1
|
Oladeinde A, Chung T, Mou C, Rothrock MJ, Li G, Adeli A, Looft T, Woyda R, Abdo Z, Lawrence JP, Cudnik D, Zock G, Teran J, Li X. Broiler litter moisture and trace metals contribute to the persistence of Salmonella strains that harbor large plasmids carrying siderophores. Appl Environ Microbiol 2025; 91:e0138824. [PMID: 40079597 PMCID: PMC12016502 DOI: 10.1128/aem.01388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Broiler litter sampling has proven to be an effective method for determining the Salmonella status of a broiler chicken flock and understanding the ecology of Salmonella prior to harvest. In this study, we investigated the ecology of Salmonella within the litter (n = 224) from two commercial broiler houses in the United States. We employed culture enrichment methods and quantitative polymerase chain reaction to determine the prevalence and load of Salmonella and utilized antimicrobial susceptibility testing and whole-genome sequencing (WGS) to characterize select isolates. Additionally, we applied machine learning algorithms and in vitro experiments to identify environmental selective pressures that may contribute to the persistence of Salmonella in litter. Our findings indicate that the prevalence and abundance of Salmonella in broiler litter are influenced by the downtime between flocks as well as by the flock raised on the litter. A Decision Tree Classifier model developed demonstrated that the moisture in the caked part of litter was the most influential environmental parameter for predicting the prevalence of viable Salmonella. WGS analysis revealed that Typhimurium, Infantis, and Kentucky strains that harbored large self-conjugative plasmids encoding fitness factors for iron siderophore production were the dominant Salmonella population found in litter, and exposure to iron-limiting and copper-enriched culture media affected Salmonella growth. Our results suggest that trace metals may select for siderophores harbored on plasmids, and interventions that reduce litter moisture can potentially curtail the persistence of Salmonella in pre-harvest environments.IMPORTANCEBroiler chicken meat is the most consumed protein worldwide, and global poultry imports are projected to reach 17.5 million tons by 2031. To raise billions of chickens, litter is reused multiple times by the top global producers and exporters of chicken (Brazil and the United States). Chickens are in continuous contact with litter and depend on it for warmth and coprophagy. Consequently, litter serves as a major route for pathogens such as Salmonella to infect chickens, making it crucial to understand the environmental and genetic selective pressures that might explain why certain Salmonella strains persist on broiler farms more than others. In this study, we demonstrated that Salmonella strains that harbored siderophores on large conjugative plasmids persisted in litter and suggested that reducing litter moisture would significantly control Salmonella prevalence. However, a complete eradication of persisting Salmonella strains will require novel, innovative, and multifaceted approaches.
Collapse
Affiliation(s)
| | - Taejung Chung
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
- SCINet Program, ARS AI Center of Excellence, Office of National Programs, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Connie Mou
- Danisco Animal Nutrition & Health (IFF), Cedar Rapids, Iowa, USA
| | | | - Guoming Li
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ardeshir Adeli
- Genetics and Sustainable Agriculture Research, USDA-ARS, Mississippi State, Mississippi, USA
| | - Torey Looft
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Denice Cudnik
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Gregory Zock
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jose Teran
- College of Civil Engineering, University of Georgia, Athens, Georgia, USA
| | - Xiang Li
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| |
Collapse
|
2
|
Elmarghani ED, Pettersson JHO, Atterby C, Hickman RA, Seng S, San S, Osbjer K, Magnusson U, Mourkas E, Järhult JD. Genomic insights into extended-spectrum β-lactamase- and plasmid-borne AmpC-producing Escherichia coli transmission between humans and livestock in rural Cambodia. J Med Microbiol 2025; 74. [PMID: 40079731 PMCID: PMC11915462 DOI: 10.1099/jmm.0.001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Introduction. The global spread of extended-spectrum cephalosporinase-producing Escherichia coli (producing extended-spectrum β-lactamase or plasmid-borne AmpC, hereafter ESC-Ec) is a major public health concern. Whilst extensively studied in high-income countries, the transmission pathways between humans and animals in low- and middle-income countries (LMICs) remain unclear. In rural Cambodia, the asymptomatic carriage and transmission dynamics of ESC-Ec between humans and animals living in close proximity are poorly understood, highlighting the need for targeted research in this area.Gap statement. An enhanced understanding of the genetic epidemiology of ESC-Ec can enable mitigation strategies to reduce the burden of disease and drug-resistant infections in LMIC settings.Aim. This study aimed to investigate the genetic relatedness and genotypic antibiotic resistance profiles of ESC-Ec strains from humans and livestock in rural Cambodia and to identify patterns of antimicrobial resistance (AMR) gene transmission between hosts and across households and villages.Methodology. Faecal samples were collected from 307 humans and 285 livestock in 100 households in or near Kampong Cham Province in rural Cambodia. From these samples, 108 ESC-Ec strains were subjected to whole-genome sequencing. Core genome MLST (cgMLST) and phylogenetic analysis determined genetic relationships between strains. All strains were screened for the presence of antibiotic resistance genes and plasmids.Results. Human and livestock isolates were assigned to six phylogroups, with phylogroup A being the most common (56.5%). MLST identified 50 sequence types (STs), 17 of which were shared between humans and animals, with ST155 being the most prevalent. cgMLST revealed 97 distinct cgMLST sequence types (cgST), indicating strain sharing between humans and animals. Additionally, AMR gene analysis showed widespread resistance, with genes from the bla CTX-M group detected in 84.2% of isolates. Notably, AMR genes such as aph(3'')-Ib-sul2 co-occurred in 50% of isolates. Finally, plasmid analysis identified IncF plasmids in 75.9% of isolates, likely facilitating AMR gene transmission across hosts.Conclusions. Our findings demonstrate that ESC-Ec strains and their AMR genes are transmitted between humans and livestock in rural Cambodia, likely driven by both clonal spread and plasmid-mediated horizontal gene transfer. These results highlight the urgent need for antimicrobial stewardship and infection control strategies to mitigate the spread of multidrug-resistant pathogens in both human and animal populations.
Collapse
Affiliation(s)
- Ebraheem D Elmarghani
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John H-O Pettersson
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | - Clara Atterby
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Internal Medicine, Visby Hospital, Visby, Sweden
| | - Rachel A Hickman
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Uppsala, Sweden
| | - Sokerya Seng
- Food and Agriculture Organization of the United Nations, Phnom Penh, Cambodia
| | - Sorn San
- General Directorate of Animal Health and Production, Phnom Penh, Cambodia
| | - Kristina Osbjer
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- International Centre for Antimicrobial Resistance Solutions, Copenhagen, Denmark
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Zheng J, Li YY, Lu YS, Wang D, Liu C, Peng HL, Shi CH, Xie KZ, Zhang K, Sun LL, Zhou CM, Gu WJ. Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125564. [PMID: 39716502 DOI: 10.1016/j.envpol.2024.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes. Soil samples were collected in 2012 and 2021. A total of 615 unique ARG subtypes were identified, with multidrug, bacitracin, and rifamycin resistance genes being the most abundant. Notably, ARG types. the continuous application of fresh chicken manure (CM) over 10 years significantly increased both the count of unique ARG subtypes and the total ARG abundance compared to other fertilization regimes, such as inorganic fertilizer and composted chicken manure. Specifically, the abundance of genes associated with antibiotic target replacement (e.g., sul1 and sul2) in the CM-treated soil rose by 8.83-fold from 2021 to 2012. Our random forest analysis revealed that the abundance of three MGEs (QacEdelta, plasmids, and IstB), two viral families (Myoviridae and Podoviridae), two bacterial phyla (Chloroflexi and Planctomycetes), and two environmental factors (pH and soil organic matter (SOM)) significantly influenced the distribution of ARGs. Furthermore, variance decomposition analysis underscored the critical roles of the three MGEs and the two viral families in the dissemination of ARGs, suggesting that horizontal gene transfer (HGT) may play a key role in ARG spread. These findings enhance our understanding of how different fertilization practices influence ARG dissemination in subtropical triple-cropping agroecosystems over the long term and provide valuable insights for optimizing fertilization management strategies.
Collapse
Affiliation(s)
- Jin Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Sheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Huan-Long Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chao-Hong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kai-Zhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kun Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Li-Li Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chang-Min Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Wen-Jie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Huang C, Cui M, Li T, Zheng C, Qiu M, Shan M, Li B, Zhang L, Yu Y, Fang H. Migration of fungicides, antibiotics and resistome in the soil-lettuce system. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136725. [PMID: 39637780 DOI: 10.1016/j.jhazmat.2024.136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have become a serious issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the spread pathway of ARGs in the soil-lettuce system under individual and combined exposure of fungicides (carbendazim and pyraclostrobin) and antibiotics (chlortetracycline and ciprofloxacin). These agrochemicals not only facilitated the spread of ARGs from soil to lettuce but also significantly elevated the risk of developing multi-antibiotic resistance among bacteria, especially to some antibiotic types (i.e. sulfonamide, aminoglycoside, quinolone, and tetracycline). ARGs could be migrated through distinct pathways, including both vertical and horizontal gene transfer, with plasmids playing a crucial role in facilitating the horizontal gene transfer. These transfer pathways have enabled key pathogenic bacteria belonging to the genera Acinetobacter, Pseudomonas, and Pantoea to acquire resistance and remain recalcitrant, posing the potential risk to crop health and food safety. In summary, our findings highlighted that fungicide and antibiotic could drive upward migration of ARGs in the soil-lettuce system and reduced the quality safety of agricultural products.
Collapse
Affiliation(s)
- Chenyu Huang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minrong Cui
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tongxin Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mei Shan
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luqing Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Zhang L, Jiang L, Yan W, Tao H, Yao C, An L, Sun Y, Hu T, Sun W, Qian X, Gu J. Exogenous additives reshape the microbiome and promote the reduction of resistome in co-composting of pig manure and mushroom residue. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136544. [PMID: 39566458 DOI: 10.1016/j.jhazmat.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Comprehensive understanding of the microbiome and resistome evolution in compost is crucial for guaranteeing the safety of organic fertilizers. Current studies using different composting systems and sequencing technologies have yielded varying conclusions on the efficacy of exogenous additives (EAs) in reducing antibiotic resistance genes (ARGs) in compost. This study employed metagenomics to investigate the impact of various EAs on microbial communities, ARGs, their coexistence with mobile genetic elements (MGEs), and ARG hosts in co-composting. Our results demonstrated that EAs significantly reshaped the microbial communities and facilitated a notable reduction in total ARG abundance and diversity, primarily by decreasing core ARGs. Cooperative rather than antagonistic relationships among bacteria. The RA changes in total ARGs are mainly caused by a decrease in the prevalence of core ARGs. Furthermore, EAs showed significant efficacy in reducing clinical ARGs, including cfxA, tetX1, cfxA6, vanA, and aac (6')-Ib', with diatomite (5 %) and zeolite (5 %) being the most effective. The effect of EAs on ARGs and microbial community assembly were stochastic processes. Composting stage and EAs jointly reduced the association between ARGs and MGEs in the composting system. The reduction of ARGs attributed to a decreased abundance of potential pathogenic ARG-associated hosts and diminished associations with MGEs. In conclusion, EAs present a straightforward and effective approach for promoting ARGs reduction in compost, offering crucial insights for assessing the environmental risks associated with the release of agricultural ARGs.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanxiang Tao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengcheng Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Chaves CRS, Salamandane A, Vieira EJF, Salamandane C. Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Int J Microbiol 2024; 2024:2409270. [PMID: 39749146 PMCID: PMC11695086 DOI: 10.1155/ijm/2409270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like E. coli and pathogens like S. aureus. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.
Collapse
Affiliation(s)
- Celso Raul Silambo Chaves
- Clinical Laboratory of the Matacuane Military Health Center, Avenida Alfredo Lawley No 42, Matacuane, Beira, Mozambique
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Acácio Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Emília Joana F. Vieira
- Laboratory of Active Principles, National Center for Scientific Research, Ministry of Higher Education, Science, Technology and Innovation, Avenida Ho Chi Min No 201, Luanda, Angola
| | - Cátia Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
- Laboratory of Food Quality and Safety, Lúrio Interdisciplinary Research Center, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| |
Collapse
|
7
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Tams KW, Larsen AR, Pedersen K, Ingham AC, Folkesson A, Larsen I, Angen Ø, Strube ML. Resistomes from oxytetracycline-treated pigs are readily transferred to untreated pen mates. Anim Microbiome 2024; 6:70. [PMID: 39578929 PMCID: PMC11583793 DOI: 10.1186/s42523-024-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Pork is currently a major part of Danish food export and is also a key dietary source of protein across the world. Industrial pork production, however, comes with high antibiotic usage in many countries, including Denmark. This has created consumer demand for meat Raised Without Antibiotics (RWA). Previous work has demonstrated that levels of antibiotic resistance genes (ARGs) are indeed increased in antibiotically treated animals, but also suggest that these ARGs are transferred to untreated pen-mates. In a Danish commercial farm, we studied four groups of physically separated pigs: one group of only antibiotic treated pigs (n = 20), one group of only untreated pigs (n = 30 total, n = 15 analysed), and one group combining treated (n = 15) and untreated pigs (n = 15). These groups were followed for 16 weeks during which all pigs were profiled for both their faecal microbiome (through 16 S rRNA gene sequencing) and resistome (by use of a high-throughput qPCR platform targeting 82 ARGs and their variants). We found that the resistome of treated pigs was substantially enriched in resistance genes compared to untreated pigs but, importantly, observed that untreated pigs co-reared with treated pigs had levels of resistance genes approaching their treated pen mates, suggesting that the treated enterotype is readily transferred to the untreated animal. From this, we conclude that mixing of treated and untreated pigs causes spill-over of antibiotic resistant bacteria and/or resistance genes from treated pigs when these are co-reared. To optimize RWA production, treated and untreated pigs should be physically separated to limit the proliferation of ARGs.
Collapse
Affiliation(s)
| | | | - Karl Pedersen
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, 8830, Denmark
| | | | | | - Inge Larsen
- University of Copenhagen, Copenhagen, 1871, Denmark
| | - Øystein Angen
- Statens Serum Institut (SSI), Copenhagen, 2300, Denmark
| | | |
Collapse
|
10
|
Yang J, Xu Z, Wan D, Wang X, Zhang X, Zhu Y, Guo J. Pollution characteristics of heavy metals, antibiotic and antibiotic resistance genes in the crested ibis and their habitat across different lifestyle and geography. ENVIRONMENTAL RESEARCH 2024; 261:119701. [PMID: 39094899 DOI: 10.1016/j.envres.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Antibacterial resistance in wild animals has been increasingly reported worldwide, even though they are usually not directly exposed to clinically relevant antibiotics. Crested ibis, one of the rarest birds in the world, usually forages in paddy fields and prefer to nest and breed near villages that is greatly influenced by anthropogenic activities. We sampled the feces of crested ibises, as well as their habitat environment samples, to explore the pollution characteristics of heavy metals, antibiotics and antibiotic resistance genes (ARGs). Results showed that the pollution characteristics of heavy metals, antibiotic, ARGs and gut microbiota of crested ibis were more related by host lifestyle and habitats. Captive ibises had higher relative abundances of the total ARGs and tetracycline concentrations compared with feralization and wild ibises, while the heavy metal contents had shown the opposite result. The Characteristics of pollutants in the corresponding environmental samples also exhibited high similarity with the results of fecal samples. The relative abundances of Proteobacteria and Actinobacteria were significantly different between captive and wild individuals, while the abundance of majority bacterial genera was generally higher in wild populations. The concentrations of heavy metals in soil (Cd, Cu and Zn) and water (Cd, Cu, Zn and Cr) were both exceeded the background soil levels or surface water quality standards, suggesting multi-element contamination in the habitat. Ecological risk assessments of soils by Igeo and Er showed that the habitats of wild ibises were heavily and moderately contaminated by Cd, which would possibly pose a threat to the health of ibises. PLS-PM analysis indicated that microbial compositions and residual antibiotics had the most substantial impact on the dynamic changes in ARGs of ibis. Overall, this work provides a comprehensive understanding of the characteristics, risks of those contaminations, and their effects on the ARGs in the habitat of crested ibis.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Dandan Wan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yimeng Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
11
|
Sun B, Bai Z, Li R, Song M, Zhang J, Wang J, Zhuang X. Efficient elimination of antibiotic resistome in livestock manure by semi-permeable membrane covered hyperthermophilic composting. BIORESOURCE TECHNOLOGY 2024; 407:131134. [PMID: 39038713 DOI: 10.1016/j.biortech.2024.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Livestock manure is a hotspot for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and an important contributor to antibiotic resistance in non-clinical settings. This study investigated the effectiveness and potential mechanisms of a novel composting technology, semi-permeable membrane covered hyperthermophilic composting (smHTC), in removal of ARGs and MGEs in chicken manure. Results showed that smHTC was more efficient in removal of ARGs and MGEs (92% and 93%) compared to conventional thermophilic composting (cTC) (76% and 92%). The efficient removal in smHTC is attributed to direct or indirect negative effects caused by the high temperature, including reducing the involvement of bio-available heavy metals (HMs) in co-selection processes of antibiotic resistance, decreasing the bacterial abundance and diversity, suppressing the horizontal gene transfer and killing potential ARGs hosts. Overall, smHTC can efficiently remove the resistome in livestock manure, reducing the risk to crops and humans from ARGs residues in compost products.
Collapse
Affiliation(s)
- Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Innovation Institute, Xiongan New Area, Hebei 071000, China.
| | - Rui Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manjiao Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 102699, China.
| |
Collapse
|
12
|
Wang G, Gao X, Cai Y, Li G, Ma R, Yuan J. Dynamics of antibiotic resistance genes during manure composting: Reduction in herbivores manure and accumulation in carnivores. ENVIRONMENT INTERNATIONAL 2024; 190:108900. [PMID: 39053194 DOI: 10.1016/j.envint.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process. This study explored the changes in ARGs abundance and the underlying influencing factors during the composting of carnivore (chicken and pig) and herbivore (sheep and cow) manures, along with mushroom residues. The findings revealed that the total relative abundance of ARGs increased by 6.96 and 10.94 folds in chicken and pig manure composts, respectively, whereas it decreased by a remarkable 91.72% and 98.37% in sheep and cow manure composts. Nitrogen content emerged as the primary physicochemical factors governing the abundance of ARGs in chicken and pig manure composts. Conversely, carbon content played a pivotal role in determining ARGs abundance in chicken and pig manure composts. Furthermore, the presence of dominant hosts, such as Corynebacterium, Bacillus, and Clostridium, along with emerging bacteria like Thermobifida, Saccharomonospora, and Actinomadura, contributed significantly to the enrichment of total ARGs, including tetG, tetO, tetX, and sul2, in chicken and pig manure composts. The coexistence of these genes with mobile genetic elements and a plethora of host bacteria, coupled with their high abundance, renders them particularly high-risk ARGs. On the other hand, the observed decrease in the abundance of total ARGs in sheep and cow manure composts can be attributed to the decline in the population of host bacteria, specifically Atopostipes, Psychrobacter, and Corynebacterium. Collectively, these results provide crucial insights into the management of ARGs risks and offer essential theoretical support for enhancing the safe utilization of organic fertilizer in agriculture.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yu Cai
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Liu W, Xie WY, Liu HJ, Chen C, Chen SY, Jiang GF, Zhao FJ. Assessing intracellular and extracellular distribution of antibiotic resistance genes in the commercial organic fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172558. [PMID: 38643884 DOI: 10.1016/j.scitotenv.2024.172558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Compost-based organic fertilizers often contain high levels of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Previous studies focused on quantification of total ARGs and MGEs. For a more accurate risk assessment of the dissemination risk of antibiotic resistance, it is necessary to quantify the intracellular and extracellular distribution of ARGs and MGEs. In the present study, extracellular ARGs and MGEs (eARGs and eMGEs) and intracellular ARGs and MGEs (iARGs and iMGEs) were separately analyzed in 51 commercial composts derived from different raw materials by quantitative polymerase chain reaction (qPCR) and metagenomic sequencing. Results showed that eARGs and eMGEs accounted for 11-56% and 4-45% of the total absolute abundance of ARGs and MGEs, respectively. Comparable diversity, host composition and association with MGEs were observed between eARGs and iARGs. Contents of high-risk ARGs were similar between eARGs and iARGs, with high-risk ARGs in the two forms accounting for 6.7% and 8.2% of the total abundances, respectively. Twenty-four percent of the overall ARGs were present in plasmids, while 56.7% of potentially mobile ARGs were found to be associated with plasmids. Variation partitioning analysis, null model and neutral community model indicated that the compositions of both eARGs and iARGs were largely driven by deterministic mechanisms. These results provide important insights into the cellular distribution of ARGs in manure composts that should be paid with specific attention in risk assessment and management.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wan-Ying Xie
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong-Jun Liu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Yao Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gao-Fei Jiang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Wang H, Wang X, Zhang L, Zhang X, Cao Y, Xiao R, Bai Z, Ma L. Meta-analysis addressing the potential of antibiotic resistance gene elimination through aerobic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:197-206. [PMID: 38670003 DOI: 10.1016/j.wasman.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The significant increase in antibiotic resistance genes (ARGs) in organic solid wastes (OSWs) has emerged as a major threat to the food chain. Aerobic composting is a widely used technology for OSW management, with the potential to influence the fate of AGRs. However, the variability of the ARG elimination effects reported in different studies has highlighted the uncertainty regarding the effects of composting on ARGs. To identify the potential of composting in reducing ARG and the factors (e.g., composting technologies and physiochemical properties) influence ARG changes, a meta-analysis was conducted with a database including 4,232 observations. The abundances of ARGs and mobile genetic elements (MGEs) can be substantially reduced by 74.3% and 78.8%, respectively, via aerobic composting. During composting, the ARG levels in chicken and swine manure tended to be reduced more significantly (81.7% and 78.0%) compared to those in cattle manure (52.3%) and sewage sludge (32.6%). The reduction rate of sulfonamide resistant genes was only 35.3%, which was much lower than those of other types. MGEs and composting duration (CD) were identified as the most important factors driving ARG changes during composting. These findings provide a comprehensive insight into the effects of composting on ARG reduction, which may help prevent the transmission in food systems.
Collapse
Affiliation(s)
- Hongge Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, PR China.
| |
Collapse
|
15
|
Oladele P, Ngo J, Chang T, Johnson TA. Temporal dynamics of fecal microbiota community succession in broiler chickens, calves, and piglets under aerobic exposure. Microbiol Spectr 2024; 12:e0408423. [PMID: 38717193 PMCID: PMC11237419 DOI: 10.1128/spectrum.04084-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Researchers have extensively studied the effect of oxygen on the growth and survival of bacteria. However, the impact of oxygen on bacterial community structure, particularly its ability to select for taxa within the context of a complex microbial community, is still unclear. In a 21-day microcosm experiment, we investigated the effect of aerobic exposure on the fecal community structure and succession pattern in broiler, calf, and piglet feces (n = 10 for each feces type). Bacterial diversity decreased and community structure changed rapidly in the broiler microbiome (P < 0.001), while the fecal community of calves and piglets, which have higher initial diversity, was stable after initial exposure but decreased in diversity after 3 days (P < 0.001). The response to aerobic exposure was host animal specific, but in all three animals, the change in community structure was driven by a decrease in anaerobic species, primarily belonging to Firmicutes and Bacteroidetes (except in broilers where Bacteroidetes increased), along with an increase in aerobic species belonging to Proteobacteria and Actinobacteria. Using random forest regression, we identified microbial features that predict aerobic exposure. In all three animals, host-beneficial Prevotella-related ASVs decreased after exposure, while ASVs belonging to Acinetobacter, Corynbacterium, and Tissierella were increased. The decrease of Prevotella was rapid in broilers but delayed in calves and piglets. Knowing when these pathobionts increase in abundance after aerobic exposure could inform farm sanitation practices and could be important in designing animal experiments that modulate the microbiome.IMPORTANCEThe fecal microbial community is contained within a dynamic ecosystem of interacting microbes that varies in biotic and abiotic components across different animal species. Although oxygen affects bacterial growth, its specific impact on the structure of complex communities, such as those found in feces, and how these effects vary between different animal species are poorly understood. In this study, we demonstrate that the effect of aerobic exposure on the fecal microbiota was host-animal-specific, primarily driven by a decrease in Firmicutes and Bacteroidetes, but accompanied by an increase in Actinobacteria, Proteobacteria, and other pathobionts. Interestingly, we observed that more complex communities from pig and cattle exhibited initial resilience, while a less diverse community from broilers displayed a rapid response to aerobic exposure. Our findings offer insights that can inform farm sanitation practices, as well as experimental design, sample collection, and processing protocols for microbiome studies across various animal species.
Collapse
Affiliation(s)
- Paul Oladele
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Ngo
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tiffany Chang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Zhang Y, Hu Y, Li X, Gao L, Wang S, Jia S, Shi P, Li A. Prevalence of antibiotics, antibiotic resistance genes, and their associations in municipal wastewater treatment plants along the Yangtze River basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123800. [PMID: 38518970 DOI: 10.1016/j.envpol.2024.123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The overuse and misuse of antibiotics have resulted in the pollution of antibiotics and antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (WWTPs), posing threats to ecological security and human health. Thus, a comprehensive investigation was conducted to assess the occurrence, removal efficiency, and ecological risk of antibiotics, along with the diversity, abundance, and co-occurrence of ARGs, and their correlations in 13 WWTPs along the Yangtze River Basin. Among 35 target antibiotics, 23 antibiotics within 6 categories were detected in all the samples. Amoxicillin (AMO), ofloxacin (OFL), and pefloxacin (PEF) were predominant in influents, while AMO exhibited dominance with the highest concentration of 1409 ng/L in effluents. Although antibiotic removal performance varied among different WWTPs, a significant decrease in each antibiotic category and overall antibiotics was observed in effluents compared with that in influents (p < 0.05). Remarkably, ecological risk assessment revealed high risks associated with AMO and ciprofloxacin (CIP) and medium risks linked to several antibiotics, notably including OFL, roxithromycin (ROX), clarithromycin (CLA), and tetracycline (TC). Furthermore, 96 ARG subtypes within 12 resistance types were detected in this study, and the total absolute abundance and diversity of ARGs were significantly decreased from influents to effluents (p < 0.05). Enrichment of 38 ARGs (e.g., blaNDM, ermA, vatA, mexA, and dfrA25) in effluents indicated potential health risks. Various mobile genetic elements (MGEs), exhibited significant correlations with a majority of ARGs in both influents and effluents, such as intⅠ1, tnpA1, tnpA5, and tp614, underscoring the important role of MGEs in contributing to the ARG dissemination. Many antibiotics displayed lower correlations with corresponding ARGs, but exhibited higher correlations with other ARGs, suggesting complex selective pressures influencing ARG propagation. Overall, the incomplete elimination of antibiotics and ARGs in WWTPs is likely to pose adverse impacts on aquatic ecosystems in the Yangtze River Basin.
Collapse
Affiliation(s)
- Yangyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yifan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Mahmud B, Vargas RC, Sukhum KV, Patel S, Liao J, Hall LR, Kesaraju A, Le T, Kitchner T, Kronholm E, Koshalek K, Bendixsen CG, VanWormer JJ, Shukla SK, Dantas G. Longitudinal dynamics of farmer and livestock nasal and faecal microbiomes and resistomes. Nat Microbiol 2024; 9:1007-1020. [PMID: 38570675 PMCID: PMC11966613 DOI: 10.1038/s41564-024-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Globally, half a billion people are employed in animal agriculture and are directly exposed to the associated microorganisms. However, the extent to which such exposures affect resident human microbiomes is unclear. Here we conducted a longitudinal profiling of the nasal and faecal microbiomes of 66 dairy farmers and 166 dairy cows over a year-long period. We compare farmer microbiomes to those of 60 age-, sex- and ZIP code-matched people with no occupational exposures to farm animals (non-farmers). We show that farming is associated with microbiomes containing livestock-associated microbes; this is most apparent in the nasal bacterial community, with farmers harbouring a richer and more diverse nasal community than non-farmers. Similarly, in the gut microbial communities, we identify more shared microbial lineages between cows and farmers from the same farms. Additionally, we find that shared microbes are associated with antibiotic resistance genes. Overall, our study demonstrates the interconnectedness of human and animal microbiomes.
Collapse
Affiliation(s)
- Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lindsey R Hall
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Akhil Kesaraju
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Thao Le
- Integrated Research Development Laboratory, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Terrie Kitchner
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Erik Kronholm
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Kyle Koshalek
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Casper G Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Jeffrey J VanWormer
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA.
- Computational Informatics in Biology and Medicine program, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
18
|
Hazra M, Watts JEM, Williams JB, Joshi H. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170433. [PMID: 38286289 DOI: 10.1016/j.scitotenv.2024.170433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India; International Water Management Institute, New Delhi, India; Civil and Environmental Engineering, University of Nebraska Lincoln, United States.
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
19
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
20
|
Jiang B, Zeng Q, Liu Q, Chai H, Xiang J, Li H, Shi S, Yang A, Chen Z, Cui Y, Hu D, Ge H, Yuan C, Dong J, Han F. Impacts of electric field-magnetic powder coupled membrane bioreactor on phenol wastewater treatment: Performance, synergistic mechanism, antibiotic resistance genes, and eco-environmental benefit evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168607. [PMID: 37981150 DOI: 10.1016/j.scitotenv.2023.168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
A novel electric field-magnetic powder coupled membrane bioreactor (EM-MBR) was constructed, which was superior on improvement of phenol treatment performance and sludge characteristics, and mitigation of membrane fouling. EM-MBR enhanced the phenol degradation via the improvement activity of phenol degrading enzymes. The EPS contents and SVI of EM-MBR were significantly reduced by 49.3 % and 58.7 % than that of the conventional MBR, respectively. Moreover, EM-MBR successfully reduced fouling rate by 57.0 %, delaying the membrane resistance. The EPS contents were positively correlated with the SVI and fouling rate, implying that the sludge settleability was strengthened by improving the properties of EPS with the assistance of electromagnetic, thus mitigating the membrane fouling. Microbial co-occurrence network demonstrated that EM-MBR enriched phenol-degrading and EPS-degrading genera correlated to Fe redox cycle. Furthermore, the activation of the antioxidant system in the EM-MBR resulted in the suppression of reactive oxygen species (ROS) generation, consequently impeding the dissemination of antibiotic resistance genes (ARGs). Co-occurrence patterns of MGEs and ARGs revealed that intercellular binding facilitated by ist and Integrase may account for the horizontal transfer of ARGs. The reduction of unit capital costs (15.63 %), running costs (53.00 %), and total average carbon emissions (15.18 %) indicated that EM-MBR was environmentally beneficial.
Collapse
Affiliation(s)
- Bei Jiang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Qiangwei Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Huiying Chai
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Jinxun Xiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Aifu Yang
- Technology Center of Dalian Customs District, Dalian 116001, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China.
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Hui Ge
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Chang Yuan
- Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi 562400, China
| | - Jian Dong
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| | - Fei Han
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian Jinpu New District, Dalian 116600, China
| |
Collapse
|
21
|
Danov A, Segev O, Bograd A, Ben Eliyahu Y, Dotan N, Kaplan T, Levy A. Toxinome-the bacterial protein toxin database. mBio 2024; 15:e0191123. [PMID: 38117054 PMCID: PMC10790787 DOI: 10.1128/mbio.01911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Microbes use protein toxins as important tools to attack neighboring cells, microbial or eukaryotic, and for self-killing when attacked by viruses. These toxins work through different mechanisms to inhibit cell growth or kill cells. Microbes also use antitoxin proteins to neutralize the toxin activities. Here, we developed a comprehensive database called Toxinome of nearly two million toxins and antitoxins that are encoded in 59,475 bacterial genomes. We described the distribution of bacterial toxins and identified that they are depleted by bacteria that live in hot and cold temperatures. We found 5,161 cases in which toxins and antitoxins are densely clustered in bacterial genomes and termed these areas "Toxin Islands." The Toxinome database is a useful resource for anyone interested in toxin biology and evolution, and it can guide the discovery of new toxins.
Collapse
Affiliation(s)
- Aleks Danov
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Segev
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avi Bograd
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yedidya Ben Eliyahu
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Dotan
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Yi X, Lu H, Liu X, He J, Li B, Wang Z, Zhao Y, Zhang X, Yu X. Unravelling the enigma of the human microbiome: Evolution and selection of sequencing technologies. Microb Biotechnol 2024; 17:e14364. [PMID: 37929823 PMCID: PMC10832515 DOI: 10.1111/1751-7915.14364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
The human microbiome plays a crucial role in maintaining health, with advances in high-throughput sequencing technology and reduced sequencing costs triggering a surge in microbiome research. Microbiome studies generally incorporate five key phases: design, sampling, sequencing, analysis, and reporting, with sequencing strategy being a crucial step offering numerous options. Present mainstream sequencing strategies include Amplicon sequencing, Metagenomic Next-Generation Sequencing (mNGS), and Targeted Next-Generation Sequencing (tNGS). Two innovative technologies recently emerged, namely MobiMicrobe high-throughput microbial single-cell genome sequencing technology and 2bRAD-M simplified metagenomic sequencing technology, compensate for the limitations of mainstream technologies, each boasting unique core strengths. This paper reviews the basic principles and processes of these three mainstream and two novel microbiological technologies, aiding readers in understanding the benefits and drawbacks of different technologies, thereby guiding the selection of the most suitable method for their research endeavours.
Collapse
Affiliation(s)
- Xin Yi
- Department of PharmacyShanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Hong Lu
- Department of Clinical laboratoryThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Junyi He
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Bing Li
- Department of Public HealthShanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Zhelong Wang
- Department of PharmacyGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Yujing Zhao
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xinri Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| |
Collapse
|
23
|
Eiamsam-ang T, Tadee P, Buddhasiri S, Chuammitri P, Kittiwan N, Pascoe B, Patchanee P. Commercial farmed swine harbour a variety of pathogenic bacteria and antimicrobial resistance genes. J Med Microbiol 2024; 73:001787. [PMID: 38230911 PMCID: PMC11418424 DOI: 10.1099/jmm.0.001787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction. The northern region of Thailand serves as a crucial area for swine production, contributing to the Thai community food supply. Previous studies have highlighted the presence of foodborne bacterial pathogens originating from swine farms in this region, posing a threat to both human and animal health.Gap statement. Multiple swine bacterial pathogens have been studied at a species level, but the distribution and co-occurrence of bacterial pathogens in agricultural swine has not been well established.Aim. Our study employed the intestinal scraping technique to directly examine the bacterial micro-organisms interacting with the swine host.Methodology. We used shotgun metagenomic sequencing to analyse the bacterial pathogens inhabiting the caecal microbiome of swine from five commercial farms in northern Thailand.Results. A variety of pathogenic and opportunistic bacteria were identified, including Escherichia coli, Clostridium botulinum, Staphylococcus aureus and the Corynebacterium genus. From a One Health perspective, these species are important foodborne and opportunistic pathogens in both humans and agricultural animals, making swine a critical pathogen reservoir that can cause illness in humans, especially farm workers. Additionally, the swine caecal microbiome contains commensal bacteria such as Bifidobacterium, Lactobacillus and Faecalibacterium, which are associated with normal physiology and feed utilization in healthy swine. Antimicrobial resistance genes were also detected in all samples, specifically conferring resistance to tetracycline and aminoglycosides, which have historically been used extensively in swine farming.Conclusion. The findings further support the need for improved sanitation standards in swine farms, and additional monitoring of agricultural animals and farm workers to reduce contamination and improved produce safety for human consumption.
Collapse
Affiliation(s)
- Thanaporn Eiamsam-ang
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Nattinee Kittiwan
- Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang, Thailand
| | - Ben Pascoe
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Ineos Oxford Istitute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
24
|
Męcik M, Buta-Hubeny M, Paukszto Ł, Maździarz M, Wolak I, Harnisz M, Korzeniewska E. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119303. [PMID: 37832303 DOI: 10.1016/j.jenvman.2023.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
25
|
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 2023; 21:772-788. [PMID: 37491458 DOI: 10.1038/s41579-023-00933-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Okonkwo V, Cholet F, Ijaz UZ, Koottatep T, Pussayanavin T, Polpraset C, Sloan WT, Connelly S, Smith CJ. intI1 gene abundance from septic tanks in Thailand using validated intI1 primers. Appl Environ Microbiol 2023; 89:e0107123. [PMID: 37874304 PMCID: PMC10686061 DOI: 10.1128/aem.01071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance is a global crisis, and wastewater treatment, including septic tanks, remains an important source of antimicrobial resistance (AMR) genes. The role of septic tanks in disseminating class 1 integron, and by extension AMR genes, in Thailand, where antibiotic use is unregulated remains understudied. We aimed to monitor gene abundance as a proxy to infer potential AMR from septic tanks in Thailand. We evaluated published intI1 primers due to the lack of consensus on optimal Q-PCR primers and the absence of standardization. Our findings confirmed septic tanks are a source of class 1 integron to the environment. We highlighted the significance of intI1 primer choice, in the context of interpretation of risk associated with AMR spread from septic tanks. We recommend the validated set (F3-R3) for optimal intI1 quantification toward the goal of achieving standardization across studies.
Collapse
Affiliation(s)
- Valentine Okonkwo
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Cholet
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Umer Z. Ijaz
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Thammarat Koottatep
- School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng, Thailand
| | | | - Chongrak Polpraset
- Thammasat School of Engineering, Thammasat University, Bangkok, Thailand
| | - William T. Sloan
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Connelly
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Cindy J. Smith
- Department of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Tams KW, Larsen I, Hansen JE, Spiegelhauer H, Strøm-Hansen AD, Rasmussen S, Ingham AC, Kalmar L, Kean IRL, Angen Ø, Holmes MA, Pedersen K, Jelsbak L, Folkesson A, Larsen AR, Strube ML. The effects of antibiotic use on the dynamics of the microbiome and resistome in pigs. Anim Microbiome 2023; 5:39. [PMID: 37605221 PMCID: PMC10440943 DOI: 10.1186/s42523-023-00258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.
Collapse
Affiliation(s)
- Katrine Wegener Tams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1871, Copenhagen, Denmark
| | - Julie Elvekjær Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Spiegelhauer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | | | - Sophia Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89, Uppsala, Sweden
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Fan Q, Zhang J, Shi H, Chang S, Hou F. Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Appl Environ Microbiol 2023; 89:e0064523. [PMID: 37409977 PMCID: PMC10370317 DOI: 10.1128/aem.00645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hairen Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Sun J, Yuan Y, Cai L, Zeng M, Li X, Yao F, Chen W, Huang Y, Shafiq M, Xie Q, Zhang Q, Wong N, Wang Z, Jiao X. Metagenomic evidence for antibiotics-driven co-evolution of microbial community, resistome and mobilome in hospital sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121539. [PMID: 37019259 DOI: 10.1016/j.envpol.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Overconsumption of antibiotics is an immediate cause for the emergence of antimicrobial resistance (AMR) and antibiotic resistant bacteria (ARB), though its environmental impact remains inadequately clarified. There is an urgent need to dissect the complex links underpinning the dynamic co-evolution of ARB and their resistome and mobilome in hospital sewage. Metagenomic and bioinformatic methods were employed to analyze the microbial community, resistome and mobilome in hospital sewage, in relation to data on clinical antibiotic use collected from a tertiary-care hospital. In this study, resistome (1,568 antibiotic resistance genes, ARGs, corresponding to 29 antibiotic types/subtypes) and mobilome (247 types of mobile genetic elements, MGEs) were identified. Networks connecting co-occurring ARGs with MGEs encompass 176 nodes and 578 edges, in which over 19 types of ARGs had significant correlations with MGEs. Prescribed dosage and time-dependent antibiotic consumption were associated with the abundance and distributions of ARGs, and conjugative transfer of ARGs via MGEs. Variation partitioning analyses show that effects of conjugative transfer were most likely the main contributors to transient propagation and persistence of AMR. We have presented the first evidence supporting idea that use of clinical antibiotics is a potent driving force for the development of co-evolving resistome and mobilome, which in turn supports the growth and evolution of ARB in hospital sewage. The use of clinical antibiotics calls for greater attention in antibiotic stewardship and management.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Province Center for Disease Control and Prevention, Guangzhou, 511400, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Weidong Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuanchun Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Naikei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China.
| |
Collapse
|
30
|
Li Z, Wang X, Zhang B, Li B, Du H, Wu Z, Rashid A, Mensah CO, Lei M. Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121488. [PMID: 36958659 DOI: 10.1016/j.envpol.2023.121488] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Numerous studies have revealed the spread mechanism of antibiotic resistance genes (ARGs) in single antibiotic-contaminated soils. However, the comprehensive impacts of heavy metals and antibiotics on ARGs and the underlying mechanisms are still unknown. Here, high-throughput quantitative PCR and high-throughput sequencing were used to investigate changes in ARGs and bacterial communities under various sulfamethoxazole (SMX) regimes (0, 1, 10, 50 mg kg-1) in arsenic (As) contaminated soils. The study found that the abundances of ARGs, mobile genetic elements (MGEs), and heavy metal resistance genes (HMRGs) significantly increased in the soil fortified at 10 and 50 mg kg-1 SMX concentrations. The ARGs abundance increased with the increase in the MGEs abundance. Many significant positive correlations between various ARGs subtypes and HMRGs subtypes were found. These results indicate that the HMRGs and MGEs positively contributed to the enrichment of ARGs in As-contaminated soils under SMX stress. Meanwhile, the abundance of copiotrophic (Actinobacteriota) reduced and oligotrophic (Gemmatimonadota) increased, indicating that the life history strategy of the community changed. In addition, Gemmatimonadota was positively correlated to ARGs, HMRGs, and MGEs, suggesting that Gemmatimonadota, which can cope with As and SMX stress, was the host for resistance genes in the soil. Finally, the study found that MGEs play a determinant role in ARGs proliferation due to the direct utilization of HGT, and the indirect effect for ARGs spread under a co-selection mechanism of ARGs and HMRGs, while the bacterial community showed indirect influences by altering environmental factors to act on MGEs. Collectively, this study revealed new insights into the mechanisms of resistance gene transmission under combined SMX and As contamination in soil ecosystems.
Collapse
Affiliation(s)
- Zhuoqing Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xinqi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Beibei Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Bingyu Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Huihui Du
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur, Pakistan
| | - Caleb Oppong Mensah
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ming Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
31
|
Li B, Yan T. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:41-89. [PMID: 37400174 DOI: 10.1016/bs.aambs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
32
|
Gao FZ, He LY, Chen X, Chen JL, Yi X, He LX, Huang XY, Chen ZY, Bai H, Zhang M, Liu YS, Ying GG. Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME COMMUNICATIONS 2023; 3:34. [PMID: 37081217 PMCID: PMC10119254 DOI: 10.1038/s43705-023-00240-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Xin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jing-Liang Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Xin-Yi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| |
Collapse
|
33
|
Hochhauser D, Millman A, Sorek R. The defense island repertoire of the Escherichia coli pan-genome. PLoS Genet 2023; 19:e1010694. [PMID: 37023146 PMCID: PMC10121019 DOI: 10.1371/journal.pgen.1010694] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
It has become clear in recent years that anti-phage defense systems cluster non-randomly within bacterial genomes in so-called "defense islands". Despite serving as a valuable tool for the discovery of novel defense systems, the nature and distribution of defense islands themselves remain poorly understood. In this study, we comprehensively mapped the defense system repertoire of >1,300 strains of Escherichia coli, the most widely studied organism for phage-bacteria interactions. We found that defense systems are usually carried on mobile genetic elements including prophages, integrative conjugative elements and transposons, which preferentially integrate at several dozens of dedicated hotspots in the E. coli genome. Each mobile genetic element type has a preferred integration position but can carry a diverse variety of defensive cargo. On average, an E. coli genome has 4.7 hotspots occupied by defense system-containing mobile elements, with some strains possessing up to eight defensively occupied hotspots. Defense systems frequently co-localize with other systems on the same mobile genetic element, in agreement with the observed defense island phenomenon. Our data show that the overwhelming majority of the E. coli pan-immune system is carried on mobile genetic elements, explaining why the immune repertoire varies substantially between different strains of the same species.
Collapse
Affiliation(s)
- Dina Hochhauser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Guajardo-Leiva S, Mendez KN, Meneses C, Díez B, Castro-Nallar E. A First Insight into the Microbial and Viral Communities of Comau Fjord—A Unique Human-Impacted Ecosystem in Patagonia (42∘ S). Microorganisms 2023; 11:microorganisms11040904. [PMID: 37110327 PMCID: PMC10143455 DOI: 10.3390/microorganisms11040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
While progress has been made in surveying the oceans to understand microbial and viral communities, the coastal ocean and, specifically, estuarine waters, where the effects of anthropogenic activity are greatest, remain partially understudied. The coastal waters of Northern Patagonia are of interest since this region experiences high-density salmon farming as well as other disturbances such as maritime transport of humans and cargo. Here, we hypothesized that viral and microbial communities from the Comau Fjord would be distinct from those collected in global surveys yet would have the distinctive features of microbes from coastal and temperate regions. We further hypothesized that microbial communities will be functionally enriched in antibiotic resistance genes (ARGs) in general and in those related to salmon farming in particular. Here, the analysis of metagenomes and viromes obtained for three surface water sites showed that the structure of the microbial communities was distinct in comparison to global surveys such as the Tara Ocean, though their composition converges with that of cosmopolitan marine microbes belonging to Proteobacteria, Bacteroidetes, and Actinobacteria. Similarly, viral communities were also divergent in structure and composition but matched known viral members from North America and the southern oceans. Microbial communities were functionally enriched in ARGs dominated by beta-lactams and tetracyclines, bacitracin, and the group macrolide–lincosamide–streptogramin (MLS) but were not different from other communities from the South Atlantic, South Pacific, and Southern Oceans. Similarly, viral communities were characterized by exhibiting protein clusters similar to those described globally (Tara Oceans Virome); however, Comau Fjord viromes displayed up to 50% uniqueness in their protein content. Altogether, our results indicate that microbial and viral communities from the Comau Fjord are a reservoir of untapped diversity and that, given the increasing anthropogenic impacts in the region, they warrant further study, specifically regarding resilience and resistance against antimicrobials and hydrocarbons.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3465548, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3465548, Chile
| | - Katterinne N. Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Claudio Meneses
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
| | - Beatriz Díez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 7800003, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3465548, Chile
- Centro de Ecología Integrativa, Campus Talca, Universidad de Talca, Avda. Lircay s/n, Talca 3465548, Chile
| |
Collapse
|
35
|
Cui H, Zhu D, Ding L, Wang Y, Su J, Duan G, Zhu Y. Co-occurrence of genes for antibiotic resistance and arsenic biotransformation in paddy soils. J Environ Sci (China) 2023; 125:701-711. [PMID: 36375951 DOI: 10.1016/j.jes.2022.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
Paddy soils are potential hotspots of combined contamination with arsenic (As) and antibiotics, which may induce co-selection of antibiotic resistance genes (ARGs) and As biotransformation genes (ABGs), resulting in dissemination of antimicrobial resistance and modification in As biogeochemical cycling. So far, little information is available for these co-selection processes and specific patterns between ABGs and ARGs in paddy soils. Here, the 16S rRNA amplicon sequencing and high-throughput quantitative PCR and network analysis were employed to investigate the dynamic response of ABGs and ARGs to As stress and manure application. The results showed that As stress increased the abundance of ARGs and mobile genetic elements (MGEs), resulting in dissemination risk of antimicrobial resistance. Manure amendment increased the abundance of ABGs, enhanced As mobilization and methylation in paddy soil, posing risk to food safety. The frequency of the co-occurrence between ABGs and ARGs, the host bacteria carrying both ARGs and ABGs were increased by As or manure treatment, and remarkably boosted in soils amended with both As and manure. Multidrug resistance genes were found to have the preference to be co-selected with ABGs, which was one of the dominant co-occurring ARGs in all treatments, and manure amendment increased the frequency of Macrolide-Lincosamide-Streptogramin B resistance (MLSB) to co-occur with ABGs. Bacillus and Clostridium of Firmicutes are the dominant host bacteria carrying both ABGs and ARGs in paddy soils. This study would extend our understanding on the co-selection between genes for antibiotics and metals, also unveil the hidden environmental effects of combined pollution.
Collapse
Affiliation(s)
- Huiling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
36
|
Rovira P. Short-Term Impact of Oxytetracycline Administration on the Fecal Microbiome, Resistome and Virulome of Grazing Cattle. Antibiotics (Basel) 2023; 12:antibiotics12030470. [PMID: 36978337 PMCID: PMC10044027 DOI: 10.3390/antibiotics12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is an important public health concern around the world. Limited information exists about AMR in grasslands-based systems where antibiotics are seldom used in beef cattle. The present study investigated the impacts of oxytetracycline (OTC) on the microbiome, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in grazing steers with no previous exposure to antibiotic treatments. Four steers were injected with a single dose of OTC (TREAT), and four steers were kept as control (CONT). The effects of OTC on fecal microbiome, ARGs, and VFGs were assessed for 14 days using 16S rRNA sequencing and shotgun metagenomics. Alpha and beta microbiome diversities were significantly affected by OTC. Following treatment, less than 8% of bacterial genera had differential abundance between CONT and TREAT samples. Seven ARGs conferring resistance to tetracycline (tet32, tet40, tet44, tetO, tetQ, tetW, and tetW/N/W) increased their abundance in the post-TREAT samples compared to CONT samples. In addition, OTC use was associated with the enrichment of macrolide and lincosamide ARGs (mel and lnuC, respectively). The use of OTC had no significant effect on VFGs. In conclusion, OTC induced short-term alterations of the fecal microbiome and enrichment of ARGs in the feces of grazing beef cattle.
Collapse
Affiliation(s)
- Pablo Rovira
- Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Treinta y Tres 33000, Uruguay
| |
Collapse
|
37
|
Brinck JE, Lassen SB, Forouzandeh A, Pan T, Wang YZ, Monteiro A, Blavi L, Solà-Oriol D, Stein HH, Su JQ, Brandt KK. Impacts of dietary copper on the swine gut microbiome and antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159609. [PMID: 36273560 DOI: 10.1016/j.scitotenv.2022.159609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Restrictions on antibiotic growth promoters have prompted livestock producers to use alternative growth promoters, and dietary copper (Cu) supplementation is currently being widely used in pig production. However, elevated doses of dietary Cu constitute a risk for co-selection of antibiotic resistance and the risk may depend on the type of Cu-based feed additives being used. We here report the first controlled experiment investigating the impact of two contrasting Cu-based feed additives on the overall swine gut microbiome and antibiotic resistome. DNA was extracted from fecal samples (n = 96) collected at four time points during 116 days from 120 pigs allotted to three dietary treatments: control, divalent copper sulfate (CuSO4; 250 μg Cu g-1 feed), and monovalent copper oxide (Cu2O; 250 μg Cu g-1 feed). Bacterial community composition, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) were assessed, and bioavailable Cu ([Cu]bio) was determined using whole-cell bacterial bioreporters. Cu supplementation to feed increased total Cu concentrations ([Cu]total) and [Cu]bio in feces 8-10 fold and at least 670-1000 fold, respectively, but with no significant differences between the two Cu sources. The swine gut microbiome harbored highly abundant and diverse ARGs and MGEs irrespective of the treatments throughout the experiment. Microbiomes differed significantly between pig growth stages and tended to converge over time, but only minor changes in the bacterial community composition and resistome could be linked to Cu supplementation. A significant correlation between bacterial community composition (i.e., bacterial taxa present) and ARG prevalence patterns were observed by Procrustes analysis. Overall, results of the experiment did not provide evidence for Cu-induced co-selection of ARGs or MGEs even at a Cu concentration level exceeding the maximal permitted level for pig diets in the EU (25 to 150 μg Cu g-1 feed depending on pig age).
Collapse
Affiliation(s)
- Julius Emil Brinck
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Asal Forouzandeh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ting Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan-Zi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | - Laia Blavi
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
38
|
Chen X, Wang J, Pan C, Feng L, Chen S, Xie S. Metagenomic insights into the influence of thallium spill on sediment microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120660. [PMID: 36436665 DOI: 10.1016/j.envpol.2022.120660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Thallium (Tl) is an extremely toxic metal. The release of Tl into the natural environment can pose a potential threat to organisms. So far, information about the impact of Tl on indigenous microorganisms is still very limited. In addition, there has been no report on how sudden Tl spill influences the structure and function of the microbial community. Therefore, this study explored the response of river sediment microbiome to a Tl spill. Residual T1 in the sediment significantly decreased bacterial community diversity. The increase in the abundance of Bacteroidetes in all Tl- impacted sediments suggested the advantage of Bacteroidetes to resist Tl pressure. Under T1 stress, microbial genes related to carbon fixation and gene cysH participating in assimilatory sulfate reduction were down-regulated, while genes related to nitrogen cycling were up-regulated. After T1 spill, increase in both metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) was observed in Tl-impacted sediments. Moreover, the abundance of MRGs and ARGs was significantly correlated with sediment Tl concentration, implying the positive effect of Tl contamination on the proliferation of these resistance genes. Procrustes analysis suggested a significant congruence between profiles of MRGs and bacterial communities. Through LEfSe and co-occurrence network analysis, Trichococcus, Polaromonas, and Arenimonas were identified to be tolerant and resistant to Tl pollution. The colocalization analysis of contigs indicated the co-effects of selection and transfer for MRGs/ARGs were important reasons for the increase in the microbial resistance in Tl-impacted sediments. This study added new insights into the effect of Tl spill on microbial community and highlighted the role of heavy metal spill in the increase of both heavy metal and antibiotic resistance genes.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Chaoyi Pan
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
39
|
Lin Y, Zhang L, Wu J, Yang K. Wild birds-the sentinel of antibiotic resistance for urban river: Study on egrets and Jinjiang river in Chengdu, China. ENVIRONMENTAL RESEARCH 2023; 216:114566. [PMID: 36273597 DOI: 10.1016/j.envres.2022.114566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance has become a comprehensive and complicated environmental problem. It is of great importance to effectively determine the abundance of various antibiotic resistance genes (ARGs) in the environment. Here, we attempted to find a practical method for monitoring environmental antibiotic resistance. The results of culture-based analysis of antibiotic resistance and metagenomic sequencing indicate that egrets inhabiting along the urban river (Jinjiang River) can be used as the sentinel of environmental antibiotic resistance. The antibiotic resistance in the environment fluctuated with time, while that in the wild bird was relatively stable. The network analysis based on metagenomic sequencing data gave the co-occurrence pattern of ARGs. The overall situation of the antibiotic resistance in the river was determined by quantifying several module hub genes of the co-occurrence network in river sediments. The temporal and spatial distribution of ARGs in Jinjiang River is highly correlated with that of human gut-specific bacteriophage (crAssphage), which indicates that one main source of the antibiotic resistance in the river is likely to be municipal sewage. The mobility potential of ARGs varying among different niches suggests the transmission direction of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Yufei Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China; Patent Examination Cooperation Sichuan Center of the Patent Office, Chengdu, 610213, China
| | - Lihua Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
40
|
Cao H, Bougouffa S, Park TJ, Lau A, Tong MK, Chow KH, Ho PL. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. mSystems 2022; 7:e0077522. [PMID: 36218363 PMCID: PMC9765467 DOI: 10.1128/msystems.00775-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022] Open
Abstract
The prevalence and propagation of antimicrobial resistance (AMR) are serious global public health concerns. The large and the ever-increasing use of antibiotics in livestock is also considered a great concern. The extent of the similarity of acquired antibiotic resistance genes (ARGs) between humans and food animals and the driving factors underlying AMR transfer between them are not clear, although a link between ARGs in both hosts was proposed. To address this question, with swine and chicken as examples of food animals, we analyzed over 1,000 gut metagenomes of humans and food animals from over the world. A relatively high abundance and diversity of ARGs were observed in swine compared with those in humans as a whole. Commensal bacteria, particularly species from Clostridiales, contribute the most ARGs associated with mobile genetic elements (MGEs) and were found in both humans and food animals. Further studies demonstrate that overrepresented MGEs, namely, Tn4451/Tn4453 and TnAs3, are attributed mainly to the sharing between humans and food animals. A member of large resolvase family site-specific recombinases, TnpX, is found in Tn4451/Tn4453 which facilitates the insertions of the transient circular molecule. Although the variance in the transferability of ARGs in humans is higher than that in swine, a higher average transferability was observed in swine than that in humans. In conclusion, the potential antibiotic resistance hot spots with higher transferability in food animals observed in the present study emphasize the importance of surveillance for emerging resistance threats before they spread. IMPORTANCE Antimicrobial resistance (AMR) has proven to be a global public health concern. To conquer this increasingly worrying trend, an overarching, One Health approach has been used that brings together different sectors, but the fundamental knowledge of the relationship between humans, food animals, and their environments is not mature yet or is lacking in some aspect. With swine and chicken as examples of food animals, a large global data set of over 1,000 human and food animal gut metagenomes was analyzed with a focus on acquired antibiotic resistance genes (ARGs) associated with mobile genetic elements (MGEs) to answer this question. Outputs from this work open a new avenue to further our understanding of ARG transferability in food animals. It is a necessary milestone to better equip governmental agencies to monitor and pre-empt antibiotic resistance hot spots. This work will assist and give guidance on how to decipher other links within any One Health initiatives with expected positive feedback to human health.
Collapse
Affiliation(s)
- Huiluo Cao
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Salim Bougouffa
- Computational Bioscience Research Center and Bioscience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tae-Jin Park
- HME Healthcare Co., Ltd., Suwon-si, Gyeonggi-do, Republic of Korea
| | - Andes Lau
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Man-Ki Tong
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Kin-Hung Chow
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, People’s Republic of China
| |
Collapse
|
41
|
Xiong S, Wang K, Yan H, Hou D, Wang Y, Li M, Zhang D. Geographic patterns and determinants of antibiotic resistomes in coastal sediments across complex ecological gradients. Front Microbiol 2022; 13:922580. [PMID: 36406438 PMCID: PMC9669582 DOI: 10.3389/fmicb.2022.922580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/29/2022] [Indexed: 09/17/2023] Open
Abstract
Coastal areas are highly influenced by terrestrial runoffs and anthropogenic disturbances, commonly leading to ecological gradients from bay, nearshore, to offshore areas. Although the occurrence and distribution of sediment antibiotic resistome are explored in various coastal environments, little information is available regarding geographic patterns and determinants of coastal sediment antibiotic resistomes across ecological gradients at the regional scale. Here, using high-throughput quantitative PCR, we investigated the geographic patterns of 285 antibiotic resistance genes (ARGs) in coastal sediments across a ~ 200 km scale in the East China Sea. Sediment bacterial communities and physicochemical properties were characterized to identify the determinants of sediments antibiotic resistome. Higher richness and abundance of ARGs were detected in the bay samples compared with those in nearshore and offshore samples, and significant negative correlations between the richness and/or abundance of ARGs and the distance to coastline (DTC) were identified, whereas different types of ARGs showed inconsistency in their relationships with DTC. The composition of antibiotic resistome showed significant correlations with nutrition-related variables (including NH4 +-N, NO3 --N, and total phosphorus) and metals/metalloid (including As, Cu, Ni, and Zn), suggesting that terrestrial disturbances largely shape the antibiotic resistome. The Bipartite network showed strong associations between ARGs and mobile genetic elements (MGEs), and Partial Least Squares Path Modeling further revealed that terrestrial disturbance strength (as indicated by DTC) directly affected abiotic environmental conditions and bacterial community composition, and indirectly affected antibiotic resistome via MGEs. These findings provide insights into regional variability of sediment antibiotic resistome and its shaping path across complex ecological gradients, highlighting terrestrial disturbances as determinative forces in shaping coastal sediment antibiotic resistomes.
Collapse
Affiliation(s)
- Shangling Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Huizhen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yanting Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| |
Collapse
|
42
|
Lin D, Huang D, Zhang J, Yao Y, Zhang G, Ju F, Xu B, Wang M. Reduction of antibiotic resistance genes (ARGs) in swine manure-fertilized soil via fermentation broth from fruit and vegetable waste. ENVIRONMENTAL RESEARCH 2022; 214:113835. [PMID: 35810807 DOI: 10.1016/j.envres.2022.113835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The issue of growing increase of antibiotic resistance genes (ARGs) in manure-fertilized soil needs urgently addressing. In this study, fermentation broth from fruit and vegetable waste was prepared to reduce ARG abundance in swine manure-fertilized soils. With a six-month field experiment, we found that swine manure-fertilized soil had significantly higher ARG abundance than soil applied with chemical fertilizer. As expected, the homemade fermentation broth significantly reduced ARG abundance in swine manure-fertilized soil, possibly through the decrease of abundance of Actinomyces, in which there was a 48.0%, 51.9%, and 66.7% decrease in the abundance of Nocardioides, Streptomyces, and Nonomuraea, respectively. With the bacteriostatic experiment, we observed that fermentation broth (5 mL/L) significantly inhibited the growth and metabolism in Actinomycetes spp. and Nocardioides sp., in terms of ATPase and PDH activity. These findings confirmed that the inhibition of Actinobacteria, some of the most dominant ARG hosts, was one of the main mechanisms responsible for the decrease in ARG abundance in fermentation broth-treated soil. This study provides field-scale evidence of a feasible strategy for controlling farmland ARG pollution, which is of utmost importance for soil health in the context of sustainable agriculture.
Collapse
Affiliation(s)
- Da Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Jinghan Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
43
|
Muurinen J, Muziasari WI, Hultman J, Pärnänen K, Narita V, Lyra C, Fadlillah LN, Rizki LP, Nurmi W, Tiedje JM, Dwiprahasto I, Hadi P, Virta MPJ. Antibiotic Resistomes and Microbiomes in the Surface Water along the Code River in Indonesia Reflect Drainage Basin Anthropogenic Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14994-15006. [PMID: 35775832 PMCID: PMC9631996 DOI: 10.1021/acs.est.2c01570] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water and sanitation are important factors in the emergence of antimicrobial resistance in low- and middle-income countries. Drug residues, metals, and various wastes foster the spread of antibiotic resistance genes (ARGs) with the help of mobile genetic elements (MGEs), and therefore, rivers receiving contaminants and effluents from multiple sources are of special interest. We followed both the microbiome and resistome of the Code River in Indonesia from its pristine origin at the Merapi volcano through rural and then city areas to the coast of the Indian Ocean. We used a SmartChip quantitative PCR with 382 primer pairs for profiling the resistome and MGEs and 16S rRNA gene amplicon sequencing to analyze the bacterial communities. The community structure explained the resistome composition in rural areas, while the city sampling sites had lower bacterial diversity and more ARGs, which correlated with MGEs, suggesting increased mobility potential in response to pressures from human activities. Importantly, the vast majority of ARGs and MGEs were no longer detectable in marine waters at the ocean entrance. Our work provides information on the impact of different influents on river health as well as sheds light on how land use contributes to the river resistome and microbiome.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Windi I. Muziasari
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Resistomap
Oy, Viikinkaari 4, 00790 Helsinki, Finland
| | - Jenni Hultman
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Katariina Pärnänen
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Vanny Narita
- PT.
AmonRa, Jalan Panti Asuhan
37, 13330 Jakarta
Timur, Indonesia
| | - Christina Lyra
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Lintang N. Fadlillah
- Center
for Environmental Studies (PSLH), Universitas
Gadjah Mada, Jalan Kuningan, 55281 Yogyakarta, Indonesia
- Faculty
of Geography, Universitas Gadjah Mada, Jalan Kaliurang, 55281 Yogyakarta, Indonesia
| | - Ludhang P. Rizki
- Center
for Environmental Studies (PSLH), Universitas
Gadjah Mada, Jalan Kuningan, 55281 Yogyakarta, Indonesia
- Faculty of
Medicine, Universitas Gadjah Mada, Jalan Farmako, 55281 Yogyakarta, Indonesia
| | - William Nurmi
- Resistomap
Oy, Viikinkaari 4, 00790 Helsinki, Finland
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Iwan Dwiprahasto
- Faculty of
Medicine, Universitas Gadjah Mada, Jalan Farmako, 55281 Yogyakarta, Indonesia
| | - Pramono Hadi
- Center
for Environmental Studies (PSLH), Universitas
Gadjah Mada, Jalan Kuningan, 55281 Yogyakarta, Indonesia
- Faculty
of Geography, Universitas Gadjah Mada, Jalan Kaliurang, 55281 Yogyakarta, Indonesia
| | - Marko P. J. Virta
- Department
of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
44
|
Liu L, Zhang Y, Chen H, Teng Y. Fate of resistome components and characteristics of microbial communities in constructed wetlands and their receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157226. [PMID: 35809723 DOI: 10.1016/j.scitotenv.2022.157226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
45
|
Han B, Ma L, Yu Q, Yang J, Su W, Hilal MG, Li X, Zhang S, Li H. The source, fate and prospect of antibiotic resistance genes in soil: A review. Front Microbiol 2022; 13:976657. [PMID: 36212863 PMCID: PMC9539525 DOI: 10.3389/fmicb.2022.976657] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance genes (ARGs), environmental pollutants of emerging concern, have posed a potential threat to the public health. Soil is one of the huge reservoirs and propagation hotspot of ARGs. To alleviate the potential risk of ARGs, it is necessary to figure out the source and fate of ARGs in the soil. This paper mainly reviewed recent studies on the association of ARGs with the microbiome and the transmission mechanism of ARGs in soil. The compositions and abundance of ARGs can be changed by modulating microbiome, soil physicochemical properties, such as pH and moisture. The relationships of ARGs with antibiotics, heavy metals, polycyclic aromatic hydrocarbons and pesticides were discussed in this review. Among the various factors mentioned above, microbial community structure, mobile genetic elements, pH and heavy metals have a relatively more important impact on ARGs profiles. Moreover, human health could be impacted by soil ARGs through plants and animals. Understanding the dynamic changes of ARGs with influencing factors promotes us to develop strategies for mitigating the occurrence and dissemination of ARGs to reduce health risks.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
| | - Jiawei Yang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, China
- *Correspondence: Shiheng Zhang, ; Huan Li,
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- *Correspondence: Shiheng Zhang, ; Huan Li,
| |
Collapse
|
46
|
Zhang Y, Cheng D, Xie J, Zhang Y, Wan Y, Zhang Y, Shi X. Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. CHEMOSPHERE 2022; 300:134529. [PMID: 35395269 DOI: 10.1016/j.chemosphere.2022.134529] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings. On average, compared to unamended treatments, farmland application of antibiotic-contaminated manures significantly increased the total ARG and MGE abundances by 591% and 351%, respectively (P < 0.05). Of all the included ARG classes, the largest increase was found for sulfonamide resistance genes (1121%), followed by aminoglycoside (852%) and tetracycline (763%) resistance genes. Correlation analysis suggested that soil organic carbon (SOC) was significantly negatively correlated with antibiotic concentrations in manured soil (P < 0.05) due to the formation of covalent bonds and nonextractable residues. Soil silt content was significantly positively correlated with antibiotic concentration (P < 0.05), which was attributed to greater sorption capacities. The ARG abundances were significantly positively correlated with soil silt content, antibiotic concentrations, mean annual temperature, SOC, MGEs and soil pH (P < 0.05), suggesting that changes in these factors may shape the ARG profiles. Collectively, these findings advanced our understanding of the occurrence of antibiotics and ARGs in manure-amended soil and potential factors affecting them and will contribute to better management of these contaminants in future agricultural production.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yu Wan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
47
|
Qin Y, Guo Z, Huang H, Zhu L, Dong S, Zhu YG, Cui L, Huang Q. Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5653-5663. [PMID: 35438977 DOI: 10.1021/acs.est.1c08654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are newly recognized as important vectors for carrying and spreading antibiotic resistance genes (ARGs). However, the ARGs harbored by EVs in ambient environments and the transfer potential are still unclear. In this study, the prevalence of ARGs and mobile genetic elements (MGEs) in EVs and their microbial origins were studied in indoor dust from restaurants, kindergarten, dormitories, and vehicles. The amount of EVs ranged from 3.40 × 107 to 1.09 × 1011 particles/g dust. The length of EV-associated DNA fragments was between 21 bp and 9.7 kb. Metagenomic sequencing showed that a total of 241 antibiotic ARG subtypes encoding resistance to 16 common classes were detected in the EVs from all four fields. Multidrug, quinolone, and macrolide resistance genes were the dominant types. 15 ARG subtypes were exclusively carried and even enriched in EVs compared to the indoor microbiome. Moreover, several ARGs showed co-occurrence with MGEs. The EVs showed distinct taxonomic composition with their original dust microbiota. 30.23% of EV-associated DNA was predicted to originate from potential pathogens. Our results indicated the widespread of EVs carrying ARGs and virulence genes in daily life indoor dust, provided new insights into the status of extracellular DNA, and raised risk concerns on their gene transfer potential.
Collapse
Affiliation(s)
- Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Guo
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haining Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Dong
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yong-Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National Basic Science Data Center, Beijing 100190, China
| |
Collapse
|
48
|
Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nat Commun 2022; 13:2296. [PMID: 35484157 PMCID: PMC9051133 DOI: 10.1038/s41467-022-29919-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan. Antimicrobial resistance represents an ongoing silent pandemic. Here, de Nies et al. show that a single antibiotic treatment leads to resistance in bacteria such as Akkermansia muciniphila and that integrons play a key role in mediating this resistance.
Collapse
|
49
|
Xie WY, Wang YT, Yuan J, Hong WD, Niu GQ, Zou X, Yang XP, Shen Q, Zhao FJ. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers. ENVIRONMENT INTERNATIONAL 2022; 162:107157. [PMID: 35219935 DOI: 10.1016/j.envint.2022.107157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Compost-based organic fertilizers made from animal manures may contain high levels of antibiotic resistance genes (ARGs). However, the factors affecting the abundance and profile of ARGs in organic fertilizers remain unclear. We conducted a national-wide survey in China to investigate the effect of material type and composting process on ARG abundance in commercial organic fertilizers and quantified the contributions of bacterial composition and mobile genetic elements (MGEs) to the structuring of ARGs, using quantitative PCR and Illumina sequencing of 16S rRNA gene amplicons. The tetracycline, sulfonamide, aminoglycoside and macrolide resistance genes were present at high levels in all organic fertilizers. Seven ARGs that confer resistance to clinically important antibiotics, including three β-lactam resistance genes, three quinolone resistance genes and the colistin resistance gene mcr-1, were detected in 8 - 50% the compost samples, whereas the vancomycin resistance gene vanC was not detected. Raw material type had a significant (p < 0.001) effect on the ARG abundance, with composts made from animal feces except some cattle feces generally having higher loads of ARGs than those from non-animal raw materials. Composting process type showed no significant (p > 0.05) effect on ARG abundance in the organic fertilizers. MGEs exerted a greater influence on ARG composition than bacterial community, suggesting a strong mobility of ARGs in the organic fertilizers. Our study highlights the need to manage the risk of ARG dissemination from agricultural wastes.
Collapse
Affiliation(s)
- Wan-Ying Xie
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Ting Wang
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Dan Hong
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Qing Niu
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Zou
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ping Yang
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Chen X, Wang J, Pan C, Feng L, Guo Q, Chen S, Xie S. Metagenomic analysis reveals the response of microbial community in river sediment to accidental antimony contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152484. [PMID: 34923019 DOI: 10.1016/j.scitotenv.2021.152484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The mining of deposits containing metals like antimony (Sb) causes serious environmental issues that threaten human health and ecological systems. However, information on the effect of Sb on freshwater sediment microorganisms and the mechanism of microbial Sb resistance is still very limited. This was the first attempt to explore microbial communities in river sediments impacted by accidental Sb spill. Metagenomic analysis revealed the high relative abundance of Proteobacteria and Actinobacteria in all the studied river sediments, showing their advantage in resistance to Sb pollution. Under Sb stress, microbial functions related to DNA repair and ion transport were enhanced. Increase in heavy metal resistance genes (HMRGs), particularly Sb transport-related arsB gene, was observed at Sb spill-impacted sites. HMRGs were significantly correlated with ARGs and MGEs, and the abundant MGEs at Sb spill-impacted sites might contribute to the increase in HMRGs and ARGs via horizontal gene transfer. Deinococcus, Sphingopyxis and Paracoccus were identified as potential tolerant genera under Sb pressure and might be related to the transmission of HMRGs and ARGs. This study can add new insights towards the effect of accidental metal spill on sediment microbial community.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Chaoyi Pan
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|