1
|
Xu W, Bradstreet TR, Zou Z, Hickerson S, Zhou Y, He H, Edelson BT, Caparon MG. Reprogramming aerobic metabolism mitigates Streptococcus pyogenes tissue damage in a mouse necrotizing skin infection model. Nat Commun 2025; 16:2559. [PMID: 40089471 PMCID: PMC11910614 DOI: 10.1038/s41467-025-57348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
Disease tolerance is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates disease tolerance using its aerobic mixed-acid fermentation pathway via the enzyme pyruvate dehydrogenase, but the microbe-derived molecules that mediate communication with the host's disease tolerance pathways remain elusive. Here we show in a murine model that aerobic mixed-acid fermentation inhibits the accumulation of inflammatory cells including neutrophils and macrophages, reduces the immunosuppressive cytokine interleukin-10, and delays bacterial clearance and wound healing. In infected macrophages, the aerobic mixed-acid fermentation end-products acetate and formate from streptococcal upregulate host acetyl-CoA metabolism and reduce interleukin-10 expression. Inhibiting aerobic mixed-acid fermentation using a bacterial-specific pyruvate dehydrogenase inhibitor reduces tissue damage during murine infection, correlating with increased interleukin-10 expression. Our results thus suggest that reprogramming carbon flow provides a therapeutic strategy to mitigate tissue damage during infection.
Collapse
Affiliation(s)
- Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zongsen Zou
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Hickerson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuan Zhou
- Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, PR China
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, PR China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, PR China
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Xia W, Wu Z, Hou B, Cheng Z, Bi D, Chen L, Chen W, Yuan H, Koole LH, Qi L. Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species. Mater Today Bio 2025; 30:101428. [PMID: 39850241 PMCID: PMC11754679 DOI: 10.1016/j.mtbio.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis. N-CQDs synthesized via a facile hydrothermal approach displayed a uniform particle size of less than 10 nm, featuring a graphitic carbon structure and functional groups including -OH and -NH2. The N-CQDs demonstrated antimicrobial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus, which was both dose- and time-dependent, reducing the survival rate to below 1 %. The antimicrobial activity was confirmed by live/dead staining. In in vivo studies, the N-CQDs were more efficient in treating drug-resistant bacterial keratitis and reducing corneal damage compared to the common antibiotic levofloxacin. The N-CQDs were shown to generate intracellular and extracellular ROS, which potentially caused oxidative stress, membrane disruption, and cell death. This antimicrobial mechanism was supported by scanning and transmission electron microscopy, significant regulation of genes related to oxidative stress, and increased protein and lactate dehydrogenase leakage. This study has provided insight into the development, application, and mechanism of N-CQDs in antimicrobial applications.
Collapse
Affiliation(s)
- Weibo Xia
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Zixia Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingying Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Dechuang Bi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Luya Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Leo H. Koole
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Vega LA, Sanson-Iglesias M, Mukherjee P, Buchan KD, Morrison G, Hohlt AE, Flores AR. LiaR-dependent gene expression contributes to antimicrobial responses in group A Streptococcus. Antimicrob Agents Chemother 2024; 68:e0049624. [PMID: 39535201 PMCID: PMC11619527 DOI: 10.1128/aac.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The ability to sense and respond to host defenses is essential for pathogen survival. Some mechanisms involve two-component systems (TCSs) that respond to host molecules, such as antimicrobial peptides (AMPs), and activate specific gene regulatory pathways to aid in survival. Alongside TCSs, bacteria coordinate cell division proteins, chaperones, cell wall sortases, and secretory translocons at discrete locations within the cytoplasmic membrane, referred to as functional membrane microdomains (FMMs). In group A Streptococcus (GAS), the FMM or "ExPortal" coordinates protein secretion, cell wall synthesis, and sensing of AMP-mediated cell envelope stress via the LiaFSR three-component system. Previously, we showed that GAS exposure to a subset of AMPs (α-defensins) activates the LiaFSR system by disrupting LiaF and LiaS co-localization in the ExPortal, leading to increased LiaR phosphorylation, expression of the transcriptional regulator SpxA2, and altered GAS virulence gene expression. The mechanisms by which LiaFSR integrates cell envelope stress with responses to AMP activity and virulence are not fully elucidated. Here, we show the LiaFSR regulon is comprised of genes encoding SpxA2 and three membrane-associated proteins: a PspC domain-containing protein (PCP), the lipoteichoic acid-modifying protein LafB, and the membrane protein insertase YidC2. Our data support that phosphorylated LiaR induces transcription of these genes via a conserved operator, whose disruption attenuates GAS virulence and increases susceptibility to AMPs in a manner primarily dependent on differential expression of SpxA2. Our work expands our understanding of the LiaFSR regulatory network in GAS and identifies targets for further investigation of mechanisms of cell envelope stress tolerance contributing to GAS pathogenesis.
Collapse
Affiliation(s)
- Luis Alberto Vega
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Misú Sanson-Iglesias
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Piyali Mukherjee
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Kyle D. Buchan
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Gretchen Morrison
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Anne E. Hohlt
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Zou Z, Singh P, Pinkner JS, Obernuefemann CLP, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. SCIENCE ADVANCES 2024; 10:eadn7979. [PMID: 39093975 PMCID: PMC11296344 DOI: 10.1126/sciadv.adn7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor M. Nye
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Scott J. Hultgren
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Vega LA, Sansón-Iglesias M, Mukherjee P, Buchan K, Morrison G, Hohlt AE, Flores AR. LiaR-dependent gene expression contributes to antimicrobial responses in group A Streptococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588141. [PMID: 38617309 PMCID: PMC11014544 DOI: 10.1101/2024.04.04.588141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The ability to sense and respond to host defenses is essential for pathogen survival. Some mechanisms involve two-component systems (TCS) that respond to host molecules, such as antimicrobial peptides (AMPs) and activate specific gene regulatory pathways to aid in survival. Alongside TCSs, bacteria coordinate cell division proteins, chaperones, cell wall sortases and secretory translocons at discrete locations within the cytoplasmic membrane, referred to as functional membrane microdomains (FMMs). In Group A Streptococcus (GAS), the FMM or "ExPortal" coordinates protein secretion, cell wall synthesis and sensing of AMP-mediated cell envelope stress via the LiaFSR three-component system. Previously we showed GAS exposure to a subset of AMPs (α-defensins) activates the LiaFSR system by disrupting LiaF and LiaS co-localization in the ExPortal, leading to increased LiaR phosphorylation, expression of the transcriptional regulator SpxA2, and altered GAS virulence gene expression. The mechanisms by which LiaFSR integrates cell envelope stress with responses to AMP activity and virulence are not fully elucidated. Here, we show the LiaFSR regulon is comprised of genes encoding SpxA2 and three membrane-associated proteins: a PspC domain-containing protein (PCP), the lipoteichoic acid-modifying protein LafB and the membrane protein insertase YidC2. Our data show phosphorylated LiaR induces transcription of these genes via a conserved operator, whose disruption attenuates GAS virulence and increases susceptibility to AMPs in a manner primarily dependent on differential expression of SpxA2. Our work expands understanding of the LiaFSR regulatory network in GAS and identifies targets for further investigation of mechanisms of cell envelope stress tolerance contributing to GAS pathogenesis.
Collapse
|
6
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Faozia S, Hossain T, Cho KH. The Dlt and LiaFSR systems derepress SpeB production independently in the Δpde2 mutant of Streptococcus pyogenes. Front Cell Infect Microbiol 2023; 13:1293095. [PMID: 38029265 PMCID: PMC10679467 DOI: 10.3389/fcimb.2023.1293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The second messenger molecule, c-di-AMP, plays a critical role in pathogenesis and virulence in S. pyogenes. We previously reported that deleting the c-di-AMP phosphodiesterase gene pde2 severely suppresses SpeB production at the transcriptional level. We performed transposon mutagenesis to gain insight into the mechanism of how Pde2 is involved in SpeB regulation. We identified one of the genes of the dlt operon, dltX, as a suppressor of the SpeB-null phenotype of the Δpde2 mutant. The dlt operon consists of five genes, dltX, dltA, dltB, dltC, and dltD in many Gram-positive bacteria, and its function is to incorporate D-alanine into lipoteichoic acids. DltX, a small membrane protein, is a newly identified member of the operon. The in-frame deletion of dltX or insertional inactivation of dltA in the Δpde2 mutant restored SpeB production, indicating that D-alanylation is crucial for the suppressor phenotype. These mutations did not affect the growth in lab media but showed increased negative cell surface charge and enhanced sensitivity to polymyxin B. Considering that dlt mutations change cell surface charge and sensitivity to cationic antimicrobial peptides, we examined the LiaFSR system that senses and responds to cell envelope stress. The ΔliaR mutation in the Δpde2 mutant also derepressed SpeB production, like the ΔdltX mutation. LiaFSR controls speB expression by regulating the expression of the transcriptional regulator SpxA2. However, the Dlt system did not regulate spxA2 expression. The SpeB phenotype of the Δpde2ΔdltX mutant in higher salt media differed from that of the Δpde2ΔliaR mutant, suggesting a unique pathway for the Dlt system in SpeB production, possibly related to ion transport or turgor pressure regulation.
Collapse
Affiliation(s)
| | | | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
8
|
DebRoy S, Shropshire WC, Vega L, Tran C, Horstmann N, Mukherjee P, Selvaraj-Anand S, Tran TT, Bremer J, Gohel M, Arias CA, Flores AR, Shelburne SA. Identification of distinct impacts of CovS inactivation on the transcriptome of acapsular group A streptococci. mSystems 2023; 8:e0022723. [PMID: 37358280 PMCID: PMC10470059 DOI: 10.1128/msystems.00227-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023] Open
Abstract
Group A streptococcal (GAS) strains causing severe, invasive infections often have mutations in the control of virulence two-component regulatory system (CovRS) which represses capsule production, and high-level capsule production is considered critical to the GAS hypervirulent phenotype. Additionally, based on studies in emm1 GAS, hyperencapsulation is thought to limit transmission of CovRS-mutated strains by reducing GAS adherence to mucosal surfaces. It has recently been identified that about 30% of invasive GAS strains lacks capsule, but there are limited data regarding the impact of CovS inactivation in such acapsular strains. Using publicly available complete genomes (n = 2,455) of invasive GAS strains, we identified similar rates of CovRS inactivation and limited evidence for transmission of CovRS-mutated isolates for both encapsulated and acapsular emm types. Relative to encapsulated GAS, CovS transcriptomes of the prevalent acapsular emm types emm28, emm87, and emm89 revealed unique impacts such as increased transcript levels of genes in the emm/mga region along with decreased transcript levels of pilus operon-encoding genes and the streptokinase-encoding gene ska. CovS inactivation in emm87 and emm89 strains, but not emm28, increased GAS survival in human blood. Moreover, CovS inactivation in acapsular GAS reduced adherence to host epithelial cells. These data suggest that the hypervirulence induced by CovS inactivation in acapsular GAS follows distinct pathways from the better studied encapsulated strains and that factors other than hyperencapsulation may account for the lack of transmission of CovRS-mutated strains. IMPORTANCE Devastating infections due to group A streptococci (GAS) tend to occur sporadically and are often caused by strains that contain mutations in the control of virulence regulatory system (CovRS). In well-studied emm1 GAS, the increased production of capsule induced by CovRS mutation is considered key to both hypervirulence and limited transmissibility by interfering with proteins that mediate attachment to eukaryotic cells. Herein, we show that the rates of covRS mutations and genetic clustering of CovRS-mutated isolates are independent of capsule status. Moreover, we found that CovS inactivation in multiple acapsular GAS emm types results in dramatically altered transcript levels of a diverse array of cell-surface protein-encoding genes and a unique transcriptome relative to encapsulated GAS. These data provide new insights into how a major human pathogen achieves hypervirulence and indicate that factors other than hyperencapsulation likely account for the sporadic nature of the severe GAS disease.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William C. Shropshire
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luis Vega
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Chau Tran
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicola Horstmann
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Piyali Mukherjee
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | | | - Truc T. Tran
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jordan Bremer
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marc Gohel
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cesar A. Arias
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Anthony R. Flores
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Nye TM, Tükenmez H, Singh P, Flores-Mireles AL, Obernuefemann CLP, Pinkner JS, Sarkar S, Bonde M, Lindgren AEG, Dodson KW, Johansson J, Almqvist F, Caparon MG, Hultgren SJ. Ring-fused 2-pyridones effective against multidrug-resistant Gram-positive pathogens and synergistic with standard-of-care antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2210912119. [PMID: 36252016 PMCID: PMC9618150 DOI: 10.1073/pnas.2210912119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023] Open
Abstract
The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Hasan Tükenmez
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | | | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jerome S. Pinkner
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Souvik Sarkar
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Anders E. G. Lindgren
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Karen W. Dodson
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Michael G. Caparon
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| |
Collapse
|
10
|
The Transcriptional Regulator SpxA1 Influences the Morphology and Virulence of Listeria monocytogenes. Infect Immun 2022; 90:e0021122. [PMID: 36102657 PMCID: PMC9584327 DOI: 10.1128/iai.00211-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative anaerobe and an excellent model pathogen for investigating regulatory changes that occur during infection of a mammalian host. SpxA1 is a widely conserved transcriptional regulator that induces expression of peroxide-detoxifying genes in L. monocytogenes and is thus required for aerobic growth. SpxA1 is also required for L. monocytogenes virulence, although the SpxA1-dependent genes important in this context remain to be identified. Here, we sought to investigate the role of SpxA1 in a tissue culture model of infection and made the surprising discovery that ΔspxA1 cells are dramatically elongated during growth in the host cytosol. Quantitative microscopy revealed that ΔspxA1 cells also form elongated filaments extracellularly during early exponential phase in rich medium. Scanning and transmission electron microscopy analysis found that the likely cause of this morphological phenotype is aberrantly placed division septa localized outside cell midpoints. Quantitative mass spectrometry of whole-cell lysates identified SpxA1-dependent changes in protein abundance, including a significant number of motility and flagellar proteins that were depleted in the ΔspxA1 mutant. Accordingly, we found that both the filamentation and the lack of motility contributed to decreased phagocytosis of ΔspxA1 cells by macrophages. Overall, we identify a novel role for SpxA1 in regulating cell elongation and motility, both of which impact L. monocytogenes virulence.
Collapse
|
11
|
The LiaFSR transcriptome reveals an interconnected regulatory network in group A Streptococcus. Infect Immun 2021; 89:e0021521. [PMID: 34370508 DOI: 10.1128/iai.00215-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which bacteria sense the host environment and alter gene expression are poorly understood. LiaFSR is a gene regulatory system unique to Gram-positive bacteria including group A Streptococcus (GAS) and responds to cell envelope stress. We previously showed that LiaF acts as an inhibitor to LiaFSR activation in GAS. To better understand gene regulation associated with LiaFSR activation, we performed RNA-sequencing on isogenic deletion mutants fixed in a LiaFSR "always on" (ΔliaF) or "always off" (ΔliaR) state. Transcriptome analyses of ΔliaF and ΔliaR in GAS showed near perfect inverse correlation including the gene encoding the global transcriptional regulator SpxA2. In addition, mutant transcriptomes included genes encoding multiple virulence factors and showed substantial overlap with the CovRS regulon. Chromatin immunoprecipitation quantitative PCR demonstrated direct spxA2 gene regulation following activation of the response regulator, LiaR. High SpxA2 levels as a result of LiaFSR activation were directly correlated with increased CovR-regulated virulence gene transcription. Further, consistent with known virulence gene repression by phosphorylated CovR, elevated SpxA2 levels were inversely correlated with CovR phosphorylation. Despite increased transcription of several virulence factors, ΔliaF (high SpxA2) exhibited a paradoxical virulence phenotype in both in vivo mouse and ex vivo human blood models of disease. Likewise, despite decreased virulence factor transcription in ΔliaR (low SpxA2), increased virulence was observed in an in vivo mouse model of disease - a phenotype attributable, in part, to known SpxA2-associated speB transcription. Our findings provide evidence of a critical role of LiaFSR in sensing the host environment and suggest a potential mechanism for gene regulatory system crosstalk shared by many Gram-positive pathogens.
Collapse
|
12
|
Arenas J, Zomer A, Harders-Westerveen J, Bootsma HJ, De Jonge MI, Stockhofe-Zurwieden N, Smith HE, De Greeff A. Identification of conditionally essential genes for Streptococcus suis infection in pigs. Virulence 2021; 11:446-464. [PMID: 32419603 PMCID: PMC7239030 DOI: 10.1080/21505594.2020.1764173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and zoonotic pathogen that causes meningitis and sepsis in pigs and humans. The aim of this study was to identify genes required for S. suis infection. We created Tn-Seq libraries in a virulent S. suis strain 10, which was used to inoculate pigs in an intrathecal experimental infection. Comparative analysis of the relative abundance of mutants recovered from different sites of infection (blood, cerebrospinal fluid, and meninges of the brain) identified 361 conditionally essential genes, i.e. required for infection, which is about 18% of the genome. The conditionally essential genes were primarily involved in metabolic and transport processes, regulation, ribosomal structure and biogenesis, transcription, and cell wall membrane and envelope biogenesis, stress defenses, and immune evasion. Directed mutants were created in a set of 10 genes of different genetic ontologies and their role was determined in ex vivo models. Mutants showed different levels of sensitivity to survival in whole blood, serum, cerebrospinal fluid, thermic shock, and stress conditions, as compared to the wild type. Additionally, the role of three selected mutants was validated in co-infection experiments in which pigs were infected with both wild type and isogenic mutant strains. The genetic determinants of infection identified in this work contribute to novel insights in S. suis pathogenesis and could serve as targets for novel vaccines or antimicrobial drugs.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jose Harders-Westerveen
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud, Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Hilde E Smith
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Astrid De Greeff
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
13
|
Effect of low power lasers on prokaryotic and eukaryotic cells under different stress condition: a review of the literature. Lasers Med Sci 2021; 36:1139-1150. [PMID: 33387079 DOI: 10.1007/s10103-020-03196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.
Collapse
|
14
|
Takamatsu D, Okumura K, Tabata A, Okamoto M, Okura M. Transcriptional regulator SpxA1a controls the resistance of the honey bee pathogen Melissococcus plutonius to the antimicrobial activity of royal jelly. Environ Microbiol 2020; 22:2736-2755. [PMID: 32519428 DOI: 10.1111/1462-2920.15125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 12/01/2022]
Abstract
Royal jelly (RJ), a brood food of honey bees, has strong antimicrobial activity. Melissococcus plutonius, the causative agent of European foulbrood of honey bees, exhibits resistance to this antimicrobial activity and infects larvae orally. Among three genetically distinct groups (CC3, CC12 and CC13) of M. plutonius, CC3 strains exhibit the strongest RJ resistance. In this study, to identify genes involved in RJ resistance, we generated an RJ-susceptible derivative from a highly RJ-resistant CC3 strain by UV mutagenesis. Genome sequence analysis of the derivative revealed the presence of a frameshift mutation in the putative regulator gene spxA1a. The deletion of spxA1a from a CC3 strain resulted in increased susceptibility to RJ and its antimicrobial component 10-hydroxy-2-decenoic acid. Moreover, the mutant became susceptible to low-pH and oxidative stress, which may be encountered in brood foods. Differentially expressed gene analysis using wild-type and spxA1a mutants revealed that 45 protein-coding genes were commonly upregulated in spxA1a-positive strains. Many upregulated genes were located in a prophage region, and some highly upregulated genes were annotated as universal/general stress proteins, oxidoreductase/reductase, chaperons and superoxide dismutase. These results suggest that SpxA1a is a key regulator to control the tolerance status of M. plutonius against stress in honey bee colonies.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kayo Okumura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Atsushi Tabata
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Mariko Okamoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
15
|
Ganguly T, Kajfasz JK, Abranches J, Lemos JA. Regulatory circuits controlling Spx levels in Streptococcus mutans. Mol Microbiol 2020; 114:109-126. [PMID: 32189382 DOI: 10.1111/mmi.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/01/2023]
Abstract
Spx is a major regulator of stress responses in Firmicutes. In Streptococcus mutans, two Spx homologues, SpxA1 and SpxA2, were identified as mediators of oxidative stress responses but the regulatory circuits controlling their levels and activity are presently unknown. Comparison of SpxA1 and SpxA2 protein sequences revealed differences at the C-terminal end, with SpxA1 containing an unusual number of acidic residues. Here, we showed that a green fluorescence protein (GFP) reporter becomes unstable when fused to the last 10 amino acids of SpxA2 but remained stable when fused to the C-terminal acidic tail of SpxA1. Inactivation of clpP or simultaneous inactivation of clpC and clpE stabilized the GFP::SpxA2tail fusion protein. Addition of acidic amino acids to the GFP::SpxA2tail chimera stabilized GFP, while deletion of the acidic residues destabilized GFP::SpxA1tail . Promoter reporter fusions revealed that spxA1 transcription is co-repressed by the metalloregulators PerR and SloR while spxA2 transcription is largely dependent on the envelope stress regulator LiaFSR. In agreement with spxA2 being part of the LiaR regulon, SpxA2 was found to be critical for the growth of S. mutans under envelope stress conditions. Finally, we showed that redox sensing is essential for SpxA1-dependent activation of oxidative stress responses but dispensable for SpxA2-mediated envelope stress responses.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jessica K Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Shi X, Gao Z, Lin Q, Zhao L, Ma Q, Kang Y, Yu J. Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:590-602. [PMID: 32171662 PMCID: PMC7212475 DOI: 10.1016/j.gpb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
The lethal chronic airway infection of the cystic fibrosis (CF) patients is predisposed by colonization of specific CF-philic pathogens or the CF microbiomes, but key processes and reasons of the microbiome settlement in the patients are yet to be fully understood, especially their survival and metabolic dynamics from normal to diseased status under treatment. Here, we report our meta-analysis results on CF airway microbiomes based on metabolic networks reconstructed from genome information at species level. The microbiomes of CF patients appear to engage much more redox-related activities than those of controls, and by constructing a large dataset of anti-oxidative stress (anti-OS) genes, our quantitative evaluation of the anti-OS capacity of each bacterial species in the CF microbiomes confirms strong conservation of the anti-OS responses within genera and also shows that the CF pathogens have significantly higher anti-OS capacity than commensals and other typical respiratory pathogens. In addition, the anti-OS capacity of a relevant species correlates with its relative fitness for the airways of CF patients over that for the airways of controls. Moreover, the total anti-OS capacity of the respiratory microbiome of CF patients is collectively higher than that of controls, which increases with disease progression, especially after episodes of acute exacerbation and antibiotic treatment. According to these results, we propose that the increased OS in the airways of CF patients may play an important role in reshaping airway microbiomes to a more resistant status that favors the pre-infection colonization of the CF pathogens for a higher anti-OS capacity.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science and Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
17
|
Jain I, Danger JL, Burgess C, Uppal T, Sumby P. The group A Streptococcus accessory protein RocA: regulatory activity, interacting partners and influence on disease potential. Mol Microbiol 2019; 113:190-207. [PMID: 31660653 PMCID: PMC7028121 DOI: 10.1111/mmi.14410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
Abstract
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain‐ and serotype‐specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two‐component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease‐encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild‐type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain‐ and serotype‐specific variability in RocA function.
Collapse
Affiliation(s)
- Ira Jain
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Cameron Burgess
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Timsy Uppal
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
18
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
19
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Cho KH, Port GC, Caparon M. Genetics of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0056-2018. [PMID: 30825299 PMCID: PMC11590684 DOI: 10.1128/microbiolspec.gpp3-0056-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus) is remarkable in terms of the large number of diseases it can cause in humans and for the large number of streptococcal factors that have been identified as potential virulence determinants for these diseases. A challenge is to link the function of potential virulence factors to the pathogenesis of specific diseases. An exciting advance has been the development of sophisticated genetic systems for the construction of loss-of-function, conditional, hypomorphic, and gain-of-function mutations in targeted S. pyogenes genes that can be used to test specific hypotheses regarding these genes in pathogenesis. This will facilitate a mechanistic understanding of how a specific gene function contributes to the pathogenesis of each streptococcal disease. Since the first S. pyogenes genome was completed in 2001, hundreds of complete and draft genome sequences have been deposited. We now know that the average S. pyogenes genome is approximately 1.85 Mb and encodes ∼1,800 genes and that the function of most of those genes in pathogenesis remains to be elucidated. However, advances in the development of a variety of genetic tools for manipulation of the S. pyogenes genome now provide a platform for the interrogation of gene/phenotype relationships for individual S. pyogenes diseases, which may lead to the development of more sophisticated and targeted therapeutic interventions. This article presents an overview of these genetic tools, including the methods of genetic modification and their applications.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809
| | - Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Current address: Elanco Animal Health, Natural Products Fermentation, Eli Lilly and Company, Indianapolis, IN 46285
| |
Collapse
|
21
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
22
|
Abstract
The abundance of oxidants and reductants must be balanced for an organism to thrive. Bacteria have evolved methods to prevent redox imbalances and to mitigate their deleterious consequences through the expression of detoxification enzymes, antioxidants, and systems to repair or degrade damaged proteins and DNA. Regulating these processes in response to redox changes requires sophisticated surveillance strategies ranging from metal chelation to direct sensing of toxic reactive oxygen species. In the case of bacterial pathogens, stress that threatens to disrupt redox homeostasis can derive from endogenous sources (produced by the bacteria) or exogenous sources (produced by the host). This minireview summarizes the sources of redox stress encountered during infection, the mechanisms by which bacterial pathogens diminish the damaging effects of redox stress, and the clever ways some organisms have evolved to thrive in the face of redox challenges during infection.
Collapse
|