1
|
Jiao W, Lei T, Duan Q, Wang J, Yang Y, Li G, Zhang R, Pan H, Zhang Y. Transcription Factor SsNdt80b Maintains Optimal Expression of SsSNF1 to Modulate Growth and Pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2025; 26:e70088. [PMID: 40251990 PMCID: PMC12008772 DOI: 10.1111/mpp.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Microorganisms use versatile strategies to facilitate the colonisation of hosts, through remodelling transcription and metabolism to accommodate growth under harsh and hostile environments. Sclerotinia sclerotiorum is a typical necrotrophic pathogen that causes Sclerotinia stem rot in more than 700 species, resulting in serious economic losses. How S. sclerotiorum integrates mechanisms for nutrient acquisition and utilisation to maintain optimal growth and pathogenicity is still indistinct. Here, we demonstrate that Ndt80 family transcription factors (SsNdt80a,b,c) are involved in carbon source utilisation and have different roles in the growth, sclerotia formation, infection cushion development, and the virulence of S. sclerotiorum. SsNdt80b could bind the promoter of SsSNF1 and modulate the transcriptional activity of SsSNF1. Silencing SsSNF1 resulted in defects in hyphal growth and infection cushion formation, reduced cell wall-degrading enzymes, and reduced pathogenicity of S. sclerotiorum. A model is proposed in which SsNdt80b responds to carbon sources and modulates SsSnf1 to regulate the development and pathogenicity of S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Tianyi Lei
- College of Plant SciencesJilin UniversityChangchunChina
| | - Qingyu Duan
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jingyuan Wang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yushan Yang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Guang Li
- Baicheng Academy of Agricultural SciencesBaichengChina
| | - Rongbao Zhang
- Jilin Province Bada Pesticide Co. Ltd.GongzhulingChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|
2
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
3
|
Estoppey A, Vallat-Michel A, Chain PS, Bindschedler S, Junier P. Impact of Oxalic Acid Consumption and pH on the In Vitro Biological Control of Oxalogenic Phytopathogen Sclerotinia sclerotiorum. J Fungi (Basel) 2025; 11:191. [PMID: 40137229 PMCID: PMC11942934 DOI: 10.3390/jof11030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
The phytopathogenic fungus Sclerotinia sclerotiorum has a wide host range and causes significant economic losses in crops worldwide. This pathogen uses oxalic acid as a virulence factor; for this reason, the degradation of this organic acid by oxalotrophic bacteria has been proposed as a biological control approach. However, previous studies on the potential role of oxalotrophy in biocontrol did not investigate the differential effect of oxalic acid consumption and the subsequent pH alkalinisation on fungal growth. In this study, confrontation experiments on different media using a wild-type (WT) strain of S. sclerotiorum and an oxalate-deficient mutant (strain Δoah) with the soil oxalotrophic bacteria Cupriavidus necator and Cupriavidus oxalaticus showed the combined effect of media composition on oxalic acid production, pH, and fungal growth control. Oxalotrophic bacteria were able to control S. sclerotiorum only in the medium in which oxalic acid was produced. However, the deficient Δoah mutant was also controlled, indicating that the consumption of oxalic acid is not the sole mechanism of biocontrol. WT S. sclerotiorum acidified the medium when inoculated alone, while for both fungi, the pH of the medium changed from neutral to alkaline in the presence of bacteria. Therefore, medium alkalinisation independent of oxalotrophy contributes to fungal growth control.
Collapse
Affiliation(s)
- Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.E.); (S.B.)
| | - Armelle Vallat-Michel
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| | - Patrick S. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.E.); (S.B.)
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; (A.E.); (S.B.)
| |
Collapse
|
4
|
Huo D, Westrick NM, Nelson A, Kabbage M, Koch P. The Role of Oxalic Acid in Clarireedia jacksonii Virulence and Development on Creeping Bentgrass. PHYTOPATHOLOGY 2024; 114:2394-2400. [PMID: 39145740 DOI: 10.1094/phyto-03-24-0094-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dollar spot is a destructive foliar disease of amenity turfgrass caused by Clarireedia spp. fungi, mainly C. jacksonii, on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as Sclerotinia sclerotiorum; however, the role of OA in the pathogenic development of C. jacksonii remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (oah) gene that is required for the biosynthesis of OA was deleted from a C. jacksonii wild-type (WT) strain. Two independent knockout mutants, ΔCjoah-1 and ΔCjoah-2, were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants ΔCjoah-1 and ΔCjoah-2 exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in C. jacksonii virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daowen Huo
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Nathaniel M Westrick
- Valley Laboratory, Connecticut Agricultural Experiment Station, Windsor, CT, U.S.A
| | - Ashley Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, U.S.A
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Paul Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
5
|
Singh A, Anwer M, Israr J, Kumar A. Advances in CRISPR-Cas systems for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:83-107. [PMID: 39266189 DOI: 10.1016/bs.pmbts.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Fungi contain a wide range of bioactive secondary metabolites (SMs) that have numerous applications in various fields, including agriculture, medicine, human health, and more. It is common for genes responsible for the production of secondary metabolites (SMs) to form biosynthetic gene clusters (BGCs). The identification and analysis of numerous unexplored gene clusters (BGCs) and their corresponding substances (SMs) has been significantly facilitated by the recent advancements in genomic and genetic technologies. Nevertheless, the exploration of secondary metabolites with commercial value is impeded by a variety of challenges. The emergence of modern CRISPR/Cas technologies has brought about a paradigm shift in fungal genetic engineering, significantly streamlining the process of discovering new bioactive compounds. This study begins with an examination of fungal biosynthetic gene clusters (BGCs) and their interconnections with the secondary metabolites (SMs) they generate. Following that, a brief summary of the conventional methods employed in fungal genetic engineering is provided. This study explores various sophisticated CRISPR/Cas-based methodologies and their utilization in examining the synthesis of secondary metabolites (SMs) in fungi. The chapter provides an in-depth analysis of the limitations and obstacles encountered in CRISPR/Cas-based systems when applied to fungal genetic engineering. It also proposes promising avenues for future research to optimize the efficiency of these systems.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Monisa Anwer
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India
| | - Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow, Barabanki, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
6
|
Pant P, Kaur J. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. PLANTA 2024; 259:153. [PMID: 38744752 DOI: 10.1007/s00425-024-04430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
MAIN CONCLUSION The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.
Collapse
Affiliation(s)
- Pratibha Pant
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
7
|
Jiao W, Li M, Lei T, Liu X, Zhang J, Hu J, Zhang X, Liu J, Shi S, Pan H, Zhang Y. The APSES Transcription Factor SsStuA Regulating Cell Wall Integrity Is Essential for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:238. [PMID: 38667909 PMCID: PMC11051248 DOI: 10.3390/jof10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) family transcription factors play crucial roles in various biological processes of fungi, however, their functional characterization in phytopathogenic fungi is limited. In this study, we explored the role of SsStuA, a typical APSES transcription factor, in the regulation of cell wall integrity (CWI), sclerotia formation and pathogenicity of Sclerotinia sclerotiorum, which is a globally important plant pathogenic fungus. A deficiency of SsStuA led to abnormal phosphorylation level of SsSmk3, the key gene SsAGM1 for UDP-GlcNAc synthesis was unable to respond to cell wall stress, and decreased tolerance to tebuconazole. In addition, ΔSsStuA was unable to form sclerotia but produced more compound appressoria. Nevertheless, the virulence of ΔSsStuA was significantly reduced due to the deficiency of the invasive hyphal growth and increased susceptibility to hydrogen peroxide. We also revealed that SsStuA could bind to the promoter of catalase family genes which regulate the expression of catalase genes. Furthermore, the level of reactive oxygen species (ROS) accumulation was found to be increased in ΔSsStuA. In summary, SsStuA, as a core transcription factor involved in the CWI pathway and ROS response, is required for vegetative growth, sclerotia formation, fungicide tolerance and the full virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Maoxiang Li
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Tianyi Lei
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoli Liu
- Shandong Yellow River Delta National Nature Reserve Management Committee, Scientific Research Center, Dongying 257091, China
| | - Junting Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jun Hu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Westrick NM, Dominguez EG, Bondy M, Hull CM, Smith DL, Kabbage M. A single laccase acts as a key component of environmental sensing in a broad host range fungal pathogen. Commun Biol 2024; 7:348. [PMID: 38514801 PMCID: PMC10957995 DOI: 10.1038/s42003-024-06034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Secreted laccases are important enzymes on a broad ecological scale for their role in mediating plant-microbe interactions, but within ascomycete fungi these enzymes have been primarily associated with melanin biosynthesis. In this study, a putatively secreted laccase, Sslac2, was characterized from the broad-host-range plant pathogen Sclerotinia sclerotiorum, which is largely unpigmented and is not dependent on melanogenesis for plant infection. Gene knockouts of Sslac2 demonstrate wide ranging developmental phenotypes and are functionally non-pathogenic. These mutants also displayed indiscriminate growth behaviors and enhanced biomass formation, seemingly as a result of their inability to respond to canonical environmental growth cues, a phenomenon further confirmed through chemical stress, physiological, and transcriptomic analyses. Transmission and scanning electron microscopy demonstrate apparent differences in extracellular matrix structure between WT and mutant strains that likely explain the inability of the mutants to respond to their environment. Targeting Sslac2 using host-induced gene silencing significantly improved resistance to S. sclerotiorum, suggesting that fungal laccases could be a valuable target of disease control. Collectively, we identified a laccase critical to the development and virulence of the broad-host-range pathogen S. sclerotiorum and propose a potentially novel role for fungal laccases in modulating environmental sensing.
Collapse
Affiliation(s)
- Nathaniel M Westrick
- Valley Laboratory, Connecticut Agricultural Experiment Station, Windsor, CT, USA
| | - Eddie G Dominguez
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Madeline Bondy
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Jiao W, Ding W, Rollins JA, Liu J, Zhang Y, Zhang X, Pan H. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0001323. [PMID: 36943069 PMCID: PMC10100786 DOI: 10.1128/spectrum.00013-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that cross-talks with its hosts for control of cell-death pathways for colonization. Target of rapamycin (TOR) is a central regulator that controls cell growth, intracellular metabolism, and stress responses in a variety of eukaryotes, but little is known about TOR signaling in S. sclerotiorum. In this study, we identified a conserved TOR signaling pathway and characterized SsTOR as a critical component of this pathway. Hyphal growth of S. sclerotiorum was retarded by silencing SsTOR, moreover, sclerotia and compound appressoria formation were severely disrupted. Notably, pathogenicity assays of strains shows that the virulence of the SsTOR-silenced strains were dramatically decreased. SsTOR was determined to participate in cell wall integrity (CWI) by regulating the phosphorylation level of SsSmk3, a core MAP kinase in the CWI pathway. Importantly, the inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. Taken together, our results suggest that SsTOR is a global regulator controlling cell growth, stress responses, cell wall integrity, autophagy, and virulence of S. sclerotiorum. IMPORTANCE TOR is a conserved protein kinase that regulates cell growth and metabolism in response to growth factors and nutrient abundance. Here, we used gene silencing to characterize SsTOR, which is a critical component of TOR signaling pathway. SsTOR-silenced strains have limited mycelium growth, and the virulence of the SsTOR-silenced strains was decreased. Phosphorylation analysis indicated that SsTOR influenced CWI by regulating the phosphorylation level of SsSmk3. Autophagy is essential to preserve cellular homeostasis in response to cellular and environmental stresses. Inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. These findings further indicated that SsTOR is a global regulator of the growth, development, and pathogenicity of S. sclerotiorum in multiple ways.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Weichen Ding
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. J Fungi (Basel) 2023; 9:jof9030362. [PMID: 36983530 PMCID: PMC10058990 DOI: 10.3390/jof9030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Fungi represent an important source of bioactive secondary metabolites (SMs), which have wide applications in many fields, including medicine, agriculture, human health, and many other industries. The genes involved in SM biosynthesis are usually clustered adjacent to each other into a region known as a biosynthetic gene cluster (BGC). The recent advent of a diversity of genetic and genomic technologies has facilitated the identification of many cryptic or uncharacterized BGCs and their associated SMs. However, there are still many challenges that hamper the broader exploration of industrially important secondary metabolites. The recent advanced CRISPR/Cas system has revolutionized fungal genetic engineering and enabled the discovery of novel bioactive compounds. In this review, we firstly introduce fungal BGCs and their relationships with associated SMs, followed by a brief summary of the conventional strategies for fungal genetic engineering. Next, we introduce a range of state-of-the-art CRISPR/Cas-based tools that have been developed and review recent applications of these methods in fungi for research on the biosynthesis of SMs. Finally, the challenges and limitations of these CRISPR/Cas-based systems are discussed and directions for future research are proposed in order to expand their applications and improve efficiency for fungal genetic engineering.
Collapse
|
11
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Westrick NM, Park SC, Keller NP, Smith DL, Kabbage M. A broadly conserved fungal alcohol oxidase (AOX) facilitates fungal invasion of plants. MOLECULAR PLANT PATHOLOGY 2023; 24:28-43. [PMID: 36251755 PMCID: PMC9742500 DOI: 10.1111/mpp.13274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Alcohol oxidases (AOXs) are ecologically important enzymes that facilitate a number of plant-fungal interactions. Within Ascomycota they are primarily associated with methylotrophy, as a peroxisomal AOX catalysing the conversion of methanol to formaldehyde in methylotrophic yeast. In this study we demonstrate that AOX orthologues are phylogenetically conserved proteins that are common in the genomes of nonmethylotrophic, plant-associating fungi. Additionally, AOX orthologues are highly expressed during infection in a range of diverse pathosystems. To study the role of AOX in plant colonization, AOX knockout mutants were generated in the broad host range pathogen Sclerotinia sclerotiorum. Disease assays in soybean showed that these mutants had a significant virulence defect as evidenced by markedly reduced stem lesions and mortality rates. Chemical genomics suggested that SsAOX may function as an aromatic AOX, and growth assays demonstrated that ΔSsAOX is incapable of properly utilizing plant extract as a nutrient source. Profiling of known aromatic alcohols pointed towards the monolignol coniferyl alcohol (CA) as a possible substrate for SsAOX. As CA and other monolignols are ubiquitous among land plants, the presence of highly conserved AOX orthologues throughout Ascomycota implies that this is a broadly conserved protein used by ascomycete fungi during plant colonization.
Collapse
Affiliation(s)
- Nathaniel M. Westrick
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- United States Department of Agriculture–Agricultural Research ServiceMadisonWisconsinUSA
| | - Sung Chul Park
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nancy P. Keller
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
13
|
Early warning and diagnostic visualization of Sclerotinia infected tomato based on hyperspectral imaging. Sci Rep 2022; 12:21140. [PMID: 36477460 PMCID: PMC9729219 DOI: 10.1038/s41598-022-23326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
This research explored the feasibility of early warning and diagnostic visualization of Sclerotinia infected tomato by using hyperspectral imaging technology. Healthy tomato plants and tomato plants with Sclerotinia sclerotiorum were cultivated, and hyperspectral images at 400-1000 nm were collected from healthy and infected tomato leaves at 1, 3, 5, and 7 days of incubation. After preprocessing the spectra with first derivative (FD), second derivative (SD), standard normal variant (SNV), and multiplicative scatter correction (MSC) partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) were used to construct tomato sclerotinia identification model and select the best preprocessing method. On this basis, two band screening methods, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA), were introduced to reduce data redundancy and improve the model's prediction accuracy. The results showed that the accuracy of the validation sets and operation speed of the CARS-PLS and CARS-SVM models were 87.88% and 1.8 s, and 87.95% and 1.78 s, respectively. The experiment was based on the SNV-CARS-SVM prediction model combined with image processing, spectral extraction, and visualization analysis methods to create diagnostic visualization software, which opens a new avenue to the implementation of online monitoring and early warning system for sclerotinia infected tomato.
Collapse
|
14
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
15
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
16
|
Li W, Lu J, Yang C, Arildsen K, Li X, Xia S. An Amidase Contributes to Full Virulence of Sclerotinia sclerotiorum. Int J Mol Sci 2022; 23:11207. [PMID: 36232508 PMCID: PMC9570306 DOI: 10.3390/ijms231911207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Kate Arildsen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
17
|
Derbyshire MC, Newman TE, Khentry Y, Owolabi Taiwo A. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:1075-1090. [PMID: 35411696 PMCID: PMC9276942 DOI: 10.1111/mpp.13221] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 05/21/2023]
Abstract
Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of plant species, including many of the world's most important crops. Key features of S. sclerotiorum include its extraordinary host range, preference for dicotyledonous plants, relatively slow evolution, and production of protein effectors that are active in multiple host species. Plant resistance to this pathogen is highly complex, typically involving numerous polymorphisms with infinitesimally small effects, which makes resistance breeding a major challenge. Due to its economic significance, S. sclerotiorum has been subjected to a large amount of molecular and evolutionary research. In this updated pathogen profile, we review the evolutionary and molecular features of S. sclerotiorum and discuss avenues for future research into this important species.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Toby E. Newman
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Yuphin Khentry
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Akeem Owolabi Taiwo
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
18
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
19
|
Development of the CRISPR-Cas9 System for the Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2022; 8:jof8070715. [PMID: 35887470 PMCID: PMC9322911 DOI: 10.3390/jof8070715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Marine-derived fungi are emerging as attractive producers of structurally novel secondary metabolites with diverse bioactivities. However, the lack of efficient genetic tools limits the discovery of novel compounds and the elucidation of biosynthesis mechanisms. Here, we firstly established an effective PEG-mediated chemical transformation system for protoplasts in two marine-derived fungi, Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. Next, we developed a simple and versatile CRISPR-Cas9-based gene disruption strategy by transforming a target fungus with a single plasmid. We found that the transformation with a circular plasmid encoding cas9, a single-guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted and insertional gene mutations in both marine-derived fungal strains. In addition, the histone deacetylase gene rpd3 was mutated using the established CRISPR-Cas9 system, thereby activating novel secondary metabolites that were not produced in the wild-type strain. Taken together, a versatile CRISPR-Cas9-based gene disruption method was established, which will promote the discovery of novel natural products and further biological studies.
Collapse
|
20
|
Liu L, Lyu X, Pan Z, Wang Q, Mu W, Benny U, Rollins JA, Pan H. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:1476-1485. [PMID: 35021860 DOI: 10.1094/phyto-09-21-0378-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic Ascomycota fungus with a host range of >600 plant species worldwide. This homothallic Leotiomycetes species reproduces sexually through a multicellular apothecium that produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor, SsZFH1 (zinc finger homologous protein), is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased H2O2 accumulation in hyphae, increased melanin deposition, and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affects the expansion of leaf lesions. Collectively, our results provide novel insights into a major fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xingming Lyu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wenhui Mu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Ulla Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
21
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
22
|
Cheng Y, Gao X, He H, Zhang X, Wang R, Liu J. Dual RNA Sequencing Analysis of Bacillus amyloliquefaciens and Sclerotinia sclerotiorum During Infection of Soybean Seedlings by S. sclerotiorum Unveils Antagonistic Interactions. Front Microbiol 2022; 13:924313. [PMID: 35814672 PMCID: PMC9260588 DOI: 10.3389/fmicb.2022.924313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean Sclerotinia stem rot is caused by Sclerotinia sclerotiorum infection, which causes extensive and severe damage to soybean production. Here, we isolated and patented a Bacillus amyloliquefaciens strain, and used it to verify the antagonistic effect of B. amyloliquefaciens on S. sclerotiorum and to explore the possible underlying mechanism. First, we conducted a plate confrontation experiment using the two microbes. Then, inoculation of soybean (Glycine max) seedlings with S. sclerotiorum (Gm-Ss), B. amyloliquefaciens (Gm-Ba), and their combination (Gm-Ba-Ss) was performed, followed by dual RNA sequencing analysis. Plate confrontation and inoculation experiments showed that B. amyloliquefaciens significantly antagonized S. sclerotiorum growth. The average number of fragments per kilobase of transcript per million fragments mapped of S. sclerotiorum transcripts in Gm-Ss and Gm-Ba-Ss inoculation treatments were 117.82 and 50.79, respectively, indicating that B. amyloliquefaciens strongly inhibited gene expression of S. sclerotiorum. In contrast, the average number of fragments per kilobase of transcript per million fragments mapped of B. amyloliquefaciens transcripts in Gm-Ba and Gm-Ba-Ss inoculation treatments were 479.56 and 579.66, respectively, indicating that S. sclerotiorum promoted overall gene expression in B. amyloliquefaciens. For S. sclerotiorum, 507 upregulated and 4,950 downregulated genes were identified among 8,975 genes in the paired comparison Gm-Ba-Ss vs. Gm-Ss. These differentially expressed genes (DEGs) were significantly enriched in the ribosome (ko03010) KEGG pathway. Additionally, for B. amyloliquefaciens, 294 upregulated and 178 downregulated genes were identified among all 3,154 genes in the paired comparison Gm-Ba-Ss vs. Gm-Ba, and these DEGs were mainly and significantly enriched in metabolism-related KEGG pathways, including the citrate cycle (ko00020) and carbon metabolism (ko01200). We concluded that B. amyloliquefaciens inhibits the expression of genes encoding the ribosomal subunit of S. sclerotiorum, resulting in protein synthesis inhibition in S. sclerotiorum, and thus had a strong antagonistic effect on the fungus. This study provides a scientific basis for the biological control of S. sclerotiorum by B. amyloliquefaciens.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- *Correspondence: Jianfeng Liu, , orcid.org/0000-0003-3220-8941
| |
Collapse
|
23
|
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun 2022; 13:2213. [PMID: 35468894 PMCID: PMC9038911 DOI: 10.1038/s41467-022-29788-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/22/2022] [Indexed: 01/16/2023] Open
Abstract
Plant pathogens degrade cell wall through secreted polygalacturonases (PGs) during infection. Plants counteract the PGs by producing PG-inhibiting proteins (PGIPs) for protection, reversibly binding fungal PGs, and mitigating their hydrolytic activities. To date, how fungal pathogens specifically overcome PGIP inhibition is unknown. Here, we report an effector, Sclerotinia sclerotiorum PGIP-INactivating Effector 1 (SsPINE1), which directly interacts with and functionally inactivates PGIP. S. sclerotiorum is a necrotrophic fungus that causes stem rot diseases on more than 600 plant species with tissue maceration being the most prominent symptom. SsPINE1 enhances S. sclerotiorum necrotrophic virulence by specifically interacting with host PGIPs to negate their polygalacturonase-inhibiting function via enhanced dissociation of PGIPs from PGs. Targeted deletion of SsPINE1 reduces the fungal virulence. Ectopic expression of SsPINE1 in plant reduces its resistance against S. sclerotiorum. Functional and genomic analyses reveal a conserved virulence mechanism of cognate PINE1 proteins in broad host range necrotrophic fungal pathogens. Plants produce polygalacuturonase-inhibiting proteins (PGIPs) to counteract cell wall degradation by pathogenic microbes. Here the authors show that Sclerotinia sclerotiorum, a fungal pathogen that causes stem rot disease, secretes a PGIP-inactivating effector to diminish plant resistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Peng
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Karen A Sanguinet
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - George Vandemark
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA. .,Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA. .,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA. .,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
24
|
McCarthy HM, Tarallo M, Mesarich CH, McDougal RL, Bradshaw RE. Targeted Gene Mutations in the Forest Pathogen Dothistroma septosporum Using CRISPR/Cas9. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081016. [PMID: 35448744 PMCID: PMC9025729 DOI: 10.3390/plants11081016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 05/19/2023]
Abstract
Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of > 90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens.
Collapse
Affiliation(s)
- Hannah M. McCarthy
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
- Correspondence:
| | - Mariana Tarallo
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
| | - Carl H. Mesarich
- BioProtection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North 4472, New Zealand;
| | - Rebecca L. McDougal
- Scion, New Zealand Forest Research Institute Ltd., Rotorua 3010, New Zealand;
| | - Rosie E. Bradshaw
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
| |
Collapse
|
25
|
Lax C, Navarro-Mendoza MI, Pérez-Arques C, Navarro E, Nicolás FE, Garre V. Transformation and CRISPR-Cas9-mediated homologous recombination in the fungus Rhizopus microsporus. STAR Protoc 2022; 3:101237. [PMID: 35308131 PMCID: PMC8927829 DOI: 10.1016/j.xpro.2022.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we describe a reliable approach for targeted DNA integrations in the genome of R. microsporus, one of the main causal agents of mucormycosis. We provide a strategy for stable, targeted integration of DNA templates by homologous recombination (HR) based on the CRISPR-Cas9 technology. This strategy opens a wide range of possibilities for the genetic modification of R. microsporus and will be useful for the study of mucormycosis. For complete details on the use and execution of this protocol, please refer to Lax et al. (2021).
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
26
|
Xu Y, Ao K, Tian L, Qiu Y, Huang X, Liu X, Hoy R, Zhang Y, Rashid KY, Xia S, Li X. A Forward Genetic Screen in Sclerotinia sclerotiorum Revealed the Transcriptional Regulation of Its Sclerotial Melanization Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:244-256. [PMID: 34813706 DOI: 10.1094/mpmi-10-21-0254-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most plant fungal pathogens that cause worldwide crop losses are understudied, due to various technical challenges. With the increasing availability of sequenced whole genomes of these non-model fungi, effective genetic analysis methods are highly desirable. Here, we describe a newly developed pipeline, which combines forward genetic screening with high-throughput next-generation sequencing to enable quick gene discovery. We applied this pipeline in the notorious soilborne phytopathogen Sclerotinia sclerotiorum and identified 32 mutants with various developmental and growth deficiencies. Detailed molecular studies of three melanization-deficient mutants provide a proof of concept for the effectiveness of our method. A master transcription factor was found to regulate melanization of sclerotia through the DHN (1,8-dihydroxynaphthalene) melanin biosynthesis pathway. In addition, these mutants revealed that sclerotial melanization is important for sclerotia survival under abiotic stresses, sclerotial surface structure, and sexual reproduction. Foreseeably, this pipeline can be applied to facilitate efficient in-depth studies of other non-model fungal species in the future.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan Hoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yishan Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khalid Youssef Rashid
- Oilseed Crops Pathology, Science and Technology Branch, Ottawa Research and Development Centre, K.W. Neatby Building, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
27
|
Jiao W, Yu H, Cong J, Xiao K, Zhang X, Liu J, Zhang Y, Pan H. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:204-217. [PMID: 34699137 PMCID: PMC8743022 DOI: 10.1111/mpp.13154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum, the notorious necrotrophic phytopathogenic fungus with wide distribution, is responsible for sclerotium disease in more than 600 plant species, including many economic crops such as soybean, oilseed rape, and sunflower. The compound appressorium is a crucial multicellular infection structure that is a prerequisite for infecting healthy tissues. Previously, the Forkhead-box family transcription factors (FOX TFs) SsFoxE2 and SsFKH1 were shown to play a key regulatory role in the hyphae growth, sexual reproduction, and pathogenicity of S. sclerotiorum. However, little is known about the roles of SsFoxE3 regulating growth and development and pathogenicity. Here, we report SsFoxE3 contributes to sclerotium formation and deletion of SsFoxE3 leads to reduced formation of compound appressoria and developmental delays. Transcripts of SsFoxE3 were greatly increased during the initial stage of infection and SsFoxE3 deficiency reduced virulence on the host, while stabbing inoculation could partially restore pathogenicity. The SsFoxE3 mutant showed sensitivity to H2 O2 , and the expression of reactive oxygen species detoxification and autophagy-related genes were reduced. Moreover, expression of SsAtg8 was also decreased during the infection process of the SsFoxE3 mutant. Yeast 1-hybrid tests suggested that SsFoxE3 interacted with the promoter of SsAtg8. Disruption of SsAtg8 resulted in a phenotype similar to that of the SsFoxE3 mutant. Comparative analysis of the level of autophagy in the wild type and SsFoxE3 mutant showed that N starvation-induced autophagy was reduced in the SsFoxE3 mutant. Taken together, our findings indicate that SsFoxE3 plays an important role in compound appressorium formation and is involved in transcriptional activation of SsAtg8 during infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Huilin Yu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jie Cong
- College of Plant SciencesJilin UniversityChangchunChina
| | - Kunqin Xiao
- College of Plant SciencesJilin UniversityChangchunChina
| | | | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|
28
|
Rana K, Yuan J, Liao H, Banga SS, Kumar R, Ding Y, Qian W. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res 2022; 258:126981. [DOI: 10.1016/j.micres.2022.126981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
|
29
|
Yu PL, Rollins JA. The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum. Fungal Biol 2022; 126:20-34. [DOI: 10.1016/j.funbio.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023]
|
30
|
Understanding the Various Strategies for the Management of Fungal Pathogens in Crop Plants in the Current Scenario. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Liao B, Chen X, Zhou X, Zhou Y, Shi Y, Ye X, Liao M, Zhou Z, Cheng L, Ren B. Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Arch Microbiol 2021; 204:79. [DOI: 10.1007/s00203-021-02723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
|
32
|
Direct and indirect contributions of molecular genetics to farm animal welfare: a review. Anim Health Res Rev 2021; 22:177-186. [PMID: 34842522 DOI: 10.1017/s1466252321000104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since domestication, farm animals have played a key role to increase the prosperity of humankind, while animal welfare (AW) is debated even today. This paper aims to comprehensively review the contributions of developing molecular genetics to farm animal welfare (FAW) and to raise awareness among both scientists and farmers about AW. Welfare is a complex trait affected by genetic structure and environmental factors. Therefore, the best welfare status can be achieved not only to enhance environmental factors such as management and feeding practices, but also the genetic structure of animals must be improved. In this regard, advances in molecular genetics have made great contributions to improve the genetic structure of farm animals, which has increased AW. Today, by sequencing and/or molecular markers, genetic diseases may be detected and eliminated in local herds. Additionally, genes related to diseases or adaptations are investigated by molecular techniques, and the frequencies of desired genotypes are increased in farm animals to keep welfare at an optimized level. Furthermore, stress on animals can be reduced with DNA extraction from stool and feather samples which reduces physical contact between animals and veterinarians. Together with molecular genetics, advances in genome editing tools and biotechnology are promising to improve FAW in the future.
Collapse
|
33
|
Rana K, Ding Y, Banga SS, Liao H, Zhao S, Yu Y, Qian W. Sclerotinia sclerotiorum Thioredoxin1 (SsTrx1) is required for pathogenicity and oxidative stress tolerance. MOLECULAR PLANT PATHOLOGY 2021; 22:1413-1426. [PMID: 34459563 PMCID: PMC8518572 DOI: 10.1111/mpp.13127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host-induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference-induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1-based host-induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS-A) and Nicotiana benthamiana (HIGS-N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.
Collapse
Affiliation(s)
- Kusum Rana
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
- Engineering Research Center of South Upland AgricultureMinistry of EducationChongqingChina
| | - Yijuan Ding
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
- Engineering Research Center of South Upland AgricultureMinistry of EducationChongqingChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | - Hongmei Liao
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
- Engineering Research Center of South Upland AgricultureMinistry of EducationChongqingChina
| | - Siqi Zhao
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
- Engineering Research Center of South Upland AgricultureMinistry of EducationChongqingChina
| | - Yang Yu
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Wei Qian
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
- Engineering Research Center of South Upland AgricultureMinistry of EducationChongqingChina
| |
Collapse
|
34
|
Liu D, Wu J, Lin L, Li P, Li S, Wang Y, Li J, Sun Q, Liang J, Wang Y. Overexpression of Cinnamoyl-CoA Reductase 2 in Brassica napus Increases Resistance to Sclerotinia sclerotiorum by Affecting Lignin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:732733. [PMID: 34630482 PMCID: PMC8494948 DOI: 10.3389/fpls.2021.732733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 05/23/2023]
Abstract
Sclerotinia sclerotiorum causes severe yield and economic losses for many crop and vegetable species, especially Brassica napus. To date, no immune B. napus germplasm has been identified, giving rise to a major challenge in the breeding of Sclerotinia resistance. In the present study, we found that, compared with a Sclerotinia-susceptible line (J902), a Sclerotinia-resistant line (J964) exhibited better xylem development and a higher lignin content in the stems, which may limit the invasion and spread of S. sclerotiorum during the early infection period. In addition, genes involved in lignin biosynthesis were induced under S. sclerotiorum infection in both lines, indicating that lignin was deposited proactively in infected tissues. We then overexpressed BnaC.CCR2.b, which encodes the first rate-limiting enzyme (cinnamoyl-CoA reductase) that catalyzes the reaction of lignin-specific pathways, and found that overexpression of BnaC.CCR2.b increased the lignin content in the stems of B. napus by 2.28-2.76% under normal growth conditions. We further evaluated the Sclerotinia resistance of BnaC.CCR2.b overexpression lines at the flower-termination stage and found that the disease lesions on the stems of plants in the T2 and T3 generations decreased by 12.2-33.7% and 32.5-37.3% compared to non-transgenic control plants, respectively, at 7days post-inoculation (dpi). The above results indicate that overexpression of BnaC.CCR2.b leads to an increase in lignin content in the stems, which subsequently leads to increased resistance to S. sclerotiorum. Our findings demonstrate that increasing the lignin content in the stems of B. napus is an important strategy for controlling Sclerotinia.
Collapse
Affiliation(s)
- Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Saifen Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yue Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jian Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinfu Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Jiansheng Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Paul NC, Park SW, Liu H, Choi S, Ma J, MacCready JS, Chilvers MI, Sang H. Plant and Fungal Genome Editing to Enhance Plant Disease Resistance Using the CRISPR/Cas9 System. FRONTIERS IN PLANT SCIENCE 2021; 12:700925. [PMID: 34447401 PMCID: PMC8382960 DOI: 10.3389/fpls.2021.700925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 05/10/2023]
Abstract
Crop production has been substantially reduced by devastating fungal and oomycete pathogens, and these pathogens continue to threaten global food security. Although chemical and cultural controls have been used for crop protection, these involve continuous costs and time and fungicide resistance among plant pathogens has been increasingly reported. The most efficient way to protect crops from plant pathogens is cultivation of disease-resistant cultivars. However, traditional breeding approaches are laborious and time intensive. Recently, the CRISPR/Cas9 system has been utilized to enhance disease resistance among different crops such as rice, cacao, wheat, tomato, and grape. This system allows for precise genome editing of various organisms via RNA-guided DNA endonuclease activity. Beyond genome editing in crops, editing the genomes of fungal and oomycete pathogens can also provide new strategies for plant disease management. This review focuses on the recent studies of plant disease resistance against fungal and oomycete pathogens using the CRISPR/Cas9 system. For long-term plant disease management, the targeting of multiple plant disease resistance mechanisms with CRISPR/Cas9 and insights gained by probing fungal and oomycete genomes with this system will be powerful approaches.
Collapse
Affiliation(s)
- Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Haifeng Liu
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Sungyu Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jihyeon Ma
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Joshua S. MacCready
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
36
|
Wang C, Rollins JA. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 154:103598. [PMID: 34119663 DOI: 10.1016/j.fgb.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
We previously reported on a CRISPR-Cas9 genome editing system for the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. This system (the TrpC-sgRNA system), based on an RNA polymerase II (RNA Pol II) promoter (TrpC) to drive sgRNA transcription in vivo, was successful in creating gene insertion mutants. However, relatively low efficiency targeted gene editing hampered the application of this method for functional genomic research in S. sclerotiorum. To further optimize the CRISPR-Cas9 system, a plasmid-free Cas9 protein/sgRNA ribonucleoprotein (RNP)-mediated system (the RNP system) and a plasmid-based RNA polymerase III promoter (U6)-driven sgRNA transcription system (the U6-sgRNA system) were established and evaluated. The previously characterized oxaloacetate acetylhydrolase (Ssoah1) locus and a new locus encoding polyketide synthase12 (Sspks12) were targeted in this study to create loss-of-function mutants. The RNP system, similar to the TrpC-sgRNA system we previously reported, creates mutations at the Ssoah1 gene locus with comparable efficiency. However, neither system successfully generated mutations at the Sspks12 gene locus. The U6-sgRNA system exhibited a significantly higher efficiency of genemutation at both loci. This technology provides a simple and efficient strategy for targeted gene mutation and thereby will accelerating the pace of research of pathogenicity and development in this economically important plant pathogen.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, 1450 Fifield Hall, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Rozhkova AM, Kislitsin VY. CRISPR/Cas Genome Editing in Filamentous Fungi. BIOCHEMISTRY (MOSCOW) 2021; 86:S120-S139. [PMID: 33827404 DOI: 10.1134/s0006297921140091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.
Collapse
Affiliation(s)
- Aleksandra M Rozhkova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Valeriy Yu Kislitsin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
38
|
Jiang C, Lv G, Tu Y, Cheng X, Duan Y, Zeng B, He B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front Microbiol 2021; 12:638096. [PMID: 33643273 PMCID: PMC7905030 DOI: 10.3389/fmicb.2021.638096] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yitian Duan
- School of Information, Renmin University of China, Beijing, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
39
|
Arazoe T. CRISPR-based pathogenic fungal genome editing for control of infection and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:161-196. [PMID: 33785176 DOI: 10.1016/bs.pmbts.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungi play important roles in many aspects of human life, such as in various food, beverage, agricultural, chemical, and pharmaceutical industries. Meanwhile, some fungal species cause several severe diseases in plants, humans and animals. Fungal and fungal-like diseases pose a severe threat to human health, food security, and ecosystem health worldwide. This chapter introduces CRISPR-based genome editing technologies for pathogenic fungi and their application in controlling fungal diseases.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda-shi, Chiba, Japan.
| |
Collapse
|
40
|
Wang R, Luo S, Clarke BB, Belanger FC. The Epichloë
festucae Antifungal Protein Efe-AfpA Is also a Possible Effector Protein Required for the Interaction of the Fungus with Its Host Grass Festuca rubra subsp. rubra. Microorganisms 2021; 9:140. [PMID: 33435432 PMCID: PMC7827515 DOI: 10.3390/microorganisms9010140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
Strong creeping red fescue (Festuca rubra subsp. rubra) is a commercially important low-maintenance turfgrass and is often naturally infected with the fungal endophyte Epichloë festucae. Epichloë spp. are endophytes of several cool-season grass species, often conferring insect resistance to the grass hosts due to the production of toxic alkaloids. In addition to insect resistance, a unique feature of the strong creeping red fescue/E. festucae symbiosis is the endophyte-mediated disease resistance to the fungal pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Such disease resistance is not a general feature of other grass/ Epichloë interactions. E. festucae isolates infecting red fescue have an antifungal protein gene Efe-afpA, whereas most other Epichloë spp. do not have a similar gene. The uniqueness of this gene suggests it may, therefore, be a component of the unique disease resistance seen in endophyte-infected red fescue. Here, we report the generation of CRISPR-Cas9 Efe-afpA gene knockouts with the goal of determining if absence of the protein in endophyte-infected Festuca rubra leads to disease susceptibility. However, it was not possible to infect plants with the knockout isolates, although infection was possible with the wild type E. festucae and with complemented isolates. This raises the interesting possibility that, in addition to having antifungal activity, the protein is required for the symbiotic interaction. The antifungal protein is a small secreted protein with high expression in planta relative to its expression in culture, all characteristics consistent with effector proteins. If Efe-AfpA is an effector protein it must be specific to certain interactions, since most Epichloë spp. do not have such a gene in their genomes.
Collapse
Affiliation(s)
- Ruying Wang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (S.L.); (B.B.C.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Simin Luo
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (S.L.); (B.B.C.)
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce B. Clarke
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (S.L.); (B.B.C.)
| | - Faith C. Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (S.L.); (B.B.C.)
| |
Collapse
|
41
|
Huang WP, Du YJ, Yang Y, He JN, Lei Q, Yang XY, Zhang KQ, Niu XM. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation. Appl Environ Microbiol 2020; 86:e01486-20. [PMID: 32769197 PMCID: PMC7531979 DOI: 10.1128/aem.01486-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thermomyces dupontii, a widely distributed thermophilic fungus, is an ideal organism for investigating the mechanism of thermophilic fungal adaptation to diverse environments. However, genetic analysis of this fungus is hindered by a lack of available and efficient gene-manipulating tools. In this study, two different Cas9 proteins from mesophilic and thermophilic bacteria, with in vivo expression of a single guide RNA (sgRNA) under the control of tRNAGly, were successfully adapted for genome editing in T. dupontii We demonstrated the feasibility of applying these two gene editing systems to edit one or two genes in T. dupontii The mesophilic CRISPR/Cas9 system displayed higher editing efficiency (50 to 86%) than the thermophilic CRISPR/Cas9 system (40 to 67%). However, the thermophilic CRISPR/Cas9 system was much less time-consuming than the mesophilic CRISPR/Cas9 system. Combining the CRISPR/Cas9 systems with homologous recombination, a constitutive promoter was precisely knocked in to activate a silent polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) biosynthetic gene, leading to the production of extra metabolites that did not exist in the parental strains. Metabolic analysis of the generated biosynthetic gene mutants suggested that a key biosynthetic pathway existed for the biosynthesis of thermolides in T. dupontii, with the last two steps being different from those in the heterologous host Aspergillus Further analysis suggested that these biosynthetic genes might be involved in fungal mycelial growth, conidiation, and spore germination, as well as in fungal adaptation to osmotic, oxidative, and cell wall-perturbing agents.IMPORTANCE Thermomyces represents a unique ecological taxon in fungi, but a lack of flexible genetic tools has greatly hampered the study of gene function in this taxon. The biosynthesis of potent nematicidal thermolides in T. dupontii remains largely unknown. In this study, mesophilic and thermophilic CRISPR/Cas9 gene editing systems were successfully established for both disrupting and activating genes in T. dupontii In this study, a usable thermophilic CRISPR/Cas9 gene editing system derived from bacteria was constructed in thermophilic fungi. Chemical analysis of the mutants generated by these two gene editing systems identified the key biosynthetic genes and pathway for the biosynthesis of nematocidal thermolides in T. dupontii Phenotype analysis and chemical stress experiments revealed potential roles of secondary metabolites or their biosynthetic genes in fungal development and adaption to chemical stress conditions. These two genomic editing systems will not only accelerate investigations into the biosynthetic mechanisms of unique natural products and functions of cryptic genes in T. dupontii but also offer an example for setting up CRISPR/Cas9 systems in other thermophilic fungi.
Collapse
Affiliation(s)
- Wei-Ping Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Yuan-Jiang Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Yun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Jia-Ning He
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Qian Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Xiao-Yu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
42
|
Teixeira LPR, Lopes FEDM, Antunes ASLM, Alves MS, Miranda AM, Gaudencio Neto S, Martins LT, Moreira ACDOM, Tavares KCS. Application of a cost-effective DNA extraction protocol for screening transgenic and CRISPR-edited primary goat cells. PLoS One 2020; 15:e0239435. [PMID: 32946490 PMCID: PMC7500585 DOI: 10.1371/journal.pone.0239435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022] Open
Abstract
The genotyping of genetically-modified cells is a crucial step in studies of transgenics and genomic editing with systems such as CRISPR/Cas. The detection of genome editing events can be directly related to the genotyping methodology used, which is influenced by its costs, since many experiments require the analysis of a large number of samples. The aim of this study was to compare the performance of direct lysis methods of genomic DNA (gDNA) extraction for the detection of knockins and knockouts in primary goat cells. Initially, three gDNA extraction protocols (protocol A, heat denaturation/freeze-thaw in water; protocol B, heat denaturation/proteinase K; and protocol C, CellsDirect Kit) were tested using different quantities (1,000, 5,000 and 10,000 cells) and types of goat primary cells (fibroblasts and goat mammary epithelial cells—GMECs) for subsequent validation by PCR amplification of small (GAPDH) and large amplicons (hLF transgene). All protocols were successful in the detection of the small amplicon; however, in GMECs, only protocol B resulted efficient amplification (protocol A—0%, protocol B—93%, protocol C—13.33%, P <0.05). In a proof-of-principle experiment, the TP53 gene was knocked out in GMECs by CRISPR/Cas9-mediated deletion while constructs containing the anti-VEGF monoclonal antibody (pBC-anti-VEGF) and bacterial L-Asparaginase (pBC-ASNase) transgenes were knocked-in separately in fibroblasts. Detection of successful editing was performed using protocol B and PCR. The integration rates of the pBC-ASNase and pBC-anti-VEGF transgenes were 93.6% and 72%, respectively, as per PCR. The efficiency of biallelic editing in GMECs using CRISPR/Cas9 for the TP53 deletion was 5.4%. Our results suggest that protocol B (heat denaturation/proteinase K) can be used as an inexpensive and quick methodology for detecting genetic modifications in different types of primary goat cells, with efficiency rates consistent with values previously described in the literature when using extraction kits or more complex proteinase K formulations.
Collapse
Affiliation(s)
| | | | | | - Matheus Soares Alves
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | - André Marrocos Miranda
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | - Saul Gaudencio Neto
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | | - Kaio Cesar Simiano Tavares
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
- * E-mail:
| |
Collapse
|
43
|
Prabhukarthikeyan SR, Parameswaran C, Keerthana U, Teli B, Jag PTK, Cayalvizhi B, Panneerselvam P, Senapati A, Nagendran K, Kumari S, Yadav MK, Aravindan S, Sanghamitra S. Understanding the Plant-microbe Interactions in CRISPR/CAS9 Era: Indeed a Sprinting Start in Marathon. Curr Genomics 2020; 21:429-443. [PMID: 33093805 PMCID: PMC7536795 DOI: 10.2174/1389202921999200716110853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, eco-friendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/CAS9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/CAS9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/CAS9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.
Collapse
Affiliation(s)
| | | | - Umapathy Keerthana
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Basavaraj Teli
- Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | | | | | - Periyasamy Panneerselvam
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Ansuman Senapati
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Krishnan Nagendran
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Shweta Kumari
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Sundaram Aravindan
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Samantaray Sanghamitra
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| |
Collapse
|
44
|
Teli B, Purohit J, Rashid MM, Jailani AAK, Chattopadhyay A. Omics Insight on Fusarium Head Blight of Wheat for Translational Research Perspective. Curr Genomics 2020; 21:411-428. [PMID: 33093804 PMCID: PMC7536796 DOI: 10.2174/1389202921999200620222631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
In the scenario of global warming and climate change, an outbreak of new pests and pathogens has become a serious concern owing to the rapid emergence of arms races, their epidemic infection, and the ability to break down host resistance, etc. Fusarium head blight (FHB) is one such evidence that depredates major cereals throughout the world. The symptomatological perplexity and aetiological complexity make this disease very severe, engendering significant losses in the yield. Apart from qualitative and quantitative losses, mycotoxin production solemnly deteriorates the grain quality in addition to life endangerment of humans and animals after consumption of toxified grains above the permissible limit. To minimize this risk, we must be very strategic in designing sustainable management practices constituting cultural, biological, chemical, and host resistance approaches. Even though genetic resistance is the most effective and environmentally safe strategy, a huge genetic variation and unstable resistance response limit the holistic deployment of resistance genes in FHB management. Thus, the focus must shift towards the editing of susceptible (S) host proteins that are soft targets of newly evolving effector molecules, which ultimately could be exploited to repress the disease development process. Hence, we must understand the pathological, biochemical, and molecular insight of disease development in a nutshell. In the present time, the availability of functional genomics, proteomics, and metabolomics information on host-pathogen interaction in FHB have constructed various networks which helped in understanding the pathogenesis and coherent host response(s). So now translation of this information for designing of host defense in the form of desirable resistant variety/genotype is the next step. The insights collected and presented in this review will be aiding in the understanding of the disease and apprise a solution to the multi-faceted problems which are related to FHB resistance in wheat and other cereals to ensure global food safety and food security.
Collapse
Affiliation(s)
- Basavaraj Teli
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Jyotika Purohit
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Md Mahtab Rashid
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - A Abdul Kader Jailani
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
45
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
46
|
Dort EN, Tanguay P, Hamelin RC. CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology. FRONTIERS IN PLANT SCIENCE 2020; 11:1126. [PMID: 32793272 PMCID: PMC7387688 DOI: 10.3389/fpls.2020.01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 05/07/2023]
Abstract
CRISPR/Cas9 gene editing technology has taken the scientific community by storm since its development in 2012. First discovered in 1987, CRISPR/Cas systems act as an adaptive immune response in archaea and bacteria that defends against invading bacteriophages and plasmids. CRISPR/Cas9 gene editing technology modifies this immune response to function in eukaryotic cells as a highly specific, RNA-guided complex that can edit almost any genetic target. This technology has applications in all biological fields, including plant pathology. However, examples of its use in forest pathology are essentially nonexistent. The aim of this review is to give researchers a deeper understanding of the native CRISPR/Cas systems and how they were adapted into the CRISPR/Cas9 technology used today in plant pathology-this information is crucial for researchers aiming to use this technology in the pathosystems they study. We review the current applications of CRISPR/Cas9 in plant pathology and propose future directions for research in forest pathosystems where this technology is currently underutilized.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Philippe Tanguay
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, QC, Canada
| |
Collapse
|
47
|
Chittem K, Yajima WR, Goswami RS, del Río Mendoza LE. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One 2020; 15:e0229844. [PMID: 32160211 PMCID: PMC7065775 DOI: 10.1371/journal.pone.0229844] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Sclerotinia stem rot is an economically important disease of canola (Brassica napus) and is caused by the fungal pathogen Sclerotinia sclerotiorum. This study evaluated the differential gene expression patterns of S. sclerotiorum during disease development on two canola lines differing in susceptibility to this pathogen. Sequencing of the mRNA libraries derived from inoculated petioles and mycelium grown on liquid medium generated approximately 164 million Illumina reads, including 95 million 75-bp-single reads, and 69 million 50-bp-paired end reads. Overall, 36% of the quality filter-passed reads were mapped to the S. sclerotiorum reference genome. On the susceptible line, 1301 and 1214 S. sclerotiorum genes were differentially expressed at early (8-16 hours post inoculation (hpi)) and late (24-48 hpi) infection stages, respectively, while on the resistant line, 1311 and 1335 genes were differentially expressed at these stages, respectively. Gene ontology (GO) categories associated with cell wall degradation, detoxification of host metabolites, peroxisome related activities like fatty acid ß-oxidation, glyoxylate cycle, oxidoreductase activity were significantly enriched in the up-regulated gene sets on both susceptible and resistant lines. Quantitative RT-PCR of six selected DEGs further validated the RNA-seq differential gene expression analysis. The regulation of effector genes involved in host defense suppression or evasion during the early infection stage, and the expression of effectors involved in host cell death in the late stage of infection provide supporting evidence for a two-phase infection model involving a brief biotrophic phase during early stages of infection. The findings from this study emphasize the role of peroxisome related pathways along with cell wall degradation and detoxification of host metabolites as the key mechanisms underlying pathogenesis of S. sclerotiorum on B. napus.
Collapse
Affiliation(s)
- Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - William R. Yajima
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Rubella S. Goswami
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- USDA-APHIS, Riverdale, Maryland, United States of America
| | - Luis E. del Río Mendoza
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
48
|
Graham-Taylor C, Kamphuis LG, Derbyshire MC. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics 2020; 21:7. [PMID: 31898475 PMCID: PMC6941272 DOI: 10.1186/s12864-019-6424-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The broad host range pathogen Sclerotinia sclerotiorum infects over 400 plant species and causes substantial yield losses in crops worldwide. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but little is known about the secondary metabolite repertoire of S. sclerotiorum. In this study, we predicted secondary metabolite biosynthetic gene clusters in the genome of S. sclerotiorum and analysed their expression during infection of Brassica napus using an existing transcriptome data set. We also investigated their sequence diversity among a panel of 25 previously published S. sclerotiorum isolate genomes. RESULTS We identified 80 putative secondary metabolite clusters. Over half of the clusters contained at least three transcriptionally coregulated genes. Comparative genomics revealed clusters homologous to clusters in the closely related plant pathogen Botrytis cinerea for production of carotenoids, hydroxamate siderophores, DHN melanin and botcinic acid. We also identified putative phytotoxin clusters that can potentially produce the polyketide sclerin and an epipolythiodioxopiperazine. Secondary metabolite clusters were enriched in subtelomeric genomic regions, and those containing paralogues showed a particularly strong association with repeats. The positional bias we identified was borne out by intraspecific comparisons that revealed putative secondary metabolite genes suffered more presence / absence polymorphisms and exhibited a significantly higher sequence diversity than other genes. CONCLUSIONS These data suggest that S. sclerotiorum produces numerous secondary metabolites during plant infection and that their gene clusters undergo enhanced rates of mutation, duplication and recombination in subtelomeric regions. The microevolutionary regimes leading to S. sclerotiorum secondary metabolite diversity have yet to be elucidated. Several potential phytotoxins documented in this study provide the basis for future functional analyses.
Collapse
Affiliation(s)
- Carolyn Graham-Taylor
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Lars G. Kamphuis
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| | - Mark C. Derbyshire
- 0000 0004 0375 4078grid.1032.0Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, Western Australia Australia
| |
Collapse
|
49
|
Xia S, Xu Y, Hoy R, Zhang J, Qin L, Li X. The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis. Pathogens 2019; 9:pathogens9010027. [PMID: 31892134 PMCID: PMC7168625 DOI: 10.3390/pathogens9010027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/06/2023] Open
Abstract
Ascomycete Sclerotinia sclerotiorum (Lib.) de Bary is one of the most damaging soilborne fungal pathogens affecting hundreds of plant hosts, including many economically important crops. Its genomic sequence has been available for less than a decade, and it was recently updated with higher completion and better gene annotation. Here, we review key molecular findings on the unique biology and pathogenesis process of S. sclerotiorum, focusing on genes that have been studied in depth using mutant analysis. Analyses of these genes have revealed critical players in the basic biological processes of this unique pathogen, including mycelial growth, appressorium establishment, sclerotial formation, apothecial and ascospore development, and virulence. Additionally, the synthesis has uncovered gaps in the current knowledge regarding this fungus. We hope that this review will serve to build a better current understanding of the biology of this under-studied notorious soilborne pathogenic fungus.
Collapse
Affiliation(s)
- Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (S.X.); (X.L.)
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan Hoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
| | - Julia Zhang
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China;
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence: (S.X.); (X.L.)
| |
Collapse
|
50
|
Nakamura M, Okamura Y, Iwai H. Plasmid-based and -free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae. Sci Rep 2019; 9:18947. [PMID: 31831810 PMCID: PMC6908651 DOI: 10.1038/s41598-019-55302-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
The CRISPR-Cas9 system has a potential for wide application in organisms that particularly present low homologous integration rates. In this study, we developed three different methods using this system to replace a gene through homology-directed repair in the plant pathogenic fungus Colletotrichum sansevieriae, which has a low recombination frequency. The gene encoding scytalone dehydratase was used as the target so that mutants can be readily distinguished owning to a lack of melanin biosynthesis. First, we performed a plasmid-based method using plasmids containing a Cas9 expression cassette and/or a single-guide RNA (sgRNA) under the control of the endogenous U6 snRNA promoter, and 67 out of 69 (97.1%) transformants exhibited a melanin-deficient phenotype with high efficiency. Second, we performed a transformation using a Cas9 protein/sgRNA complex and obtained 23 out of 28 (82.1%) transformants. Lastly, we developed a hybrid system combining a Cas9 protein and donor DNA-sgRNA expression plasmid, which yielded 75 out of 84 (89.2%) transformants. This system was also applicable to four other genes at different loci of the fungus. This is the first study to establish a CRISPR/Cas9 gene replacement system in Colletotrichum spp. and it presents a potential application for a broad range of use in other species of the genus.
Collapse
Affiliation(s)
| | - Yuta Okamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hisashi Iwai
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|