1
|
Gupta R, Schuster M, Rohde KH. Mycobacterium abscessus persistence in the face of Pseudomonas aeruginosa antagonism. Front Cell Infect Microbiol 2025; 15:1569331. [PMID: 40415956 PMCID: PMC12098619 DOI: 10.3389/fcimb.2025.1569331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/17/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Chronic bacterial infections are responsible for significant morbidity and mortality in cystic fibrosis (CF) patients. Pseudomonas aeruginosa (Pa), the dominant CF pathogen, and Mycobacterium abscessus (Mab) can individually cause persistent, difficult to treat pulmonary infections. Co-infection by both pathogens leads to severe disease and poor clinical outcomes. Although interactions between Pa and other co-infecting pathogens in CF patients have been the focus of numerous studies, the dynamics of Pa-Mab interactions remain poorly understood. Methods To address this knowledge gap, the study examined how Mab and Pa influenced each other through culture-based growth assays and molecular-based dual RNAseq analysis. Growth was measured by CFU determination and luminescence reporter -based readouts. Results In initial studies, we noted that the growth of Pa continued unimpeded in a planktonic co-culture model, whereas Pa appeared to exert a bacteriostatic effect on Mab. Strikingly, exposure of Mab to cell-free spent supernatant of Pa resulted in a dramatic, dose-dependent bactericidal effect. Initial characterization indicated that this potent Pa-derived anti-Mab cidal activity was mediated by a heat-sensitive, protease-insensitive soluble factor of >3kDa size. Further analysis demonstrated that expression of this mycobactericidal factor requires LasR, a central regulator of Pa quorum sensing (QS). In contrast, ΔLasR Pa was still able to exert a bacteriostatic effect on Mab during co-culture, pointing to additional LasR-independent factors able to antagonize Mab growth. However, the ability of Mab to adapt during co-culture to counter the cidal effects of a LasR regulated factor suggested complex interspecies dynamics. Dual RNAseq analysis of Mab-Pa co-cultures revealed significant transcriptional remodeling of Mab, with differential expression of 68% of Mab genes compared to minimal transcriptional changes in Pa. Transcriptome analysis reflected slowed Mab growth and metabolic changes akin to a non-replicating persister phase. A tailored Mab response to Pa was evident by enhanced transcript levels of genes predicted to counteract alkylquinolone QS signals, respiratory toxins, and hydrogen cyanide. Discussion The study showed Mab is capable of coexisting with Pa despite Pa's antagonistic effects, eliciting an adaptive molecular response in Mab. This study provides the first transcriptome-level insight into genetic interactions between the two CF pathogens offering potential strategies for disrupting their communities in a CF lung to improve patient clinical performance. Moreover, identification of a novel antimicrobial natural product with potent cidal activity against Mab could lead to new drug targets and therapies for Mab infections.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Martin Schuster
- Division of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
2
|
Yu Z, Wu Z, Liu D, Liu H, Zhang Y, Zheng Y, Huang Y, Liao S, Wei Y, Huang W, Zhang Z, Liu X, Yu H, Wang D, Li L, Long F, Ma LZ. Dual-function regulator MexL as a target to control phenazines production and pathogenesis of Pseudomonas aeruginosa. Nat Commun 2025; 16:2000. [PMID: 40011517 PMCID: PMC11865548 DOI: 10.1038/s41467-025-57294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Antibiotic resistance or tolerance of pathogens has become one of the global public crises. Finding new drug targets may open up a way of infection control. Phenazine pyocyanin (PYO) is an important virulence factor produced by the pathogen Pseudomonas aeruginosa. Here we show that a multidrug efflux pump repressor, MexL, acts as a transcriptional activator to enhance phenazines production via binding with a conserved DNA motif within the promoters of phenazines biosynthesis genes. Moreover, PYO functions as a self-regulating ligand of MexL for restricting its own production and the mexL knockout attenuates the virulence and antibiotics tolerance of P. aeruginosa. Based on the structure of MexL we resolve, we find two antimicrobials that can interact with MexL to reduce the PYO production and virulence of P. aeruginosa. Our in vivo studies suggest that the antimicrobials combination by using MexL-antagonists to reduce bacterial virulence and enhance the efficacy of common antibiotics can be an effective way to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhikun Wu
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Dejian Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyu Liu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenyu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Feng Long
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Dupont CA, Bourigault Y, Biziere-Maco H, Boukerb AM, Latour X, Barbey C, Verdon J, Merieau A. The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of Pseudomonas fluorescens MFE01 strain. J Bacteriol 2025; 207:e0038824. [PMID: 39846737 PMCID: PMC11841057 DOI: 10.1128/jb.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Pseudomonas fluorescens MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of trpE gene by the transposon was insufficient to explain these phenotypes. To determine the actual impact of this insertion, a comparative transcriptomic analysis was performed on the two-component system GacS/GacA, known to influence numerous phenotypes in Pseudomonas. The results demonstrated that the gacS gene is less expressed in 3H5 than in MFE01. Phenotypic analysis of a gacS deletion mutant, ΔgacS, confirmed many similarities between ΔgacS and 3H5. Indeed, ΔgacS exhibited an inactive T6SS and an altered VOC emission profile. In-depth analysis of volatilomes and phenotypes correlated with the decrease in gacS transcription, highlighting that the emission of 1-undecene is under the strict control of GacS/GacA. This study confirms that 1-undecene is not the sole volatile molecule responsible for MFE01's inhibition of Legionella. Moreover, MFE01 has antimicrobial activity against the phytopathogenic oomycetes Phytophthora infestans via hydrogen cyanide (HCN) emission, which is also controlled by GacS. In MFE01, GacS/GacA is also a partial positive regulator of other VOC emission, whose reduced emission in 3H5 coincides with the decrease in gacS transcription. IMPORTANCE Our model strain Pseudomonas fluorescens MFE01 uses an active type VI secretion system (T6SS) and volatile compounds (VCs) to outcompete other microorganisms in the natural environment. By investigating the cellular mechanism regulating the production of these weapons, we identified the two-component system GacS/GacA. Indeed, GacS cellular membrane sensor plays a crucial role in regulating T6SS activity and VC emission. Among the latter, 1-undecene and hydrogen cyanide are strong aerial inhibitors of the Legionella human pathogen and the Phytophtora infestans major plant pest, respectively. The aim is to improve the understanding of the regulation of these volatile molecule emission and the critical role of a global regulator in both plant and human health.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Héloïse Biziere-Maco
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Amine M. Boukerb
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
- Biocontrol and Biostimulation for Agroecology Association (ABBA), Paris, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, Nouvelle-Aquitaine, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| |
Collapse
|
4
|
Paszti S, Biner O, Liu Y, Bolli K, Jeggli SD, Pessi G, Eberl L. Insights into the diverse roles of the terminal oxidases in Burkholderia cenocepacia H111. Sci Rep 2025; 15:2390. [PMID: 39827173 PMCID: PMC11742914 DOI: 10.1038/s41598-025-86211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Burkholderia cenocepacia H111 is an obligate aerobic bacterium which has been isolated from a cystic fibrosis (CF) patient. In CF lungs the environment is considered micro-oxic or even oxygen-depleted due to bacterial activities and limited oxygen diffusion in the mucus layer. To adapt to low oxygen concentrations, bacteria possess multiple terminal oxidases. In this study, we identified six terminal oxidases of B. cenocepacia H111 and constructed reporter strains to monitor their expression in different environments. While the heme-copper oxidase aa3 (cta) was constitutively expressed, the bd-1 oxidase (cyd) was induced under oxygen-limited growth conditions. The cyanide-insensitive bd-type terminal oxidase (cio-1) was mainly expressed in cells grown on the surface of solid medium or in liquid cultures in presence of cyanide, which is known to be produced in the CF lung by the often co-residing CF pathogen Pseudomonas aeruginosa. Indeed, a cio-1 insertional mutant was not able to grow in the presence of cyanide confirming the important role of Cio-1 in cyanide resistance. The caa3 oxidase (caa), was only expressed under nutrient limitation when cells were grown on the surface of solid medium. We also investigated the involvement of two regulatory systems, Anr and RoxS/RoxR, in the expression of cio-1 and cyd. Our data suggest, that, given that Cio-1 is only present in prokaryotes and plays an important role in the defense against cyanide-producing P. aeruginosa, it may be a valuable drug target for treatment of polymicrobial infections in CF patients.
Collapse
Affiliation(s)
- Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Olivier Biner
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Kim Bolli
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Sarah Dorothy Jeggli
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.
| |
Collapse
|
5
|
Baker EJ, Allcott G, Cox JAG. Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:38. [PMID: 39843836 PMCID: PMC11721438 DOI: 10.1038/s44259-024-00060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025]
Abstract
Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M. abscessus, however the methods used within antibiotic discovery are typically monomicrobial. This review will discuss this pathogen whilst considering the CF polymicrobial environment, to highlight future perspectives to improve M. abscessus drug discovery.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
6
|
Vermeersch A, Van Nieuwerburgh F, Gansemans Y, Ali M, Ducatelle R, Geldhof P, Deforce D, Callens J, Opsomer G. Multi-omics analysis elucidates the host-microbiome interplay in severe udder cleft dermatitis lesions in dairy cows. JDS COMMUNICATIONS 2024; 5:598-601. [PMID: 39650020 PMCID: PMC11624335 DOI: 10.3168/jdsc.2023-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 12/11/2024]
Abstract
Udder cleft dermatitis is a skin disease in dairy cattle that is characterized by painful, large open wounds between the udder halves or at the front udder attachment. Its impact on animal welfare and production warrants an in-depth investigation of its pathogenesis. The present study delves into the pathophysiology of severe udder cleft dermatitis, employing a multi-omics approach by integrating transcriptomic and metagenomic data obtained from samples of severe udder cleft dermatitis lesions and healthy udder skin of dairy cattle. All dominant features selected from the virulence factor, taxonomic, and transcriptomic datasets, except for the facultative pathogen Streptococcus pyogenes, form a network that could be associated with the healthy udder skin. The severe udder cleft dermatitis-associated Streptococcus pyogenes exhibited a negative correlation with these virulence factors and genes, but was not correlated with the other commensal bacteria in the analysis. Examining the different components interacting with each other could advance our understanding of the pathogenesis of severe udder cleft dermatitis.
Collapse
Affiliation(s)
- A.S. Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - M. Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - R. Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - P. Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - D. Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - J. Callens
- Dierengezondheidszorg Vlaanderen, 8820 Torhout, Belgium
| | - G. Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Borisov VB, Giardina G, Pistoia G, Forte E. Cytochrome bd-type oxidases and environmental stressors in microbial physiology. Adv Microb Physiol 2024; 86:199-255. [PMID: 40404270 DOI: 10.1016/bs.ampbs.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Pistoia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Meng M, Li Y, Wang J, Han X, Wang X, Li H, Xiang B, Ma C. Innovative nebulization delivery of lipid nanoparticle-encapsulated siRNA: a therapeutic advance for Staphylococcus aureus-induced pneumonia. J Transl Med 2024; 22:942. [PMID: 39407291 PMCID: PMC11481290 DOI: 10.1186/s12967-024-05711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Integrin α5β1 plays a crucial role in the invasion of nonphagocytic cells by Staphylococcus aureus (S. aureus), thereby facilitating infection development. Lipid nanoparticles (LNPs) serve as an effective vehicle for delivering small interfering ribonucleic acids (siRNA) that represent a method to knockdown integrin α5β1 in the lungs through nebulization, thereby potentially mitigating the severity of S. aureus pneumonia. The aim of this study was to harness LNP-mediated targeting to precisely knockdown integrin α5β1, thus effectively addressing S. aureus-induced pneumonia. METHODS C57 mice (8 week-old females) infected with S. aureus via an intratracheal nebulizing device were utilized for the experiments. The LNPs were synthesized via microfluidic mixing and characterized by their size, polydispersity index, and encapsulation efficiency. Continuous intratracheal nebulization was employed for consistent siRNA administration, with the pulmonary function metrics affirming biosafety. The therapeutic efficacy of LNP-encapsulated siRNAs against pneumonia was assessed through western blotting, bacterial count measurement, quantitative polymerase chain reaction, and histological analyses. RESULTS LNPs, which have an onion-like structure, retained integrity post-nebulization, ensuring prolonged siRNA stability and in vivo safety. Intratracheal nebulization delivery markedly alleviated the severity of S. aureus-induced pneumonia, as indicated by reduced bacterial load and bolstered immune response, thereby localizing the infection to the lungs and averting systemic dissemination. CONCLUSIONS Intratracheal nebulization of LNP-encapsulated siRNAs targeting integrin α5β1 significantly diminished the S. aureus-mediated cellular invasion and disease progression in the lungs, presenting a viable therapeutic approach for respiratory infections.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaonan Han
- Department of Mathematics, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China.
- National Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang, 050035, People's Republic of China.
- Hebei Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, People's Republic of China.
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention On Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
9
|
Bankar N, Latta L, Loretz B, Reda B, Dudek J, Hähl H, Hannig M, Lehr CM. Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms. NPJ Biofilms Microbiomes 2024; 10:106. [PMID: 39406727 PMCID: PMC11480382 DOI: 10.1038/s41522-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Bacterial biofilms represent a prominent biological barrier against physical and chemical attacks. Disturbing the anaerobic microenvironment within biofilms by co-delivery of oxygen appears as a promising strategy to enhance the activity of an antibiotic. Here, we report the effect of oxygen-producing calcium peroxide nanoparticles (CaO2 NP) in combination with tobramycin sulfate (Tob). On Pseudomonas aeruginosa PAO1 biofilms in vitro, the additive effect of CaO2 NP towards Tob activity enhanced biofilm eradication by 2 log compared to Tob alone. For natural biofilms grown in the oral cavity of human volunteers in situ, treatment by CaO2 NP alone slightly increased the fraction of dead bacteria from 44% in various controls, including Tob alone, to 57%. However, the combination of CaO2 NP with Tob further increased the fraction of dead bacteria to 69%. These data confirm the intrinsic antimicrobial and antibiotic-potentiating effect of CaO2 NP also in a clinically relevant setting.
Collapse
Affiliation(s)
- Neha Bankar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
| | - Bashar Reda
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
- Department of Periodontology, School of Dentistry, Al- Shahbaa Private University, 66123, Aleppo, Syria
| | - Johanna Dudek
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Hendrik Hähl
- Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
10
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
11
|
Smiley MK, Sekaran DC, Forouhar F, Wolin E, Jovanovic M, Price-Whelan A, Dietrich LEP. MpaR-driven expression of an orphan terminal oxidase subunit supports Pseudomonas aeruginosa biofilm respiration and development during cyanogenesis. mBio 2024; 15:e0292623. [PMID: 38112469 PMCID: PMC10790758 DOI: 10.1128/mbio.02926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Farhad Forouhar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
da Cruz Nizer WS, Adams ME, Inkovskiy V, Beaulieu C, Overhage J. The secondary metabolite hydrogen cyanide protects Pseudomonas aeruginosa against sodium hypochlorite-induced oxidative stress. Front Microbiol 2023; 14:1294518. [PMID: 38033579 PMCID: PMC10687435 DOI: 10.3389/fmicb.2023.1294518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The high pathogenicity of Pseudomonas aeruginosa is attributed to the production of many virulence factors and its resistance to several antimicrobials. Among them, sodium hypochlorite (NaOCl) is a widely used disinfectant due to its strong antimicrobial effect. However, bacteria develop many mechanisms to survive the damage caused by this agent. Therefore, this study aimed to identify novel mechanisms employed by P. aeruginosa to resist oxidative stress induced by the strong oxidizing agent NaOCl. We analyzed the growth of the P. aeruginosa mutants ΔkatA, ΔkatE, ΔahpC, ΔahpF, ΔmsrA at 1 μg/mL NaOCl, and showed that these known H2O2 resistance mechanisms are also important for the survival of P. aeruginosa under NaOCl stress. We then conducted a screening of the P. aeruginosa PA14 transposon insertion mutant library and identified 48 mutants with increased susceptibility toward NaOCl. Among them were 10 mutants with a disrupted nrdJa, bvlR, hcnA, orn, sucC, cysZ, nuoJ, PA4166, opmQ, or thiC gene, which also exhibited a significant growth defect in the presence of NaOCl. We focussed our follow-up experiments (i.e., growth analyzes and kill-kinetics) on mutants with defect in the synthesis of the secondary metabolite hydrogen cyanide (HCN). We showed that HCN produced by P. aeruginosa contributes to its resistance toward NaOCl as it acts as a scavenger molecule, quenching the toxic effects of NaOCl.
Collapse
Affiliation(s)
| | | | | | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Anand A, Falquet L, Abou-Mansour E, L'Haridon F, Keel C, Weisskopf L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas. mBio 2023; 14:e0085723. [PMID: 37650608 PMCID: PMC10653877 DOI: 10.1128/mbio.00857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.
Collapse
Affiliation(s)
- Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Díaz-Rueda P, Morales de los Ríos L, Romero LC, García I. Old poisons, new signaling molecules: the case of hydrogen cyanide. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6040-6051. [PMID: 37586035 PMCID: PMC10575699 DOI: 10.1093/jxb/erad317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| |
Collapse
|
16
|
Smiley MK, Sekaran DC, Price-Whelan A, Dietrich LE. Cyanide-dependent control of terminal oxidase hybridization by Pseudomonas aeruginosa MpaR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543164. [PMID: 37398129 PMCID: PMC10312525 DOI: 10.1101/2023.05.31.543164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pseudomonas aeruginosa is a common, biofilm-forming pathogen that exhibits complex pathways of redox metabolism. It produces four different types of terminal oxidases for aerobic respiration, and for one of these-the cbb3-type terminal oxidases-it has the capacity to produce at least 16 isoforms encoded by partially redundant operons. It also produces small-molecule virulence factors that interact with the respiratory chain, including the poison cyanide. Previous studies had indicated a role for cyanide in activating expression of an "orphan" terminal oxidase subunit gene called ccoN4 and that the product contributes to P. aeruginosa cyanide resistance, fitness in biofilms, and virulence-but the mechanisms underlying this process had not been elucidated. Here, we show that the regulatory protein MpaR, which is predicted to be a pyridoxal phosphate-binding transcription factor and is encoded just upstream of ccoN4, controls ccoN4 expression in response to endogenous cyanide. Paradoxically, we find that cyanide production is required to support CcoN4's contribution to respiration in biofilms. We identify a palindromic motif required for cyanide- and MpaR-dependent expression of ccoN4 and co-expressed, adjacent loci. We also characterize the regulatory logic of this region of the chromosome. Finally, we identify residues in the putative cofactor-binding pocket of MpaR that are required for ccoN4 expression. Together, our findings illustrate a novel scenario in which the respiratory toxin cyanide acts as a signal to control gene expression in a bacterium that produces the compound endogenously.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
17
|
Meredith JD, Gray MJ. Hypothiocyanite and host-microbe interactions. Mol Microbiol 2023; 119:302-311. [PMID: 36718113 DOI: 10.1111/mmi.15025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN- /HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN- ) and hydrogen peroxide (H2 O2 ) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host-pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julia D Meredith
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|