1
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Khan D, Fox PL. Aminoacyl-tRNA synthetase interactions in SARS-CoV-2 infection. Biochem Soc Trans 2023; 51:2127-2141. [PMID: 38108455 PMCID: PMC10754286 DOI: 10.1042/bst20230527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases. Recent findings have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), utilizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA synthetases interact with a previously unknown RNA-element in the 3'-end of SARS-CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-CoV-2 interactions identified to date, with possible implications for the biology of host aaRSs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
3
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
4
|
Khan D, Terenzi F, Liu G, Ghosh PK, Ye F, Nguyen K, China A, Ramachandiran I, Chakraborty S, Stefan J, Khan K, Vasu K, Dong F, Willard B, Karn J, Gack MU, Fox PL. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon. Nat Commun 2023; 14:3385. [PMID: 37296097 PMCID: PMC10250186 DOI: 10.1038/s41467-023-39091-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Shruti Chakraborty
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jennifer Stefan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Franklin Dong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses 2022; 14:v14030613. [PMID: 35337020 PMCID: PMC8955326 DOI: 10.3390/v14030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.
Collapse
|
7
|
Malicoat J, Manivasagam S, Zuñiga S, Sola I, McCabe D, Rong L, Perlman S, Enjuanes L, Manicassamy B. Development of a Single-Cycle Infectious SARS-CoV-2 Virus Replicon Particle System for Use in Biosafety Level 2 Laboratories. J Virol 2022; 96:e0183721. [PMID: 34851142 PMCID: PMC8826801 DOI: 10.1128/jvi.01837-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Research activities with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently permitted only under biosafety level 3 (BSL3) containment. Here, we report the development of a single-cycle infectious SARS-CoV-2 virus replicon particle (VRP) system with a luciferase and green fluorescent protein (GFP) dual reporter that can be safely handled in BSL2 laboratories to study SARS-CoV-2 biology. The spike (S) gene of SARS-CoV-2 encodes the envelope glycoprotein, which is essential for mediating infection of new host cells. Through deletion and replacement of this essential S gene with a luciferase and GFP dual reporter, we have generated a conditional SARS-CoV-2 mutant (ΔS-VRP) that produces infectious particles only in cells expressing a viral envelope glycoprotein of choice. Interestingly, we observed more efficient production of infectious particles in cells expressing vesicular stomatitis virus (VSV) glycoprotein G [ΔS-VRP(G)] than in cells expressing other viral glycoproteins, including S. We confirmed that infection from ΔS-VRP(G) is limited to a single round and can be neutralized by anti-VSV serum. In our studies with ΔS-VRP(G), we observed robust expression of both luciferase and GFP reporters in various human and murine cell types, demonstrating that a broad variety of cells can support intracellular replication of SARS-CoV-2. In addition, treatment of ΔS-VRP(G)-infected cells with either of the anti-CoV drugs remdesivir (nucleoside analog) and GC376 (CoV 3CL protease inhibitor) resulted in a robust decrease in both luciferase and GFP expression in a drug dose- and cell-type-dependent manner. Taken together, our findings show that we have developed a single-cycle infectious SARS-CoV-2 VRP system that serves as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment. IMPORTANCE Due to the highly contagious nature of SARS-CoV-2 and the lack of immunity in the human population, research on SARS-CoV-2 has been restricted to biosafety level 3 laboratories. This has greatly limited participation of the broader scientific community in SARS-CoV-2 research and thus has hindered the development of vaccines and antiviral drugs. By deleting the essential spike gene in the viral genome, we have developed a conditional mutant of SARS-CoV-2 with luciferase and fluorescent reporters, which can be safely used under biosafety level 2 conditions. Our single-cycle infectious SARS-CoV-2 virus replicon system can serve as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment.
Collapse
Affiliation(s)
- Johnny Malicoat
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Sonia Zuñiga
- Coronavirus Laboratory, Departamento Biologia Molecular y Celular, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Isabel Sola
- Coronavirus Laboratory, Departamento Biologia Molecular y Celular, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Dianne McCabe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Luis Enjuanes
- Coronavirus Laboratory, Departamento Biologia Molecular y Celular, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Feng Y, Tang K, Lai Q, Liang J, Feng M, Zhou ZW, Cui H, Du X, Zhang H, Sun L. The Landscape of Aminoacyl-tRNA Synthetases Involved in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Physiol 2022; 12:818297. [PMID: 35153822 PMCID: PMC8826553 DOI: 10.3389/fphys.2021.818297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in translation by linking amino acids onto their cognate tRNAs during protein synthesis. During evolution, aaRSs develop numerous non-canonical functions that expand the roles of aaRSs in eukaryotic organisms. Although aaRSs have been implicated in viral infection, the function of aaRSs during infections with coronaviruses (CoVs) remains unclear. Here, we analyzed the data from transcriptomic and proteomic database on human cytoplasmic (cyto) and mitochondrial (mt) aaRSs across infections with three highly pathogenic human CoVs, with a particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found an overall downregulation of aaRSs at mRNA levels, while the protein levels of some mt-aaRSs and the phosphorylation of certain aaRSs were increased in response to SARS-CoV-2 infection. Strikingly, interaction network between SARS-CoV-2 and human aaRSs displayed a strong involvement of mt-aaRSs. Further co-immunoprecipitation (co-IP) experiments confirmed the physical interaction between SARS-CoV-2 M protein and TARS2. In addition, we identified the intermediate nodes and potential pathways involved in SARS-CoV-2 infection. This study provides an unbiased, overarching perspective on the correlation between aaRSs and SARS-CoV-2. More importantly, this work identifies TARS2, HARS2, and EARS2 as potential key factors involved in COVID-19.
Collapse
Affiliation(s)
- Yajuan Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qi Lai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jingxian Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Han Zhang,
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Litao Sun,
| |
Collapse
|
9
|
Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 2022; 32:9-23. [PMID: 34737357 PMCID: PMC8566969 DOI: 10.1038/s41422-021-00581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.
Collapse
|
10
|
A structurally conserved RNA element within SARS-CoV-2 ORF1a RNA and S mRNA regulates translation in response to viral S protein-induced signaling in human lung cells. J Virol 2021; 96:e0167821. [PMID: 34757848 PMCID: PMC8791291 DOI: 10.1128/jvi.01678-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive-sense, single-stranded RNA genome SARS-CoV-2 harbors functionally important cis-acting elements governing critical aspects of viral gene expression. However, insights on how these elements sense various signals from the host cell and regulate viral protein synthesis are lacking. Here, we identified two novel cis-regulatory elements in SARS-CoV-2 ORF1a and S RNAs and describe their role in translational control of SARS-CoV-2. These elements are sequence-unrelated but form conserved hairpin structures (validated by NMR) resembling Gamma Activated Inhibitor of Translation (GAIT) elements that are found in a cohort of human mRNAs directing translational suppression in myeloid cells in response to IFN-γ. Our studies show that treatment of human lung cells with receptor-binding S1 subunit, S protein pseudotyped lentivirus, and S protein-containing virus-like particles triggers a signaling pathway involving DAP-kinase1 that leads to phosphorylation and release of the ribosomal protein L13a from the large ribosomal subunit. Released L13a forms a Virus Activated Inhibitor of Translation (VAIT) complex that binds to ORF1a and S VAIT elements, causing translational silencing. Translational silencing requires extracellular S protein (and its interaction with host ACE2 receptor), but not its intracellular synthesis. RNA-protein interaction analyses and in vitro translation experiments showed that GAIT and VAIT elements do not compete with each other, highlighting differences between the two pathways. Sequence alignments of SARS-CoV-2 genomes showed a high level of conservation of VAIT elements, suggesting their functional importance. This VAIT-mediated translational control mechanism of SARS-CoV-2 may provide novel targets for small molecule intervention and/or facilitate development of more effective mRNA vaccines. Importance Specific RNA elements in the genomes of RNA viruses play important roles in host-virus interaction. For SARS-CoV-2, the mechanistic insights on how these RNA elements could sense the signals from the host cell are lacking. Here we report a novel relationship between the GAIT-like SARS-CoV-2 RNA element (called VAITs) and the signal generated from the host cell. We show that for SARS-CoV-2, the interaction of spike protein with ACE2 not only serves the purpose for viral entry into the host cell, but also transduces signals that culminate into the phosphorylation and the release of L13a from the large ribosomal subunit. We also show that this event leads to the translational arrest of ORF1a and S mRNAs in a manner dependent on the structure of the RNA elements. Translational control of viral mRNA by a host-cell generated signal triggered by viral protein is a new paradigm in the host-virus relationship.
Collapse
|
11
|
Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021; 9:695630. [PMID: 34660574 PMCID: PMC8514731 DOI: 10.3389/fcell.2021.695630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMO conjugation of a substrate protein can modify its activity, localization, interaction or function. A large number of SUMO targets in cells have been identified by Proteomics, but biological roles for SUMO conjugation for most targets remains elusive. The multi-aminoacyl tRNA synthetase complex (MARS) is a sensor and regulator of immune signaling. The proteins of this 1.2 MDa complex are targets of SUMO conjugation, in response to infection. Arginyl tRNA Synthetase (RRS), a member of the sub-complex II of MARS, is one such SUMO conjugation target. The sites for SUMO conjugation are Lys 147 and 383. Replacement of these residues by Arg (RRS K147R,K383R ), creates a SUMO conjugation resistant variant (RRS SCR ). Transgenic Drosophila lines for RRS WT and RRS SCR were generated by expressing these variants in a RRS loss of function (lof) animal, using the UAS-Gal4 system. The RRS-lof line was itself generated using CRISPR/Cas9 genome editing. Expression of both RRS WT and RRS SCR rescue the RRS-lof lethality. Adult animals expressing RRS WT and RRS SCR are compared and contrasted for their response to bacterial infection by gram positive M. luteus and gram negative Ecc15. We find that RRS SCR , when compared to RRS WT , shows modulation of the transcriptional response, as measured by quantitative 3' mRNA sequencing. Our study uncovers a possible non-canonical role for SUMOylation of RRS, a member of the MARS complex, in host-defense.
Collapse
Affiliation(s)
- Prajna Nayak
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Aarti Kejriwal
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | |
Collapse
|
12
|
Kasmi Y, Khataby K, Souiri A, Ennaji MM. Coronaviridae: 100,000 Years of Emergence and Reemergence. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7149750 DOI: 10.1016/b978-0-12-819400-3.00007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coronavirus family (Coronaviridae) is a positive-sense single-stranded RNA, with a size of 27 kb. These viruses have a potential species specificity and interspecies transmission. The interspecies transmission of viruses from one host species to another is a major factor responsible for the majority of emerging and reemerging infections. The Coronaviridae is one of the most popular emerging viral families that threaten to the public health.
Collapse
|
13
|
Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis 2019; 10:901. [PMID: 31780718 PMCID: PMC6883034 DOI: 10.1038/s41419-019-2145-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play a vital role in protein synthesis by linking amino acids to their cognate transfer RNAs (tRNAs). This typical function has been well recognized over the past few decades. However, accumulating evidence reveals that ARSs are involved in a wide range of physiological and pathological processes apart from translation. Strikingly, certain ARSs are closely related to different types of immune responses. In this review, we address the infection and immune responses induced by pathogen ARSs, as well as the potential anti-infective compounds that target pathogen ARSs. Meanwhile, we describe the functional mechanisms of ARSs in the development of immune cells. In addition, we focus on the roles of ARSs in certain immune diseases, such as autoimmune diseases, infectious diseases, and tumor immunity. Although our knowledge of ARSs in the immunological context is still in its infancy, research in this field may provide new ideas for the treatment of immune-related diseases.
Collapse
|
14
|
Yuan P, Huang S, Yang Z, Xie L, Wang K, Yang Y, Ran L, Yu Q, Song Z. UBXN1 interacts with the S1 protein of transmissible gastroenteritis coronavirus and plays a role in viral replication. Vet Res 2019; 50:28. [PMID: 31029162 PMCID: PMC6487014 DOI: 10.1186/s13567-019-0648-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 11/10/2022] Open
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs and is associated with high morbidity and mortality in sucking piglets. S1 is one of two protein domains in the spike (S) glycoprotein and is responsible for enteric tropism, sialic acid recognition, and host receptor binding. Although there has been extensive research on the S1 protein of TGEV, little is known about the intracellular role of TGEV-S1. In the present study, we used yeast two-hybrid screening of a cDNA library from porcine intestinal cells to identify proteins that interact with TGEV-S1. Among 120 positive clones from the library, 12 intracellular proteins were identified after sequencing and a BLAST search. These intracellular proteins are involved in protein synthesis and degradation, biological signal transduction, and negative control of signaling pathways. Using a glutathione-S-transferase (GST) pulldown assay and Co-IP, we found that UBXN1 interacts with the S1 protein. Here, we observed that TGEV infection led to increased UBXN1 expression levels during the late phase of infection in IPEC-J2 cells. Inhibition of UBXN1 in IPEC-J2 cells via siRNA interference significantly decreased the viral titer and downregulated the expression of S1. UBXN1 overexpression significantly increased the viral copy number. Additionally, we provided data suggesting that UBXN1 negatively regulates IFN-β expression after TGEV infection. Finally, our research indicated that UBXN1 plays a vital role in the process of TGEV infection, making it a candidate target for the development of a novel antiviral method.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Shilei Huang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Zhou Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Luyi Xie
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Kai Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Yang Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Lin Ran
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Qiuhan Yu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Zhenhui Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
15
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
16
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
Zhu L, Yang X, Mou C, Yang Q. Transmissible gastroenteritis virus does not suppress IFN-β induction but is sensitive to IFN in IPEC-J2 cells. Vet Microbiol 2016; 199:128-134. [PMID: 28110779 PMCID: PMC7117263 DOI: 10.1016/j.vetmic.2016.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
TGEV infection would delay IFN-β production in IPEC-J2 cells. TGEV replication and IFN-β production have a similar trend in IPEC-J2 cells. The antiviral activity of IFN-I during TGEV infection is limited.
Coronaviruses tend to efficiently evade innate immune sensing. Alpha-coronaviruses interfere with the type I interferon (IFN) response in various ways, ensuring the limited activation of IFN responses. Transmissible gastroenteritis virus (TGEV), an Alphacoronavirus genera virus, is an important pathogen that mainly infects piglet, but little is known about the activation of the host immune response. We show that TGEV induces a delayed activation of the IFN response in intestinal epithelial cells. Briefly, IFN-β expression induced by TGEV infection is delayed with respect to that induced by poly(I:C) transfection. In addition, some of the IFN-stimulated genes (ISGs) were up-regulated in the early infection stage without obvious expression of IFN-β. Moreover, we show that activation of IFN responses induced by poly(I:C) could inhibit viral replication in the early infection stage, but failed in the late infection stage in IPEC-J2 cells. Finally, the activation of IFN responses induced by TGEV infection cannot inhibit viral replication. Taken together, this study provides a preliminary analysis of an interaction between TGEV and IFN-β responses of intestinal epithelial cells.
Collapse
Affiliation(s)
- Liqi Zhu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xing Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chunxiao Mou
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
18
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
19
|
Chen LS, Yang YS, Chen K, Chen XY, Xie WR, Wang H. Dexamethasone treatment upregulates glutamyl prolyl tRNA synthetase expression in liver tissue of rats with severe acute pancreatitis-associated liver injury. Shijie Huaren Xiaohua Zazhi 2015; 23:5133-5140. [DOI: 10.11569/wcjd.v23.i32.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of dexamethasone (DEX) on the expression of glutamyl prolyl tRNA synthetase (EPRS) in liver tissue of rats with severe acute pancreatitis (SAP)-associated liver injury.
METHODS: Ninety-six SD rats were randomly divided into an SAP model group, a sham operation (SO) group, and a DEX treatment group. Sodium taurocholate was used to induce SAP in rats of the model group and DEX group. Dexamethasone was given by intramuscular injection at 0.5 mg/100 g in the DEX group. Rats in each group were killed at different points (2, 6, 12, and 24 h) after treatment for further analysis. HE staining was used to observe liver damage. Serum amylase (AMS) content was measured by iodine colorimetric method. ELISA was used to detect the expression of liver nuclear factor κB (NF-κB) and interferon-γ (IFN-γ). The expression of EPRS was detected by immunohistochemical staining.
RESULTS: The SAP group suffered more severe inflammatory exudation than the SO group as revealed by liver HE staining. The DEX group had a decreased pathological score compared with the SAP group (P = 0.025). Serum AMS was significantly lower in the DEX group than in the SAP group (P = 0.0013). NF-κB expression at 6 h was significantly lower (P = 0.047), but IFN-γ expression at 6 h was significantly higher in the DEX group than in the SAP group (P = 0.038). The DEX group had significantly increased EPRS expression at 6 h as shown by immunohistochemistry (P < 0.01).
CONCLUSION: Hepatic EPRS expression is increased at 6 h after dexamethasone treatment in SAP rats.
Collapse
|