes in the upper gastrointestinal (GI) tract and induce health benefits. RS-3 physicochemical characteristics such as chain length (DP), A- or B-type crystal, and polydispersity index (PI) might be crucial for immunomodulation by activating human toll-like receptors (hTLRs). We hypothesize that crystal type, DP and PI, alone or in combination, impact the recognition of RS-3 preparations by hTLRs leading to different RS-3 immunomodulatory effects. We studied the activation of hTLR2, hTLR4, and hTLR5 by 0.5, 1 and 2 mg/mL of RS-3. We found strong activation of hTLR2-dependent NF-kB activation with PI <1.25, DP 18 as an A- or B-type crystal. At different doses, NF-kB activation was increased from 6.8 to 7.1 and 10-fold with A-type and 6.2 to 10.2 and 14.4-fold with B-type. This also resulted in higher cytokine production in monocytes. Molecular docking, using amylose-A and B, demonstrated that B-crystals bind hTLR2 promoting hTLR2-1 dimerization, supporting the stronger effects of B-type crystals. Immunomodulatory effects of RS-3 are predominantly hTLR2-dependent, and activation can be tailored by managing crystallinity, chain length, and PI.
Collapse
Affiliation(s)
- Luis Silva Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | | | - Piet Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
23
|
Oliver A, Kay M, Lemay DG. TaxaHFE: a machine learning approach to collapse microbiome datasets using taxonomic structure. BIOINFORMATICS ADVANCES 2023; 3:vbad165. [PMID: 38046097 PMCID: PMC10689668 DOI: 10.1093/bioadv/vbad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Motivation Biologists increasingly turn to machine learning models not just to predict, but to explain. Feature reduction is a common approach to improve both the performance and interpretability of models. However, some biological datasets, such as microbiome data, are inherently organized in a taxonomy, but these hierarchical relationships are not leveraged during feature reduction. We sought to design a feature engineering algorithm to exploit relationships in hierarchically organized biological data. Results We designed an algorithm, called TaxaHFE, to collapse information-poor features into their higher taxonomic levels. We applied TaxaHFE to six previously published datasets and found, on average, a 90% reduction in the number of features (SD = 5.1%) compared to using the most complete taxonomy. Using machine learning to compare the most resolved taxonomic level (i.e. species) against TaxaHFE-preprocessed features, models based on TaxaHFE features achieved an average increase of 3.47% in receiver operator curve area under the curve. Compared to other hierarchical feature engineering implementations, TaxaHFE introduces the novel ability to consider both categorical and continuous response variables to inform the feature set collapse. Importantly, we find TaxaHFE's ability to reduce hierarchically organized features to a more information-rich subset increases the interpretability of models. Availability and implementation TaxaHFE is available as a Docker image and as R code at https://github.com/aoliver44/taxaHFE.
Collapse
Affiliation(s)
- Andrew Oliver
- USDA-ARS Western Human Nutrition Research Center, Davis, CA 95616, United States
| | - Matthew Kay
- Independent Researcher, Washington, DC 20002, United States
| | - Danielle G Lemay
- USDA-ARS Western Human Nutrition Research Center, Davis, CA 95616, United States
- Department of Nutrition, University of California, Davis, Davis, CA 95616, United States
- Genome Center, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
24
|
Goh SG, Haller L, Ng C, Charles FR, Jitxin L, Chen H, He Y, Gin KYH. Assessing the additional health burden of antibiotic resistant Enterobacteriaceae in surface waters through an integrated QMRA and DALY approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132058. [PMID: 37459761 DOI: 10.1016/j.jhazmat.2023.132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Antibiotic resistant Enterobacteriaceae pose a significant threat to public health. However, limited studies have evaluated the health risks associated with exposure to antibiotic-resistant bacteria (ARB), especially in natural environments. While quantitative microbial risk assessment (QMRA) assesses microbial risks in terms of the probability of infection, it does not account for the severity of health outcomes. In this study, a QMRA-DALY model was developed to integrate QMRA with health burden (disability-adjusted life years (DALY)) from infections caused by ARB. The model considers uncertainties in probability of infection and health burden assessment using Monte Carlo simulations. The study collected antimicrobial resistance (AMR) surveillance data from surface waters with different land uses. Results revealed water bodies with agricultural land use to be the main AMR hotspots, with the highest additional health burden observed in infections caused by meropenem-resistant E. coli (∆DALY = 0.0105 DALY/event) compared to antibiotic-susceptible E. coli. The estimated ∆DALY for antibiotic-resistant K. pneumoniae was lower than for antibiotic-resistant E. coli (highest ∆DALY = 0.00048 DALY/event). The study highlights the need for better evaluation of AMR associated health burden, and effective measures to mitigate the risks associated with antibiotic-resistant bacteria in natural environments.
Collapse
Affiliation(s)
- Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Laurence Haller
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Francis Rathinam Charles
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Lim Jitxin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hongjie Chen
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
25
|
Bouzid YY, Chin EL, Spearman SS, Alkan Z, Stephensen CB, Lemay DG. No Associations between Dairy Intake and Markers of Gastrointestinal Inflammation in Healthy Adult Cohort. Nutrients 2023; 15:3504. [PMID: 37630694 PMCID: PMC10459578 DOI: 10.3390/nu15163504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dairy products are a good source of essential nutrients and past reviews have shown associations of dairy consumption with decreased systemic inflammation. Links between dairy intake and gastrointestinal (GI) inflammation are under-investigated. Therefore, we examined associations between reported dairy intake and markers of GI inflammation in healthy adults in a cross-sectional observational study, hypothesizing a negative association with yogurt intake, suggesting a protective effect, and no associations with total dairy, fluid milk, and cheese intake. Participants completed 24-h dietary recalls and a food frequency questionnaire (FFQ) to assess recent and habitual intake, respectively. Those who also provided a stool sample (n = 295), and plasma sample (n = 348) were included in analysis. Inflammation markers from stool, including calprotectin, neopterin, and myeloperoxidase, were measured along with LPS-binding protein (LBP) from plasma. Regression models tested associations between dairy intake variables and inflammation markers with covariates: age, sex, and body mass index (BMI). As yogurt is episodically consumed, we examined differences in inflammation levels between consumers (>0 cup equivalents/day reported in recalls) and non-consumers. We found no significant associations between dairy intake and markers of GI inflammation. In this cohort of healthy adults, dairy intake was not associated with GI inflammation.
Collapse
Affiliation(s)
- Yasmine Y. Bouzid
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Elizabeth L. Chin
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sarah S. Spearman
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Zeynep Alkan
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Charles B. Stephensen
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Danielle G. Lemay
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
26
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Lundstrom K, Barh D, Azevedo V, Sabri NA. Associations between Nutrigenomic Effects and Incidences of Microbial Resistance against Novel Antibiotics. Pharmaceuticals (Basel) 2023; 16:1093. [PMID: 37631008 PMCID: PMC10458141 DOI: 10.3390/ph16081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.
Collapse
Affiliation(s)
- Mohamed A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Sara A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Eslam M. Shehata
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Amr S. Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 11566, Egypt;
| | | | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt
| |
Collapse
|
27
|
Fredriksen S, de Warle S, van Baarlen P, Boekhorst J, Wells JM. Resistome expansion in disease-associated human gut microbiomes. MICROBIOME 2023; 11:166. [PMID: 37507809 PMCID: PMC10386251 DOI: 10.1186/s40168-023-01610-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. However, the consistency of resistome associations with antibiotic- and non-antibiotic-treated diseases has not been established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link between disease and the resistome. RESULTS The human gut resistome is highly variable between individuals both within and between studies, but may also vary significantly between case and control groups even in the absence of large taxonomic differences. We found that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-associated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are not treated with antibiotics, such as colorectal cancer. CONCLUSIONS Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-associated strains. Video Abstract.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| | - Stef de Warle
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
28
|
Theophilus RJ, Taft DH. Antimicrobial Resistance Genes (ARGs), the Gut Microbiome, and Infant Nutrition. Nutrients 2023; 15:3177. [PMID: 37513595 PMCID: PMC10383493 DOI: 10.3390/nu15143177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The spread of antimicrobial resistance genes (ARGs) is a major public health crisis, with the ongoing spread of ARGs leading to reduced efficacy of antibiotic treatments. The gut microbiome is a key reservoir for ARGs, and because diet shapes the gut microbiome, diet also has the potential to shape the resistome. This diet-gut microbiome-resistome relationship may also be important in infants and young children. This narrative review examines what is known about the interaction between the infant gut microbiome, the infant resistome, and infant nutrition, including exploring the potential of diet to mitigate infant ARG carriage. While more research is needed, diet has the potential to reduce infant and toddler carriage of ARGs, an important goal as part of maintaining the efficacy of available antibiotics and preserving infant and toddler health.
Collapse
Affiliation(s)
- Rufus J Theophilus
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Diana Hazard Taft
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Wei H, Wu D, Zheng M, Wang W, Wang D. Elucidating the role of two types of essential oils in regulating antibiotic resistance in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131443. [PMID: 37094440 DOI: 10.1016/j.jhazmat.2023.131443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although several approaches for reducing antibiotic resistance genes (ARGs) in soil have been proposed, the application of environmentally friendly approaches is now attracting much more attention. In the present study, two types of essential oils (EOs), namely lavender essential oil (LEO) and oregano essential oil (OEO), were selected to investigate their roles in regulating ARGs in soil. In a 28-day microcosm experiment, it was found that the different types and doses of EOs significantly changed the composition of microbial communities. The LEO treatments enriched more taxa belonging to Actinobacteria than the control, whereas the low dose of OEO reduced Actinobacteria enrichment. Besides, the control and the treatments with a high dose of LEO and OEO all significantly enriched the functional pathways related to Human Diseases, which were positively associated with ARGs. However, the low dose of these EOs helped to reduce the pathways. Because of inhibition of the functional pathways and ARG hosts, the low dose of OEO reduce the ARGs related to antibiotic efflux by 71.8% and the resistance genes to multidrug by 56.4%, but these roles did not occur in LEO treatments. These outcomes provide practical and theoretical support for the application of EOs in remediating ARG-contaminated soils.
Collapse
Affiliation(s)
- Huawei Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Dong Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingying Zheng
- Guizhou Province Bureau of Geology and Mineral Exploration and Development, Guiyang 550004, PR China
| | - Wanjin Wang
- Guizhou Province Bureau of Geology and Mineral Exploration and Development, Guiyang 550004, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
30
|
Snodgrass RG, Jiang X, Stephensen CB, Laugero KD. Cumulative physiological stress is associated with age-related changes to peripheral T lymphocyte subsets in healthy humans. Immun Ageing 2023; 20:29. [PMID: 37353855 DOI: 10.1186/s12979-023-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Progressive age-associated change in frequencies and functional capacities of immune cells is known as immunosenescence. Despite data linking chronic environmental, physiological, and psychosocial stressors with accelerated aging, how stress contributes to immunosenesence is not well characterized. OBJECTIVE To help delineate the contribution of cumulative physiological stress on immunosensence we assessed relationships between a composite measurement of cumulative physiological stress, reflecting the functioning of the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, cardiovascular system, and metabolic processes, and lymphocyte changes typically affiliated with aging in a cohort of healthy volunteers ranging from 18 to 66 y. RESULTS Physiological stress load positively correlated with subject age in the study cohort and was significantly higher in adults 50-66 y compared to adults 18-33 y and 34-49 y. Using physiological stress load, we identified a significant age-dependent association between stress load and frequencies of circulating regulatory T lymphocytes (Tregs). Frequencies were higher in younger participants, but only in participants exhibiting low physiological stress load. As stress load increased, frequencies of Tregs decreased in young participants but were unchanged with increasing stress load in middle and older age individuals. Follow-up analysis of stress load components indicated lower circulating DHEA-S and higher urinary norepinephrine as the primary contributors to the effects of total stress load on Tregs. In addition, we identified age-independent inverse associations between stress load and frequencies of naïve Tregs and naïve CD4 T cells and positive associations between stress load and frequencies of memory Tregs and memory CD4 T cells. These associations were primarily driven by stress load components waist circumference, systolic and diastolic blood pressure, CRP, and HbA1c. In summary, our study results suggest that, in younger people, physiological stress load may diminish regulatory T cell frequencies to levels seen in older persons. Furthermore, independent of age, stress load may contribute to contraction of the naïve Treg pool and accumulation of memory Treg cells. CLINICAL TRIAL Registered on ClincialTrials.gov (Identifier: NCT02367287).
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Immunity and Disease Prevention Research Unit, United States Department of Agriculture-Agricultural Research Services, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.
- Department of Nutrition, University of California Davis, Davis, CA, USA.
| | - Xiaowen Jiang
- Immunity and Disease Prevention Research Unit, United States Department of Agriculture-Agricultural Research Services, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Charles B Stephensen
- Immunity and Disease Prevention Research Unit, United States Department of Agriculture-Agricultural Research Services, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Kevin D Laugero
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Services, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| |
Collapse
|
31
|
Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M, Prossomariti D, Shawcross DL, Goldenberg SD. Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)-A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238-254. [PMID: 37218816 DOI: 10.3390/idr15030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Chrysi Sergaki
- Diagnostics R&D, Medicines and Healthcare Products Regulatory Agency (MHRA), Potters Bar EN6 3QG, UK
| | - Lindsey Edwards
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 1UK, UK
| | - Michael Kertanegara
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Désirée Prossomariti
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| |
Collapse
|
32
|
Holowka T, van Duin D, Bartelt LA. Impact of childhood malnutrition and intestinal microbiota on MDR infections. JAC Antimicrob Resist 2023; 5:dlad051. [PMID: 37102119 PMCID: PMC10125725 DOI: 10.1093/jacamr/dlad051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The global burden of infection from MDR organisms (MDROs) disproportionately affects children residing in low- and middle-income countries and those with increased healthcare exposure. These populations have high rates of malnutrition making them increasingly vulnerable to infection with intestinal-derived pathogens. Malnourished children experience increased incidence of intestinal carriage and invasive infection with intestinal-derived MDROs including ESBL- and carbapenemase-producing Enterobacterales. However, the relationship between malnutrition and MDRO infection remains to be clearly defined. Impairment in intestinal barrier function and innate and adaptive immunity in malnutrition increases the risk for infection with intestinal-derived pathogens, and there is an increasing appreciation of the role of the intestinal microbiota in this process. Current evidence from human studies and animal models suggests that diet and the intestinal microbiota influence each other to determine nutritional status, with important implications for infectious outcomes. These insights are crucial to developing microbiota-targeted strategies aimed at reversing the growing burden of MDRO infections in malnourished populations worldwide.
Collapse
Affiliation(s)
- Thomas Holowka
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - David van Duin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Alverdy JC. Rationale for Colonic Pre-Habilitation Prior to Restoration of Gastrointestinal Continuity. Surg Infect (Larchmt) 2023; 24:265-270. [PMID: 37010975 PMCID: PMC10061335 DOI: 10.1089/sur.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The emergence of the gut microbiome as a complex ecosystem that plays a key role in human heath and disease has touched virtually every aspect of medical and surgical care. With the advent of next-generation technology to interrogate the microbiome at the level of its membership, community structure and production of metabolites, applying measures by which the gut microbiome can be manipulated to the advantage of both the patient and provider is now possible. Among the many proposed methods, the most practical and promising is dietary pre-habilitation of the gut microbiome prior to high-risk anastomotic surgery. In this review, we will outline the scientific rationale and molecular underpinning that support dietary pre-habilitation as a practical and deliverable method to prevent complications after high-risk anastomotic surgery.
Collapse
Affiliation(s)
- John C. Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Bonin N, Doster E, Worley H, Pinnell LJ, Bravo JE, Ferm P, Marini S, Prosperi M, Noyes N, Morley PS, Boucher C. MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Res 2023; 51:D744-D752. [PMID: 36382407 PMCID: PMC9825433 DOI: 10.1093/nar/gkac1047] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is considered a critical threat to public health, and genomic/metagenomic investigations featuring high-throughput analysis of sequence data are increasingly common and important. We previously introduced MEGARes, a comprehensive AMR database with an acyclic hierarchical annotation structure that facilitates high-throughput computational analysis, as well as AMR++, a customized bioinformatic pipeline specifically designed to use MEGARes in high-throughput analysis for characterizing AMR genes (ARGs) in metagenomic sequence data. Here, we present MEGARes v3.0, a comprehensive database of published ARG sequences for antimicrobial drugs, biocides, and metals, and AMR++ v3.0, an update to our customized bioinformatic pipeline for high-throughput analysis of metagenomic data (available at MEGLab.org). Database annotations have been expanded to include information regarding specific genomic locations for single-nucleotide polymorphisms (SNPs) and insertions and/or deletions (indels) when required by specific ARGs for resistance expression, and the updated AMR++ pipeline uses this information to check for presence of resistance-conferring genetic variants in metagenomic sequenced reads. This new information encompasses 337 ARGs, whose resistance-conferring variants could not previously be confirmed in such a manner. In MEGARes 3.0, the nodes of the acyclic hierarchical ontology include 4 antimicrobial compound types, 59 resistance classes, 233 mechanisms and 1448 gene groups that classify the 8733 accessions.
Collapse
Affiliation(s)
- Nathalie Bonin
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Enrique Doster
- VERO Program, Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Hannah Worley
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Lee J Pinnell
- VERO Program, Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Jonathan E Bravo
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Peter Ferm
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Simone Marini
- Data Intelligence Systems Lab, Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mattia Prosperi
- Data Intelligence Systems Lab, Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Noelle Noyes
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Paul S Morley
- VERO Program, Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Samarra A, Esteban-Torres M, Cabrera-Rubio R, Bernabeu M, Arboleya S, Gueimonde M, Collado MC. Maternal-infant antibiotic resistance genes transference: what do we know? Gut Microbes 2023; 15:2194797. [PMID: 37020319 PMCID: PMC10078139 DOI: 10.1080/19490976.2023.2194797] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Resistance to antibiotics is becoming a worldwide threat as infections caused by multidrug-resistant pathogenic microorganisms can overcome antibiotic treatments and spread quickly in the population. In the context of early life, newborns are at increased risk as their immune system is still under development, so infections and acquisition of resistance during childhood have short- and long-term consequences for the health. The moment of birth is the first exposure of infants to possible antibiotic-resistant microorganisms that may colonize their gut and other body sites. Different factors including mode of delivery, previous antibiotic exposure of the mother, gestational age and consumption of antibiotics in early-life have been described to modulate the neonate's microbiota, and thus, the resistome. Other factors, such as lactation, also impact the establishment and development of gut microbiota, but little is known about the role of breastmilk in transferring Antibiotic Resistant Genes (ARG). A deeper understanding of vertical transmission of antibiotic resistance from mothers to their offspring is necessary to determine the most effective strategies for reducing antibiotic resistance in the early life. In this review, we aim to present the current perspective on antibiotic resistances in mother-infant dyads, as well as a new insight on the study of the human gut and breastmilk resistome, and current strategies to overcome this public health problem, toward highlighting the gaps of knowledge that still need to be closed.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Esteban-Torres
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
36
|
Larke JA, Bacalzo N, Castillo JJ, Couture G, Chen Y, Xue Z, Alkan Z, Kable ME, Lebrilla CB, Stephensen CB, Lemay DG. Dietary Intake of Monosaccharides from Foods is Associated with Characteristics of the Gut Microbiota and Gastrointestinal Inflammation in Healthy US Adults. J Nutr 2023; 153:106-119. [PMID: 36913444 PMCID: PMC10196574 DOI: 10.1016/j.tjnut.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Current assessment of dietary carbohydrates does not adequately reflect the nutritional properties and effects on gut microbial structure and function. Deeper characterization of food carbohydrate composition can serve to strengthen the link between diet and gastrointestinal health outcomes. OBJECTIVES The present study aims to characterize the monosaccharide composition of diets in a healthy US adult cohort and use these features to assess the relationship between monosaccharide intake, diet quality, characteristics of the gut microbiota, and gastrointestinal inflammation. METHODS This observational, cross-sectional study enrolled males and females across age (18-33 y, 34-49 y, and 50-65 y) and body mass index (normal, 18.5-24.99 kg/m2; overweight, 25-29.99 kg/m2; and obese, 30-44 kg/m2) categories. Recent dietary intake was assessed by the automated self-administered 24-h dietary recall system, and gut microbiota were assessed with shotgun metagenome sequencing. Dietary recalls were mapped to the Davis Food Glycopedia to estimate monosaccharide intake. Participants with >75% of carbohydrate intake mappable to the glycopedia were included (N = 180). RESULTS Diversity of monosaccharide intake was positively associated with the total Healthy Eating Index score (Pearson's r = 0.520, P = 1.2 × 10-13) and negatively associated with fecal neopterin (Pearson's r = -0.247, P = 3.0 × 10-3). Comparing high with low intake of specific monosaccharides revealed differentially abundant taxa (Wald test, P < 0.05), which was associated with the functional capacity to break down these monomers (Wilcoxon rank-sum test, P < 0.05). CONCLUSIONS Monosaccharide intake was associated with diet quality, gut microbial diversity, microbial metabolism, and gastrointestinal inflammation in healthy adults. As specific food sources were rich in particular monosaccharides, it may be possible in the future to tailor diets to fine-tune the gut microbiota and gastrointestinal function. This trial is registered at www. CLINICALTRIALS gov as NCT02367287.
Collapse
Affiliation(s)
- Jules A Larke
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA
| | - Nikita Bacalzo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Zhengyao Xue
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Zeynep Alkan
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA
| | - Mary E Kable
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Charles B Stephensen
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
37
|
Characterization of the Composition Variation of Healthy Human Gut Microbiome in Correlation with Antibiotic Usage and Yogurt Consumption. Antibiotics (Basel) 2022; 11:antibiotics11121827. [PMID: 36551483 PMCID: PMC9774478 DOI: 10.3390/antibiotics11121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic usage and yogurt consumption are the major interventions for gut microbiota, yet their shared characteristics and disparities in healthy human gut microbiome remain unclear. This study aimed to decipher the composition changes among healthy humans, comparing antibiotic usage and yogurt consumption. The relative bacterial abundances of 1113 fecal samples were collected from an ongoing, population-based longitudinal cohort study in China that covered lifestyle, diet, disease status and physical measurements, and biological indicators of participants were obtained by the sequencing of 16S rRNA. The samples were divided into three groups, which were antibiotic users (122), yogurt consumers (497) and controls (494), where data visualization, alpha diversity, beta diversity and LEfSe analysis were conducted. At the family level, the relative abundances of Streptococcaceae, Enterobacteriaceae and Enterococcaceae families in antibiotic users increased almost 50%, 70% and 200%, respectively, while yogurt consumption also increased relative abundances of Streptococcaceae and Enterococcaceae, but not Enterobacteriaceae. Alpha diversity analyses suggested that the microbiome of the antibiotic usage and yogurt consumption groups exhibited an alpha diversity lower than that of the control. LEfSe analysis showed that, at the family level, the number of biomarkers in the yogurt consumption and antibiotic usage group were respectively 5 and 7, lower than that of the control (13). This study demonstrated the importance in considering the potential assistance of yogurt consumption on ARG gene transfer from commensal bacteria to pathogens in the human gut, which may pose a risk for human health. Antibiotic usage and yogurt consumption share more identical changes on healthy human gut flora than disparities. Therefore, in order to understand the potential risks of antibiotic usage and yogurt consumption on antibiotic resistance transmission in human gut microbiota, further research needs to be undertaken.
Collapse
|
38
|
Using difference-in-difference to understand the downside to antibiotic use during infancy. Pediatr Res 2022; 92:1500-1501. [PMID: 36008596 DOI: 10.1038/s41390-022-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/30/2022]
|
39
|
Qiao J, Liang Y, Wang Y. Trimethylamine N-Oxide Reduces the Susceptibility of Escherichia coli to Multiple Antibiotics. Front Microbiol 2022; 13:956673. [PMID: 35875516 PMCID: PMC9300990 DOI: 10.3389/fmicb.2022.956673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Trimethylamine N-oxide (TMAO), an important intestinal flora-derived metabolite, plays a role in the development of cardiovascular disease and tumor immunity. Here, we determined the minimum inhibitory concentration (MIC) of antibiotics against Escherichia coli under gradient concentrations of TMAO and performed a bacterial killing analysis. Overall, TMAO (in the range of 10 ~ 100 mM) increased the MIC of quinolones, aminoglycosides, and β-lactams in a concentration-dependent manner, and increased the lethal dose of antibiotics against E. coli. It implies that TMAO is a potential risk for failure of anti-infective therapy, and presents a case for the relationship between intestinal flora-derived metabolites and antibiotic resistance. Further data demonstrated that the inhibition of antibiotic efficacy by TMAO is independent of the downstream metabolic processes of TMAO and the typical bacterial resistance mechanisms (mar motif and efflux pump). Interestingly, TMAO protects E. coli from high-protein denaturant (urea) stress and improves the viability of bacteria following treatment with two disinfectants (ethanol and hydrogen peroxide) that mediate protein denaturation by chemical action or oxidation. Since antibiotics can induce protein inactivation directly or indirectly, our work suggests that disruption of protein homeostasis may be a common pathway for different stress-mediated bacterial growth inhibition/cell death. In addition, we further discuss this possibility, which provides a different perspective to address the global public health problem of antibiotic resistance.
Collapse
Affiliation(s)
- Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Liang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|