1
|
Chen CH, Huang JM, Wang YJ, Tsai CM, Lin WC. Recent in vitro advances in the ocular antimicrobial agents against Acanthamoeba. Int J Parasitol Drugs Drug Resist 2025; 27:100586. [PMID: 40054084 PMCID: PMC11930102 DOI: 10.1016/j.ijpddr.2025.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025]
Abstract
This review examines the advancements in antimicrobial drug discovery with in vitro assays for Acanthamoeba, highlighting the efficacy of current topical antimicrobial agents. In recent decades, the treatment and diagnosis of Acanthamoeba keratitis (AK) have presented clinical challenges. Clinicians often rely on clinical judgment, risk factors, and patient travel history to guide initial treatment decisions. The clinical presentation of AK frequently coincides with bacterial and fungal keratitis, leading to delays in diagnostic confirmation. This review compiles a list of commonly used antimicrobial agents that may be useful in controlling and preventing Acanthamoeba and other microbial infections during the diagnostic waiting period. Due to their unique life cycle, consisting of both trophozoite and cyst stages, amoebae exhibit resistance to various clinical drugs. Current research efforts are focused on identifying alternative and effective treatment options. Despite the ongoing characterization of various cytocidal agents from natural and synthetic sources, chlorhexidine gluconate (CHG) and polyhexamethylene biguanide (PHMB) have emerged as the most effective therapies for AK. Drawing from previous studies, we catalog several commonly used antimicrobial agents that may enhance the efficacy of PHMB and CHG while also preventing other microbial infections. These alternative agents present promising options for treating AK cases. This review evaluates progress in anti-amoebic drug discovery, focusing on antibiotics and cataloging their activity at different stages of Acanthamoeba.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jian-Ming Huang
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yu-Jen Wang
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Chih-Ming Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Wittmers F, Poirier C, Bachy C, Eckmann C, Matantseva O, Carlson CA, Giovannoni SJ, Goodenough U, Worden AZ. Symbionts of predatory protists are widespread in the oceans and related to animal pathogens. Cell Host Microbe 2025; 33:182-199.e7. [PMID: 39947132 DOI: 10.1016/j.chom.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 05/09/2025]
Abstract
Protists are major predators of ocean microbial life, with an ancient history of entanglements with prokaryotes, but their delicate cell structures and recalcitrance to culturing hinder exploration of marine symbioses. We report that tiny oceanic protistan predators, specifically choanoflagellates-the closest living unicellular relatives of animals-and uncultivated MAST-3 form symbioses with four bacterial lineages related to animal symbionts. By targeting living phagotrophs on ship expeditions, we recovered genomes from physically associated uncultivated Legionellales and Rickettsiales. The evolutionary trajectories of Marinicoxiellaceae, Cosmosymbacterales, Simplirickettsiaceae, and previously named Gamibacteraceae vary, including host-engagement mechanisms unknown in marine bacteria, horizontally transferred genes that mediate pathogen-microbiome interactions, and nutritional pathways. These symbionts and hosts occur throughout subtropical and tropical oceans. Related bacteria were detected in public data from freshwater, fish, and human samples. Symbiont associations with animal-related protists, alongside relationships to animal pathogens, suggest an unexpectedly long history of shifting associations and possibilities for host expansion as environments change.
Collapse
Affiliation(s)
- Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Olga Matantseva
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Craig A Carlson
- The Marine Science Institute, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Ursula Goodenough
- Department of Biology, Washington University St. Louis, St. Louis, MO, USA
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany; Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
4
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhou M, Ma L, Wang Z, Li S, Cai Y, Li M, Zhang L, Wang C, Wu B, Yan Q, He Z, Shu L. Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134958. [PMID: 38905974 DOI: 10.1016/j.jhazmat.2024.134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Cai
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Meicheng Li
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Häcker G. Chlamydia in pigs: intriguing bacteria associated with sub-clinical carriage and clinical disease, and with zoonotic potential. Front Cell Dev Biol 2024; 12:1301892. [PMID: 39206090 PMCID: PMC11349706 DOI: 10.3389/fcell.2024.1301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydiae are bacteria that are intriguing and important at the same time. The genus Chlamydia encompasses many species of obligate intracellular organisms: they can multiply only inside the cells of their host organism. Many, perhaps most animals have their own specifically adapted chlamydial species. In humans, the clinically most relevant species is Chlamydia trachomatis, which has particular importance as an agent of sexually transmitted disease. Pigs are the natural host of Chlamydia suis but may also carry Chlamydia abortus and Chlamydia pecorum. C. abortus and possibly C. suis have anthropozoonotic potential, which makes them interesting to human medicine, but all three species bring a substantial burden of disease to pigs. The recent availability of genomic sequence comparisons suggests adaptation of chlamydial species to their respective hosts. In cell biological terms, many aspects of all the species seem similar but non-identical: the bacteria mostly replicate within epithelial cells; they are taken up by the host cell in an endosome that they customize to generate a cytosolic vacuole; they have to evade cellular defences and have to organize nutrient transport to the vacuole; finally, they have to organize their release to be able to infect the next cell or the next host. What appears to be very difficult and challenging to achieve, is in fact a greatly successful style of parasitism. I will here attempt to cover some of the aspects of the infection biology of Chlamydia, from cell biology to immune defence, epidemiology and possibilities of prevention. I will discuss the pig as a host species and the species known to infect pigs but will in particular draw on the more detailed knowledge that we have on species that infect especially humans.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Bontemps Z, Paranjape K, Guy L. Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. FEMS Microbiol Rev 2024; 48:fuae021. [PMID: 39081075 PMCID: PMC11338181 DOI: 10.1093/femsre/fuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.
Collapse
Affiliation(s)
- Zélia Bontemps
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
9
|
Zhang B, Xiao L, Lyu L, Zhao F, Miao M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. MICROBIOME 2024; 12:96. [PMID: 38790063 PMCID: PMC11127453 DOI: 10.1186/s40168-024-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.
Collapse
Affiliation(s)
- Bing Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liwen Xiao
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Scott TJ, Stephenson CJ, Rao S, Queller DC, Strassmann JE. Unpredictable soil conditions can affect the prevalence of a microbial symbiosis. PeerJ 2024; 12:e17445. [PMID: 38784393 PMCID: PMC11114107 DOI: 10.7717/peerj.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Calum J. Stephenson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sandeep Rao
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Rivera J, Valerdi-Negreros JC, Vázquez-Enciso DM, Argueta-Zepeda FS, Vinuesa P. Phylogenomic, structural, and cell biological analyses reveal that Stenotrophomonas maltophilia replicates in acidified Rab7A-positive vacuoles of Acanthamoeba castellanii. Microbiol Spectr 2024; 12:e0298823. [PMID: 38319117 PMCID: PMC10913462 DOI: 10.1128/spectrum.02988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Acanthamoeba species are clinically relevant free-living amoebae (FLA) ubiquitously found in soil and water bodies. Metabolically active trophozoites graze on diverse microbes via phagocytosis. However, functional studies on Rab GTPases (Rabs), which are critical for controlling vesicle trafficking and maturation, are scarce for this FLA. This knowledge gap can be partly explained by the limited genetic tools available for Acanthamoeba cell biology. Here, we developed plasmids to generate fusions of A. castellanii strain Neff proteins to the N- or C-termini of mEGFP and mCherry2. Phylogenomic and structural analyses of the 11 Neff Rab7 paralogs found in the RefSeq assembly revealed that eight of them had non-canonical sequences. After correcting the gene annotation for the Rab7A ortholog, we generated a line stably expressing an mEGFP-Rab7A fusion, demonstrating its correct localization to acidified macropinocytic and phagocytic vacuoles using fluorescence microscopy live cell imaging (LCI). Direct labeling of live Stenotrophomonas maltophilia ESTM1D_MKCAZ16_6a (Sm18) cells with pHrodo Red, a pH-sensitive dye, demonstrated that they reside within acidified, Rab7A-positive vacuoles. We constructed new mini-Tn7 delivery plasmids and tagged Sm18 with constitutively expressed mScarlet-I. Co-culture experiments of Neff trophozoites with Sm18::mTn7TC1_Pc_mScarlet-I, coupled with LCI and microplate reader assays, demonstrated that Sm18 underwent multiple replication rounds before reaching the extracellular medium via non-lytic exocytosis. We conclude that S. maltophilia belongs to the class of bacteria that can use amoeba as an intracellular replication niche within a Stenotrophomonas-containing vacuole that interacts extensively with the endocytic pathway.IMPORTANCEDiverse Acanthamoeba lineages (genotypes) are of increasing clinical concern, mainly causing amoebic keratitis and granulomatous amebic encephalitis among other infections. S. maltophilia ranks among the top 10 most prevalent multidrug-resistant opportunistic nosocomial pathogens and is a recurrent member of the microbiome hosted by Acanthamoeba and other free-living amoebae. However, little is known about the molecular strategies deployed by Stenotrophomonas for an intracellular lifestyle in amoebae and other professional phagocytes such as macrophages, which allow the bacterium to evade the immune system and the action of antibiotics. Our plasmids and easy-to-use microtiter plate co-culture assays should facilitate investigations into the cellular microbiology of Acanthamoeba interactions with Stenotrophomonas and other opportunistic pathogens, which may ultimately lead to the discovery of new molecular targets and antimicrobial therapies to combat difficult-to-treat infections caused by these ubiquitous microbes.
Collapse
Affiliation(s)
- Javier Rivera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Julio C. Valerdi-Negreros
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Diana M. Vázquez-Enciso
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Fulvia-Stefany Argueta-Zepeda
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
Maire J, Collingro A, Horn M, van Oppen MJH. Chlamydiae in corals: shared functional potential despite broad taxonomic diversity. ISME COMMUNICATIONS 2024; 4:ycae054. [PMID: 38707840 PMCID: PMC11070183 DOI: 10.1093/ismeco/ycae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Cnidarians, such as corals and sea anemones, associate with a wide range of bacteria that have essential functions, including nutrient cycling and the production of antimicrobial compounds. Within cnidarians, bacteria can colonize all microhabitats including the tissues. Among them are obligate intracellular bacteria of the phylum Chlamydiota (chlamydiae) whose impact on cnidarian hosts and holobionts, especially corals, remain unknown. Here, we conducted a meta-analysis of previously published 16S rRNA gene metabarcoding data from cnidarians (e.g. coral, jellyfish, and anemones), eight metagenome-assembled genomes (MAGs) of coral-associated chlamydiae, and one MAG of jellyfish-associated chlamydiae to decipher their diversity and functional potential. While the metabarcoding dataset showed an enormous diversity of cnidarian-associated chlamydiae, six out of nine MAGs were affiliated with the Simkaniaceae family. The other three MAGs were assigned to the Parasimkaniaceae, Rhabdochlamydiaceae, and Anoxychlamydiaceae, respectively. All MAGs lacked the genes necessary for an independent existence, lacking any nucleotide or vitamin and most amino acid biosynthesis pathways. Hallmark chlamydial genes, such as a type III secretion system, nucleotide transporters, and genes for host interaction, were encoded in all MAGs. Together these observations suggest an obligate intracellular lifestyle of coral-associated chlamydiae. No unique genes were found in coral-associated chlamydiae, suggesting a lack of host specificity. Additional studies are needed to understand how chlamydiae interact with their coral host, and other microbes in coral holobionts. This first study of the diversity and functional potential of coral-associated chlamydiae improves our understanding of both the coral microbiome and the chlamydial lifestyle and host range.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville 4810, QLD, Australia
| |
Collapse
|
13
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
14
|
Lin C, Li LJ, Ren K, Zhou SYD, Isabwe A, Yang LY, Neilson R, Yang XR, Cytryn E, Zhu YG. Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere. ISME COMMUNICATIONS 2023; 3:94. [PMID: 37660098 PMCID: PMC10475086 DOI: 10.1038/s43705-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Li-Juan Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Kexin Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agriculture Research Organization, 7528809, Rishon Lezion, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
15
|
Boutry J, Buysse M, Tissot S, Cazevielle C, Hamede R, Dujon AM, Ujvari B, Giraudeau M, Klimovich A, Thomas F, Tökölyi J. Spontaneously occurring tumors in different wild-derived strains of hydra. Sci Rep 2023; 13:7449. [PMID: 37156860 PMCID: PMC10167321 DOI: 10.1038/s41598-023-34656-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Hydras are freshwater cnidarians widely used as a biological model to study different questions such as senescence or phenotypic plasticity but also tumoral development. The spontaneous tumors found in these organisms have been so far described in two female lab strains domesticated years ago (Hydra oligactis and Pelmatohydra robusta) and the extent to which these tumors can be representative of tumors within the diversity of wild hydras is completely unknown. In this study, we examined individuals isolated from recently sampled wild strains of different sex and geographical origin, which have developed outgrowths looking like tumors. These tumefactions have common features with the tumors previously described in lab strains: are composed of an accumulation of abnormal cells, resulting in a similar enlargement of the tissue layers. However, we also found diversity within these new types of tumors. Indeed, not only females, but also males seem prone to form these tumors. Finally, the microbiota associated to these tumors is different from the one involved in the previous lineages exhibiting tumors. We found that tumorous individuals hosted yet undescribed Chlamydiales vacuoles. This study brings new insights into the understanding of tumor susceptibility and diversity in brown hydras from different origins.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France.
| | - Marie Buysse
- MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Chantal Cazevielle
- Institut des Neurosciences de Montpellier: Electronic Microscopy Facilities, INSERM U 1298, Université Montpellier, Montpellier, France
| | - Rodrigo Hamede
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Antoine M Dujon
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 223 Rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
16
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Li LJ, Lin C, Huang XR, An XL, Li WJ, Su JQ, Zhu YG. Characterizing potential pathogens from intracellular bacterial community of protists in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2023; 171:107723. [PMID: 36584423 DOI: 10.1016/j.envint.2022.107723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Protists are a trophically diverse and biogeochemically significant component of water environments and are widely reported as hosts of bacteria. However, the potential role of protists in wastewater treatment plants (WWTPs) as reservoirs for human pathogens does not appear to have received adequate attention. Here, a combination of fluorescence-activated cell sorting and Illumina sequencing was applied to characterize the dynamics of the internalized bacterial community of the enriched protists from the influents and effluents of five WWTPs. The results showed that Proteobacteria (mainly Betaproteobacteria) dominate the intracellular bacterial communities of protists in both influents and effluents of WWTPs, accounting for 72.6% of the total intracellular bacterial communities. The most frequently detected genus was Sulfuricurvum in the influent samples, Chryseobacterium and Pseudomonas were most prevalent in the effluent samples. Compared with the influents, a more diverse and abundant intracellular bacterial community was observed in the effluents. Moreover, the potential intracellular bacterial pathogens were 26 times higher in effluents than in influents, with Pseudomonas fluorescens and Pseudomonas putida significantly enriched in effluents. This work provides insights into the dynamics of bacterial communities and potential pathogens harbored by protists in the influents and effluents from WWTPs, contributing to the improved evaluation of biosafety in WWTPs.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenshuo Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Rong Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. THE ISME JOURNAL 2022; 16:2725-2740. [PMID: 36042324 PMCID: PMC9666466 DOI: 10.1038/s41396-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host interactions thus far remain unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 18.7% of bacteria. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Candidatus Sororchlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Based on gene content, sponge-associated chlamydiae resemble members from the same family more than sponge-associated chlamydiae of other families, and have greater metabolic versatility than known chlamydial animal pathogens. Sponge-associated chlamydiae are also enriched in genes for degrading diverse compounds found in sponges. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an unexplored source of novel natural products. This finding suggests that Chlamydiae members may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of the Chlamydiae phylum on marine ecosystems.
Collapse
|
19
|
DuBose JG, Robeson MS, Hoogshagen M, Olsen H, Haselkorn TS. Complexities of Inferring Symbiont Function: Paraburkholderia Symbiont Dynamics in Social Amoeba Populations and Their Impacts on the Amoeba Microbiota. Appl Environ Microbiol 2022; 88:e0128522. [PMID: 36043858 PMCID: PMC9499018 DOI: 10.1128/aem.01285-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The relationship between the social amoeba Dictyostelium discoideum and its endosymbiotic bacteria Paraburkholderia provides a model system for studying the development of symbiotic relationships. Laboratory experiments have shown that any of three species of the Paraburkholderia symbiont allow D. discoideum food bacteria to persist through the amoeba life cycle and survive in amoeba spores rather than being fully digested. This phenomenon is termed "farming," as it potentially allows spores dispersed to food-poor locations to grow their own. The occurrence and impact of farming in natural populations, however, have been a challenge to measure. Here, we surveyed natural D. discoideum populations and found that only one of the three symbiont species, Paraburkholderia agricolaris, remained prevalent. We then explored the effect of Paraburkholderia on the amoeba microbiota, expecting that by facilitating bacterial food carriage, it would diversify the microbiota. Contrary to our expectations, Paraburkholderia tended to infectiously dominate the D. discoideum microbiota, in some cases decreasing diversity. Similarly, we found little evidence for Paraburkholderia facilitating the carriage of particular food bacteria. These findings highlight the complexities of inferring symbiont function in nature and suggest the possibility that Paraburkholderia could be playing multiple roles for its host. IMPORTANCE The functions of symbionts in natural populations can be difficult to completely discern. The three Paraburkholderia bacterial farming symbionts of the social amoeba Dictyostelium discoideum have been shown in the laboratory environment to allow the amoebas to carry, rather than fully digest, food bacteria. This potentially provides a fitness benefit to the amoebas upon dispersal to food-poor environments, as they could grow their food. We expected that meaningful food carriage would manifest as a more diverse microbiota. Surprisingly, we found that Paraburkholderia tended to infectiously dominate the D. discoideum microbiota rather than diversifying it. We determined that only one of the three Paraburkholderia symbionts has increased in prevalence in natural populations in the past 20 years, suggesting that this symbiont may be beneficial, however. These findings suggest that Paraburkholderia may have an alternative function for its host, which drives its prevalence in natural populations.
Collapse
Affiliation(s)
- James G. DuBose
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Hunter Olsen
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Tamara S. Haselkorn
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
20
|
Arthofer P, Delafont V, Willemsen A, Panhölzl F, Horn M. Defensive symbiosis against giant viruses in amoebae. Proc Natl Acad Sci U S A 2022; 119:e2205856119. [PMID: 36037367 PMCID: PMC9457554 DOI: 10.1073/pnas.2205856119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 12/01/2022] Open
Abstract
Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.
Collapse
Affiliation(s)
- Patrick Arthofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory, UMR CNRS, Université de Poitiers, 7267 Poitiers, France
| | - Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Florian Panhölzl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
21
|
Cavallaro A, Rhoads WJ, Huwiler SG, Stachler E, Hammes F. Potential probiotic approaches to control Legionella in engineered aquatic ecosystems. FEMS Microbiol Ecol 2022; 98:6604835. [PMID: 35679082 PMCID: PMC9333994 DOI: 10.1093/femsec/fiac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Opportunistic pathogens belonging to the genus Legionella are among the most reported waterborne-associated pathogens in industrialized countries. Legionella colonize a variety of engineered aquatic ecosystems and persist in biofilms where they interact with a multitude of other resident microorganisms. In this review, we assess how some of these interactions could be used to develop a biological-driven “probiotic” control approach against Legionella. We focus on: (i) mechanisms limiting the ability of Legionella to establish and replicate within some of their natural protozoan hosts; (ii) exploitative and interference competitive interactions between Legionella and other microorganisms; and (iii) the potential of predatory bacteria and phages against Legionella. This field is still emergent, and we therefore specifically highlight research for future investigations, and propose perspectives on the feasibility and public acceptance of a potential probiotic approach.
Collapse
Affiliation(s)
- Alessio Cavallaro
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - William J Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Simona G Huwiler
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Elyse Stachler
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
22
|
Villada JC, Schulz F. The endosymbiotic box of protective tricks. Nat Rev Microbiol 2022; 20:255. [PMID: 35352029 DOI: 10.1038/s41579-022-00727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Wang YJ, Chen CH, Chen JW, Lin WC. Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion. Microbiol Spectr 2021; 9:e0051221. [PMID: 34935418 PMCID: PMC8693914 DOI: 10.1128/spectrum.00512-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Haselkorn TS, Jimenez D, Bashir U, Sallinger E, Queller DC, Strassmann JE, DiSalvo S. Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in wild isolates of the model social amoeba Dictyostelium discoideum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:708-719. [PMID: 34159734 PMCID: PMC8518690 DOI: 10.1111/1758-2229.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/12/2021] [Indexed: 05/24/2023]
Abstract
Amoebae interact with bacteria in multifaceted ways. Amoeba predation can serve as a selective pressure for the development of bacterial virulence traits. Bacteria may also adapt to life inside amoebae, resulting in symbiotic relationships. Indeed, particular lineages of obligate bacterial endosymbionts have been found in different amoebae. Here, we screened an extensive collection of Dictyostelium discoideum wild isolates for the presence of these bacterial symbionts using endosymbiont specific PCR primers. We find that these symbionts are surprisingly common, identified in 42% of screened isolates (N = 730). Members of the Chlamydiae phylum are particularly prevalent, occurring in 27% of the amoeba isolated. They are novel and phylogenetically distinct from other Chlamydiae. We also found Amoebophilus symbionts in 8% of screened isolates (N = 730). Antibiotic-cured amoebae behave similarly to their Chlamydiae or Amoebophilus-infected counterparts, suggesting that these endosymbionts do not significantly impact host fitness, at least in the laboratory. We found several natural isolates were co-infected with multiple endosymbionts, with no obvious fitness effect of co-infection under laboratory conditions. The high prevalence and novelty of amoeba endosymbiont clades in the model organism D. discoideum opens the door to future research on the significance and mechanisms of amoeba-symbiont interactions.
Collapse
Affiliation(s)
- Tamara S. Haselkorn
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - Daniela Jimenez
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Usman Bashir
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Eleni Sallinger
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Joan E. Strassmann
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Susanne DiSalvo
- Department of Biological SciencesSouthern Illinois University Edwardsville44 Circle Drive, EdwardsvilleIL62026USA
| |
Collapse
|
25
|
First Evidence for Colonizing of Acanthamoeba T4 Genotype in Urinary Tracts of Patients with Recurrent Urinary Tract Infections. Acta Parasitol 2021; 66:932-937. [PMID: 33713274 DOI: 10.1007/s11686-021-00358-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Limited evidence about the presence of Acanthamoeba spp. in urine specimens collected from urinary catheters of the patients in the intensive care units persuaded our study. No evidence has been found about colonizing of Acanthamoeba spp., in urinary tracts of patients with recurrent urinary tract infections (UTIs) yet. METHODS In this study, 50 urine samples were collected from patients presenting with recurrent UTI. The type of bacteria causing UTI was determined by using bacteriological tests. To cultivate Acanthamoeba spp., in a sterile condition, 10 mL of urine was centrifuged and the sediment was cultivated on non-nutrient agar. Genotypes were determined by sequencing the DF3 region of the 18S rRNA gene. RESULTS The bacteriological test findings on the urine samples of the UTI patients (n = 30) demonstrated that those were found to be positive for Escherichia coli (n = 17), Staphylococcus aureus (n = 6), Pseudomonas aeruginosa (n = 4) and Klebsiella spp. (n = 3) respectively. Moreover, a total of 50 urine samples was examined; 6 (6/50; 12%) and 11 (11/50; 22%) were positive by using culture and the PCR test for Acanthamoeba spp., respectively. Sequencing analysis showed all isolates were T4 genotype. CONCLUSIONS Our data showed that the high relative prevalence of Acanthamoeba T4 genotype spp., in the urine of recurrent UTI patients. As well as, providing the first evidence for colonizing of the Acanthamoeba in the urinary tracts of patients with recurrent UTIs. These findings, warrant further investigation among those patients to fully appraise the role of Acanthamoeba spp., as possible latent carriers for resistant bacteria and biofilm formation in the future.
Collapse
|
26
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
27
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
28
|
Henriquez FL, Mooney R, Bandel T, Giammarini E, Zeroual M, Fiori PL, Margarita V, Rappelli P, Dessì D. Paradigms of Protist/Bacteria Symbioses Affecting Human Health: Acanthamoeba species and Trichomonas vaginalis. Front Microbiol 2021; 11:616213. [PMID: 33488560 PMCID: PMC7817646 DOI: 10.3389/fmicb.2020.616213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Ever since the publication of the seminal paper by Lynn Margulis in 1967 proposing the theory of the endosymbiotic origin of organelles, the study of the symbiotic relationships between unicellular eukaryotes and prokaryotes has received ever-growing attention by microbiologists and evolutionists alike. While the evolutionary significance of the endosymbiotic associations within protists has emerged and is intensively studied, the impact of these relationships on human health has been seldom taken into account. Microbial endosymbioses involving human eukaryotic pathogens are not common, and the sexually transmitted obligate parasite Trichomonas vaginalis and the free-living opportunistic pathogen Acanthamoeba represent two unique cases in this regard, to date. The reasons of this peculiarity for T. vaginalis and Acanthamoeba may be due to their lifestyles, characterized by bacteria-rich environments. However, this characteristic does not fully explain the reason why no bacterial endosymbiont has yet been detected in unicellular eukaryotic human pathogens other than in T. vaginalis and Acanthamoeba, albeit sparse and poorly investigated examples of morphological identification of bacteria-like microorganisms associated with Giardia and Entamoeba were reported in the past. In this review article we will present the body of experimental evidences revealing the profound effects of these examples of protist/bacteria symbiosis on the pathogenesis of the microbial species involved, and ultimately their impact on human health.
Collapse
Affiliation(s)
- Fiona L Henriquez
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Ronnie Mooney
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Timothy Bandel
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Elisa Giammarini
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Mohammed Zeroual
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| | - Valentina Margarita
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Paola Rappelli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| | - Daniele Dessì
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| |
Collapse
|
29
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
30
|
Sallinger E, Robeson MS, Haselkorn TS. Characterization of the bacterial microbiomes of social amoebae and exploration of the roles of host and environment on microbiome composition. Environ Microbiol 2020; 23:126-142. [PMID: 33063404 DOI: 10.1111/1462-2920.15279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/04/2023]
Abstract
As predators of bacteria, amoebae select for traits that allow bacteria to become symbionts by surviving phagocytosis and exploiting the eukaryotic intracellular environment. Soil-dwelling social amoebae can help us answer questions about the natural ecology of these amoeba-bacteria symbioses along the pathogen-mutualist spectrum. Our objective was to characterize the natural bacterial microbiome of phylogenetically and morphologically diverse social amoeba species using next-generation sequencing of 16S rRNA amplicons directly from amoeba fruiting bodies. We found six phyla of amoeba-associated bacteria: Proteobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, Firmicutes, and Acidobacteria. The most common associates of amoebae were classified to order Chlamydiales and genus Burkholderia-Caballeronia-Paraburkholderia. These bacteria were present in multiple amoeba species across multiple locations. While there was substantial intraspecific variation, there was some evidence for host specificity and differentially abundant taxa between different amoeba hosts. Amoebae microbiomes were distinct from the microbiomes of their soil habitat, and soil pH affected amoeba microbiome diversity. Alpha-diversity was unsurprisingly lower in amoebae samples compared with soil, but beta-diversity between amoebae samples was higher than between soil samples. Further exploration of social amoebae microbiomes may help us understand the roles of bacteria, host, and environment on symbiotic interactions and microbiome formation in basal eukaryotic organisms.
Collapse
Affiliation(s)
- Eleni Sallinger
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| |
Collapse
|
31
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Watanabe K, Higuchi Y, Shimmura M, Tachibana M, Fujishima M, Shimizu T, Watarai M. Peculiar Paramecium Hosts Fail to Establish a Stable Intracellular Relationship With Legionella pneumophila. Front Microbiol 2020; 11:596731. [PMID: 33193278 PMCID: PMC7644925 DOI: 10.3389/fmicb.2020.596731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila, an intracellular human pathogen, establishes intracellular relationships with several protist hosts, including Paramecium caudatum. L. pneumophila can escape the normal digestion process and establish intracellular relationships in Paramecium. In this study, we identify new Paramecium strains that significantly reduce the number of L. pneumophila during infection. As a result, stable intracellular relationships between L. pneumophila and these Paramecium strains were not observed. These digestion-type Paramecium also showed high efficiency for Escherichia coli elimination compared to other strains of Paramecium. These results suggest that the digestion-type strains identified have high non-specific digestion activity. Although we evaluated the maturation process of Legionella-containing vacuoles (LCVs) in the Paramecium strains using LysoTracker, there were no discriminative changes in these LCVs compared to other Paramecium strains. Detailed understanding of the mechanisms of high digestion efficiency in these strains could be applied to water purification technologies and L. pneumophila elimination from environmental water.
Collapse
Affiliation(s)
- Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Yusei Higuchi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Mizuki Shimmura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masato Tachibana
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan.,Department of Research Infrastructure, National BioResource Project of Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masahiro Fujishima
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan.,Department of Research Infrastructure, National BioResource Project of Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
33
|
Tsai CM, Chen JW, Lin WC. Effects of Acanthamoeba castellanii on the dissolved oxygen and the microbial community under the experimental aquatic model. Exp Parasitol 2020; 218:107985. [PMID: 32918877 DOI: 10.1016/j.exppara.2020.107985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 08/30/2020] [Indexed: 01/16/2023]
Abstract
Acanthamoeba castellanii is a protist that has a high predation efficiency for bacteria in a number of monoxenic culture experiments. However, the role of A. castellanii in the microbial community is still unknown because of the lack of studies on multiple-species interactions. The aim of this study was to investigate the change of bacterial composition after A. castellanii emerges in a water environment. We added A. castellanii to an environmental water sample and incubated it for two days. Then, we performed 16S ribosomal RNA sequencing techniques to analyze the changes in bacterial composition. In this study, A. castellanii slightly increased the relative abundance of a few opportunistic pathogens, such as Legionella, Roseomonas, and Haemophilus. This result may be related to the training ground hypothesis. On the other hand, the growth of some bacteria was inhibited, such as Cyanobacteria and Firmicutes. Although A. castellanii did not drastically change the whole bacterial community, we surprisingly found the dissolved oxygen concentration was increased after incubation with A. castellanii. We applied environmental water at the laboratory scale to investigate the interactions among A. castellanii, complex microbial communities and the environment. We identified the bacteria that are sensitive to A. castellanii and further found the novel relationship between dissolved oxygen and microbial interaction. Our results helped to clarify the role of A. castellanii in microbial communities.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Gomes TS, Vaccaro L, Magnet A, Izquierdo F, Ollero D, Martínez-Fernández C, Mayo L, Moran M, Pozuelo MJ, Fenoy S, Hurtado C, Del Águila C. Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137080. [PMID: 32114219 DOI: 10.1016/j.scitotenv.2020.137080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous and many isolates have been shown to be infected with amoeba-resisting bacteria, as the example of Acanthamoeba and Legionella interaction. Due to the high environmental prevalence of Acanthamoeba. in the Castilian Plateau (Spain), the aims of this work were to investigate the occurrence of Acanthamoeba and other FLA in water from several sampling points from four Drinking Water Treatment Plants (DWTP) and to investigate the presence of Legionella spp. and other amoeba-resisting bacteria in biofilms in raw and finished water, taking into account that no legislation exists for this protozoa control. Acanthamoeba was detected at different sampling points, and sand filters seemed to contribute to amoebic enrichment. After ozonation, a temporary decrease in viable amoebae was observed. The genotypes detected were T3, T4, and T5, revealing the first report of genotype T5 in waters from this region. Moreover, Balamuthia mandrillaris, Vermamoeba vermiformis and Paravahlkampfia sp. were detected. Regarding Legionella, PCR detection in raw and finished water was higher than by agar culture, but even higher after Acanthamoeba co-culture. Also, Legionella's presence was higher in raw water than in finished water. The decrease of free Legionella observed from raw (27.5%, by PCR) to finished water (3.4% by PCR) contrasted with the increase of Legionella-infected FLA from raw (30.7%) to finished water (52%). At biofilm, free Legionella was not detected, and the percentage of infected FLA was low (3.8%). Legionella species identified in these samples were L. drozanskii, L. donaldsonii and L. feeleii. Additionally, Acanthamoeba co-culture led to the isolation of Pseudomonas aeruginosa, P. stutzeri, P. fluorecens, Achromobacter xylosoxidans and Stenotrophomonas maltophilia. The highly disseminated presence of Acanthamoeba and the detection of amoeba-resisting bacteria inside amoebae highlight the importance of developing methods for controlling FLA in order to limit human pathogenic amoeba-resisting bacteria survival to the water purification processes.
Collapse
Affiliation(s)
- Thiago Santos Gomes
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil
| | - Lucianna Vaccaro
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Angela Magnet
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Fernando Izquierdo
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Dolores Ollero
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Carmen Martínez-Fernández
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Laura Mayo
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - María Moran
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - María José Pozuelo
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Soledad Fenoy
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Carolina Hurtado
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain
| | - Carmen Del Águila
- University San Pablo CEU, Faculty of Pharmacy, Urbanización Monteprincipe s/n, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
35
|
Apoptosis Functions in Defense against Infection of Mammalian Cells with Environmental Chlamydiae. Infect Immun 2020; 88:IAI.00851-19. [PMID: 32179584 DOI: 10.1128/iai.00851-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
Apoptotic cell death can be an efficient defense reaction of mammalian cells infected with obligate intracellular pathogens; the host cell dies and the pathogen cannot replicate. While this is well established for viruses, there is little experimental support for such a concept in bacterial infections. All Chlamydiales are obligate intracellular bacteria, and different species infect vastly different hosts. Chlamydia trachomatis infects human epithelial cells; Parachlamydia acanthamoebae replicates in amoebae. We here report that apoptosis impedes growth of P. acanthamoebae in mammalian cells. In HeLa human epithelial cells, P. acanthamoebae infection induced apoptosis, which was inhibited when mitochondrial apoptosis was blocked by codeletion of the mediators of mitochondrial apoptosis, Bax and Bak, by overexpression of Bcl-XL or by deletion of the apoptosis initiator Noxa. Deletion of Bax and Bak in mouse macrophages also inhibited apoptosis. Blocking apoptosis permitted growth of P. acanthamoebae in HeLa cells, as measured by fluorescence in situ hybridization, assessment of genome replication and protein synthesis, and the generation of infectious progeny. Coinfection with C. trachomatis inhibited P. acanthamoebae-induced apoptosis, suggesting that the known antiapoptotic activity of C. trachomatis can also block P. acanthamoebae-induced apoptosis. C. trachomatis coinfection could not rescue P. acanthamoebae growth in HeLa; in coinfected cells, C. trachomatis even suppressed the growth of P. acanthamoebae independently of apoptosis, while P. acanthamoebae surprisingly enhanced the growth of C. trachomatis Our results show that apoptosis can be used in the defense of mammalian cells against obligate intracellular bacteria and suggest that the known antiapoptotic activity of human pathogenic chlamydiae is indeed required to permit their growth in human cells.
Collapse
|
36
|
Draft Genome Sequences of Chlamydiales Bacterium STE3 and Neochlamydia sp. Strain AcF84, Endosymbionts of Acanthamoeba spp. Microbiol Resour Announc 2020; 9:9/20/e00220-20. [PMID: 32409535 PMCID: PMC7225534 DOI: 10.1128/mra.00220-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chlamydiales bacterium STE3 and Neochlamydia sp. strain AcF84 are obligate intracellular symbionts of Acanthamoeba spp. isolated from the biofilm of a littoral cave wall and gills from striped tiger leaf fish, respectively. We report the draft genome sequences of these two environmental chlamydiae affiliated with the family Parachlamydiaceae.
Collapse
|
37
|
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Curr Biol 2020; 30:925-933.e3. [PMID: 31978335 DOI: 10.1016/j.cub.2019.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada.
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Wein T, Romero Picazo D, Blow F, Woehle C, Jami E, Reusch TB, Martin WF, Dagan T. Currency, Exchange, and Inheritance in the Evolution of Symbiosis. Trends Microbiol 2019; 27:836-849. [DOI: 10.1016/j.tim.2019.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
|