1
|
Miner MV, Rauch I. Why put yourself on a pedestal? The pathogenic role of the A/E pedestal. Infect Immun 2024; 92:e0048923. [PMID: 38591884 PMCID: PMC11384751 DOI: 10.1128/iai.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Certain Escherichia coli (E. coli) strains are attaching and effacing (A/E) lesion pathogens that primarily infect intestinal epithelial cells. They cause actin restructuring and polymerization within the host cell to create an actin-rich protrusion below the site of adherence, termed the pedestal. Although there is clarity on the pathways initiating pedestal formation, the underlying purpose(s) of the pedestal remains ambiguous. The conservation of pedestal-forming activity across multiple pathogens and redundancy in formation pathways indicate a pathogenic advantage. However, few decisive conclusions have been drawn, given that the results vary between model systems. Some research argues that the pedestal increases the colonization capability of the bacterium. These studies utilize A/E pathogens specifically deficient in pedestal formation to evaluate adhesion and intestinal colonization following infection. There have been many proposed mechanisms for the colonization benefit conferred by the pedestal. One suggested benefit is that the pedestal allows for direct cytosolic anchoring through incorporation of the established host cortical actin, causing a stable link between the pathogen and cell structure. The pedestal may confer enhanced motility, as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are better able to migrate on the surface of host cells and infect neighboring cells in the presence of the pedestal. Additionally, some research suggests that the pedestal improves effector delivery. This review will investigate the purpose of pedestal formation using evidence from recent literature and will critically evaluate the methodology and model systems. Most importantly, we will contextualize the proposed functions to reconcile potential synergistic effects.
Collapse
Affiliation(s)
- M. V. Miner
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - I. Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Cuesta S, Burdisso P, Segev A, Kourrich S, Sperandio V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022; 30:1615-1629.e5. [PMID: 36323315 PMCID: PMC9669251 DOI: 10.1016/j.chom.2022.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, Santa Fe, Argentina
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; The Center of Excellence in Research on Orphan Diseases - Foundation Courtois, Université du Québec à Montréal, Montréal, QC, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
4
|
Wang J, Jiao H, Zhang X, Zhang Y, Sun N, Yang Y, Wei Y, Hu B, Guo X. Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion. J Microbiol Biotechnol 2021; 31:1191-1199. [PMID: 34261855 PMCID: PMC9705854 DOI: 10.4014/jmb.2105.05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are nontypeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAgknockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - HongBo Jiao
- LanLing Center for Disease Control and Prevention, 1 City Huibao Road, Lanling 276000, Lanling Shandong, P.R. China
| | - XinFeng Zhang
- Taian Center for Disease Control and Prevention, 33 Changcheng Road, Taian 271000, Shandong, P.R. China
| | - YuanQing Zhang
- Jinan KeJia Medical Laboratory, Inc., 800 Minghu West Road, Jinan 250001, Shandong, P.R. China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China,Corresponding authors B. Hu Phone: +86-0531-82679738 Fax: +86-531-82679750 E-mail:
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,
X. Guo Phone: +86-22-66229574 Fax: +86-22-66229584 E-mail:
| |
Collapse
|
5
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
6
|
Im H, Hwang SH, Kim BS, Choi SH. Pathogenic potential assessment of the Shiga toxin-producing Escherichia coli by a source attribution-considered machine learning model. Proc Natl Acad Sci U S A 2021; 118:e2018877118. [PMID: 33986113 PMCID: PMC8157976 DOI: 10.1073/pnas.2018877118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Instead of conventional serotyping and virulence gene combination methods, methods have been developed to evaluate the pathogenic potential of newly emerging pathogens. Among them, the machine learning (ML)-based method using whole-genome sequencing (WGS) data are getting attention because of the recent advances in ML algorithms and sequencing technologies. Here, we developed various ML models to predict the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) isolates using their WGS data. The input dataset for the ML models was generated using distinct gene repertoires from positive (pathogenic) and negative (nonpathogenic) control groups in which each STEC isolate was designated based on the source attribution, the relative risk potential of the isolation sources. Among the various ML models examined, a model using the support vector machine (SVM) algorithm, the SVM model, discriminated between the two control groups most accurately. The SVM model successfully predicted the pathogenicity of the isolates from the major sources of STEC outbreaks, the isolates with the history of outbreaks, and the isolates that cannot be assessed by conventional methods. Furthermore, the SVM model effectively differentiated the pathogenic potentials of the isolates at a finer resolution. Permutation importance analyses of the input dataset further revealed the genes important for the estimation, proposing the genes potentially essential for the pathogenicity of STEC. Altogether, these results suggest that the SVM model is a more reliable and broadly applicable method to evaluate the pathogenic potential of STEC isolates compared with conventional methods.
Collapse
Affiliation(s)
- Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food Safety and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea
| | - Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food Safety and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Engineering, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea;
- Department of Agricultural Biotechnology and Center for Food Safety and Toxicology, Seoul National University, 08826 Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
7
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Romão FT, Martins FH, Hernandes RT, Ooka T, Santos FF, Yamamoto D, Bonfim-Melo A, Jones N, Hayashi T, Elias WP, Sperandio V, Gomes TAT. Genomic Properties and Temporal Analysis of the Interaction of an Invasive Escherichia albertii With Epithelial Cells. Front Cell Infect Microbiol 2020; 10:571088. [PMID: 33392102 PMCID: PMC7772469 DOI: 10.3389/fcimb.2020.571088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Diarrhea is one of the main causes of infant mortality worldwide, mainly in the developing world. Among the various etiologic agents, Escherichia albertii is emerging as an important human enteropathogen. E. albertii promote attaching and effacing (AE) lesions due to the presence of the locus of enterocyte effacement (LEE) that encodes a type three secretion system (T3SS), the afimbrial adhesin intimin and its translocated receptor, Tir, and several effector proteins. We previously showed that E. albertii strain 1551-2 invades several epithelial cell lineages by a process that is dependent on the intimin-Tir interaction. To understand the contribution of T3SS-dependent effectors present in E. albertii 1551-2 during the invasion process, we performed a genetic analysis of the LEE and non-LEE genes and evaluated the expression of the LEE operons in various stages of bacterial interaction with differentiated intestinal Caco-2 cells. The kinetics of the ability of the 1551-2 strain to colonize and form AE lesions was also investigated in epithelial HeLa cells. We showed that the LEE expression was constant during the early stages of infection but increased at least 4-fold during bacterial persistence in the intracellular compartment. An in silico analysis indicated the presence of a new tccP/espFU subtype, named tccP3. We found that the encoded protein colocalizes with Tir and polymerized F-actin during the infection process in vitro. Moreover, assays performed with Nck null cells demonstrated that the 1551-2 strain can trigger F-actin polymerization in an Nck-independent pathway, despite the fact that TccP3 is not required for this phenotype. Our study highlights the importance of the T3SS during the invasion process and for the maintenance of E. albertii 1551-2 inside the cells. In addition, this work may help to elucidate the versatility of the T3SS for AE pathogens, which are usually considered extracellular and rarely reach the intracellular environment.
Collapse
Affiliation(s)
- Fabiano T Romão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fernando H Martins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fernanda F Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil.,Universidade Santo Amaro, São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
9
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
10
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|