1
|
Li X, Fatema N, Gan Q, Fan C. Functional consequences of lysine acetylation of phosphofructokinase isozymes. FEBS J 2025. [PMID: 39940094 DOI: 10.1111/febs.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Phosphofructokinase (Pfk) catalyzes the phosphorylation of fructose 6-phosphate and is a key regulatory point in the glycolysis pathway. Multiple lysine residues in both Pfk isozymes, PfkA and PfkB, have been identified to be acetylated in Escherichia coli by proteomic studies, but no studies have been implemented to further characterize these acetylation events. To investigate the role of Pfk acetylation, the genetic code expansion strategy was used to generate homogeneously acetylated Pfk variants at target lysine sites that have been reported to be acetylated in nature. We found that acetylation of K309 of PfkA and K27 of PfkB decreased PfK enzyme activities significantly. We further investigated the deacetylation and acetylation processes of Pfk isozymes biochemically and genetically. Acetyl phosphate-mediated non-enzymatic acetylation could be the major mechanism of Pfk isozyme acetylation in E. coli, whereas NAD-dependent protein deacylase CobB can remove most of the acetylated lysine residues but not K309 of PfkA and K27 of PfkB, which affect enzyme activities. Because of the important role of Pfk in cellular metabolism, the results of the present study are expected to facilitate studies in the fields of metabolic engineering and research.
Collapse
Affiliation(s)
- Xinyu Li
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Liu X, Yang M, Ge F, Zhao J. Lysine acetylation in cyanobacteria: emerging mechanisms and functions. Biochem Soc Trans 2025; 53:BST20241037. [PMID: 39936403 DOI: 10.1042/bst20241037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Cyanobacteria are ancient and abundant photosynthetic prokaryotes that play crucial roles in global carbon and nitrogen cycles. They exist in a variety of environments and have been used extensively as model organisms for studies of photosynthesis and environmental adaptation. Lysine acetylation (Kac), a widespread and evolutionarily conserved protein posttranslational modification, is reversibly catalyzed by lysine acetyltransferases (KAT) and lysine deacetylases (KDACs). Over the past decade, a growing number of acetylated proteins have been identified in cyanobacteria, and Kac is increasingly recognized as having essential roles in many cellular processes, such as photosynthesis, energy metabolism, and stress responses. Recently, cGNAT2 and CddA were identified as KAT and KDAC in the model cyanobacterium Synechococcus sp. PCC 7002, respectively. The identified Kac regulatory enzymes provide novel insight into the mechanisms that globally regulate photosynthesis in cyanobacteria and potentially other photosynthetic organisms. This review summarizes recent progress in our understanding of the functions and mechanisms of lysine acetylation in Cyanobacteria. The challenges and future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zhou J, Ma Q, Liang J, Pan Y, Chen Y, Yu S, Liu Y, Zhang Q, Li Y, Zou J. smu_1558c-mediated regulation of growth and biofilm formation in Streptococcus mutans. Front Microbiol 2025; 15:1507928. [PMID: 39895941 PMCID: PMC11782273 DOI: 10.3389/fmicb.2024.1507928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Streptococcus mutans is a key etiological agent in dental caries, owing to its strong ability to form biofilms through carbohydrate fermentation. Protein acetylation, facilitated by GNAT family acetyltransferases, plays a critical regulatory role in bacterial physiology, but its impact on S. mutans remains largely unexplored. In this study, we investigated the role of the GNAT family acetyltransferase encoded by smu_1558c in regulating the growth and biofilm formation of S. mutans. The deletion of smu_1558c resulted in impaired growth, reduced biofilm formation, and diminished synthesis of water-insoluble extracellular polysaccharides (EPS). Proteomic analysis revealed 166 differentially expressed proteins in the deletion mutant, with significant enrichment in pathways related to carbohydrate transport and metabolism, and translation. Notably, glucosyltransferases GtfB and GtfC, key enzymes in biofilm formation, were significantly downregulated in the deletion mutant, while ClpL, a Clp-like ATP-dependent protease involved in protein homeostasis under stress conditions, was highly upregulated. These findings highlight that acetyltransferase smu_1558c plays a crucial role in the growth, biofilm formation, and EPS synthesis of S. mutans through its regulation of carbohydrate transport and metabolism pathways, as well as stress response mechanisms. This study provides novel insights into the molecular mechanisms governing S. mutans pathogenicity and suggests potential therapeutic targets for caries prevention.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li X, Dai S, Sun S, Zhao D, Li H, Zhang J, Ma J, Du B, Ding Y. Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress. J Proteome Res 2025; 24:210-223. [PMID: 39625841 DOI: 10.1021/acs.jproteome.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacillus altitudinis is a well-known beneficial microorganism in plant rhizosphere, capable of enhancing plant growth and salt tolerance in saline soils. However, the mechanistic changes underlying salt tolerance in B. altitudinis at the level of post-translational modifications remain unclear. Here, diverse lysine modifications including acetylation, succinylation, crotonylation, and malonylation were determined in the B. altitudinis response to salt stress by immunodetection, and the acetylation level greatly increased under salt stress. The in-depth acetylome landscape showed that 1032 proteins in B. altitudinis were differentially acetylated under salt stress. These proteins were involved in many physiological aspects closely related to salt tolerance like energy generation and conversion, amino acid synthesis and transport, cell motility, signal transduction, secretion system, and repair system. Moreover, we also identified the differential acetylation of key enzymes involved in the major osmolyte biosynthesis and conversion and antioxidant defenses. Thiol peroxidase (TPX), a key protective antioxidant enzyme, had 3 upregulated acetylation sites (K7/139/157) under salt stress. Site-specific mutations demonstrated that K7/139/157 acetylation strongly regulated TPX function in scavenging intracellular ROS, thereby impacting bacterial growth under salt stress. To our knowledge, this is the first study showing that bacteria adaptation to salt stress occurs at the level of PTMs.
Collapse
Affiliation(s)
- Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Dai
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Sun
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Junyi Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Ma
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Wang G, Chen L, Lian J, Gong L, Tian F, Wang Y, Lin X, Liu Y. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. J Proteome Res 2025; 24:333-343. [PMID: 39659247 DOI: 10.1021/acs.jproteome.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Post-translational modifications are crucial in regulating biological functions across both prokaryotes and eukaryotes. In Aeromonas hydrophila, CobQ, a recently identified novel deacetylase, plays a significant role in lysine deacetylation, influencing bacterial metabolism and stress responses. The present study utilized quantitative proteomics to investigate the impact of cobQ deletion on the global protein expression profile in A. hydrophila. Through data-independent acquisition mass spectrometry, we identified 233 upregulated and 41 downregulated proteins in the cobQ deletion mutant (ΔahcobQ) strain compared to the wild-type (WT) strain. Key differentially expressed proteins were involved in oxidative phosphorylation, bacterial secretion, and ribosomal function. Additionally, phenotypic assays demonstrated that the ΔahcobQ strain exhibited an increased resistance to oxidative phosphorylation inhibitors, suggesting a pivotal role for AhCobQ in energy metabolism. Outer membrane proteins and efflux pumps also showed altered expression, indicating potential implications for membrane permeability and antibiotic resistance. These results suggested that AhCobQ plays a vital regulatory role in maintaining metabolic homeostasis and responding to environmental stress, highlighting its potential as a target for therapeutic interventions against A. hydrophila infections.
Collapse
Affiliation(s)
- Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linxin Chen
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanqi Lian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanqing Gong
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Tian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Xu Y, Lin Z, Hou J, Ye K, Han S, Liang Y, Liang H, Wu S, Tao Y, Gao H. A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis. Nucleic Acids Res 2024; 52:12930-12944. [PMID: 39475184 PMCID: PMC11602165 DOI: 10.1093/nar/gkae960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis. We showed that AccR interacts with the accS promoter in vivo in response to changes in acetyl-CoA levels and in vitro. Analysis of the crystal structure of the effector-binding domain (EBD) of AccR identified two potential ligand-binding pockets, one of which is likely to bind acetyl-CoA as a ligand based on results from molecular docking, direct binding assay and mutational analysis of the residues predicted to interact with acetyl-CoA. Despite this, the interaction between AccR and acetyl-CoA alone appears unstable, implying that an additional yet unknown ligand is required for activation of AccR. Furthermore, we showed that AccR is acetylated, but the modification may not be critical for sensing acetyl-CoA. Overall, our data substantiate the existence of a dedicated transcriptional regulator for ACCases, expanding our current understanding of the regulation of FAS.
Collapse
Affiliation(s)
- Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zihan Lin
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jiyuan Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kai Ye
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhi J Tao
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
7
|
Duchovni L, Shmunis G, Lobel L. Posttranslational modifications: an emerging functional layer of diet-host-microbe interactions. mBio 2024; 15:e0238724. [PMID: 39254316 PMCID: PMC11481575 DOI: 10.1128/mbio.02387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The microbiome plays a vital role in human health, with changes in its composition impacting various aspects of the body. Posttranslational modification (PTM) regulates protein activity by attaching chemical groups to amino acids in an enzymatic or non-enzymatic manner. PTMs offer fast and dynamic regulation of protein expression and can be influenced by specific dietary components that induce PTM events in gut microbiomes and their hosts. PTMs on microbiome proteins have been found to contribute to host-microbe interactions. For example, in Escherichia coli, S-sulfhydration of tryptophanase regulates uremic toxin production and chronic kidney disease in mice. On a broader microbial scale, the microbiomes of patients with inflammatory bowel disease exhibit distinct PTM patterns in their metaproteomes. Moreover, pathogens and commensals can alter host PTM profiles through protein secretion and diet-regulated metabolic shifts. The emerging field of metaPTMomics focuses on understanding PTM profiles in the microbiota, their association with lifestyle factors like diet, and their functional effects on host-microbe interactions.
Collapse
Affiliation(s)
- Lirit Duchovni
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Genrieta Shmunis
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lior Lobel
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Ma Q, Li J, Yu S, Liu Y, Zhou J, Wang X, Wang L, Zou J, Li Y. ActA-mediated PykF acetylation negatively regulates oxidative stress adaptability of Streptococcus mutans. mBio 2024; 15:e0183924. [PMID: 39248567 PMCID: PMC11481489 DOI: 10.1128/mbio.01839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Dental caries is associated with microbial dysbiosis caused by the excessive proliferation of Streptococcus mutans in dental biofilms, where oxidative stress serves as the major stressor to microbial communities. The adaptability of S. mutans to oxidative stress is a prerequisite for its proliferation and even for exerting its virulence. Protein acetylation is a reversible and conserved regulatory mechanism enabling bacteria to rapidly respond to external environmental stressors. However, the functions of protein acetylation in regulating oxidative stress adaptability of S. mutans are still unknown. Here, we unveil the impact of acetyltransferase ActA-mediated acetylation on regulating the oxidative stress response of S. mutans. actA overexpression increased the sensitivity of S. mutans to hydrogen peroxide and diminished its competitive ability against Streptococcus sanguinis. In contrast, actA deletion enhanced oxidative stress tolerance and competitiveness of S. mutans. The mass spectrometric analysis identified pyruvate kinase (PykF) as a substrate of ActA, with its acetylation impairing its enzymatic activity and reducing pyruvate production. Supplementation with exogenous pyruvate mitigated oxidative stress sensitivity and restored competitiveness in multi-species biofilms. In vitro acetylation analysis further confirmed that ActA directly acetylates PykF, negatively affecting its enzymatic activity. Moreover, 18 potential lysine-acetylated sites on PykF were identified in vitro, which account for 75% of lysine-acetylated sites detected in vivo. Taken together, our study elucidates a novel regulatory mechanism of ActA-mediated acetylation of PykF in modulating oxidative stress adaptability of S. mutans by influencing pyruvate production, providing insights into the importance of protein acetylation in microbial environmental adaptability and interspecies interactions within dental biofilms. IMPORTANCE Dental caries poses a significant challenge to global oral health, driven by microbial dysbiosis within dental biofilms. The pathogenicity of Streptococcus mutans, a major cariogenic bacterium, is closely linked to its ability to adapt to changing environments and cellular stresses. Our investigation into the protein acetylation mechanisms, particularly through the acetyltransferase ActA, reveals a critical pathway by which S. mutans modulates its adaptability to oxidative stress, the dominant stressor within dental biofilms. By elucidating how ActA affects the oxidative stress adaptability and competitiveness of S. mutans through the regulatory axis of ActA-PykF-pyruvate, our findings provide insights into the dynamic interplay between cariogenic and commensal bacteria within dental biofilms. This work emphasizes the significance of protein acetylation in bacterial stress response and competitiveness, opening avenues for the development of novel strategies to maintain oral microbial balance within dental biofilms.
Collapse
Affiliation(s)
- Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ma Q, Li J, Yu S, Zhou J, Liu Y, Wang X, Ye D, Wu Y, Gong T, Zhang Q, Wang L, Zou J, Li Y. YkuR functions as a protein deacetylase in Streptococcus mutans. Proc Natl Acad Sci U S A 2024; 121:e2407820121. [PMID: 39356671 PMCID: PMC11474102 DOI: 10.1073/pnas.2407820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Protein acetylation is a common and reversible posttranslational modification tightly governed by protein acetyltransferases and deacetylases crucial for various biological processes in both eukaryotes and prokaryotes. Although recent studies have characterized many acetyltransferases in diverse bacterial species, only a few protein deacetylases have been identified in prokaryotes, perhaps in part due to their limited sequence homology. In this study, we identified YkuR, encoded by smu_318, as a unique protein deacetylase in Streptococcus mutans. Through protein acetylome analysis, we demonstrated that the deletion of ykuR significantly upregulated protein acetylation levels, affecting key enzymes in translation processes and metabolic pathways, including starch and sucrose metabolism, glycolysis/gluconeogenesis, and biofilm formation. In particular, YkuR modulated extracellular polysaccharide synthesis and biofilm formation through the direct deacetylation of glucosyltransferases (Gtfs) in the presence of NAD+. Intriguingly, YkuR can be acetylated in a nonenzymatic manner, which then negatively regulated its deacetylase activity, suggesting the presence of a self-regulatory mechanism. Moreover, in vivo studies further demonstrated that the deletion of ykuR attenuated the cariogenicity of S. mutans in the rat caries model, substantiating its involvement in the pathogenesis of dental caries. Therefore, our study revealed a unique regulatory mechanism mediated by YkuR through protein deacetylation that regulates the physiology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Qizhao Ma
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Shuxing Yu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jing Zhou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yaqi Liu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyue Wang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Dingwei Ye
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yumeng Wu
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Tao Gong
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Qiong Zhang
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Lingyun Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT06510
| | - Jing Zou
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yuqing Li
- Laboratory of Oral Microbiology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Laboratory of Archaeological Repository, Center for Archaeological Science, Sichuan University, Chengdu610041, China
| |
Collapse
|
10
|
Kuhn ML, Rakus JF, Quenet D. Acetylation, ADP-ribosylation and methylation of malate dehydrogenase. Essays Biochem 2024; 68:199-212. [PMID: 38994669 PMCID: PMC11451102 DOI: 10.1042/ebc20230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco
State University, San Francisco, CA, U.S.A
| | - John F. Rakus
- School of Sciences, University of Louisiana at Monroe,
Monroe, LA, U.S.A
| | - Delphine Quenet
- Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
11
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
12
|
Liu T, Zhang M, Fan Y, Zhao L, Huang D, Zhao L, Tan M, Ye BC, Xu JY. Characterization of diverse lysine acylations in Bacillus thuringiensis: Substrate profiling and functional exploration. Proteomics 2024; 24:e2300350. [PMID: 38491406 DOI: 10.1002/pmic.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.
Collapse
Affiliation(s)
- Tianxian Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yameng Fan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Dan Huang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liuchang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
13
|
Fu Y, Zhao LC, Shen JL, Zhou SY, Yin BC, Ye BC, You D. A network of acetyl phosphate-dependent modification modulates c-di-AMP homeostasis in Actinobacteria. mBio 2024; 15:e0141124. [PMID: 38980040 PMCID: PMC11323494 DOI: 10.1128/mbio.01411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase DNA integrity scanning protein (DisA) and its newly identified transcriptional repressor, DasR. Correspondingly, we found that AcP-induced acetylation exerts these regulatory actions by disrupting protein multimerization, thus impairing c-di-AMP synthesis via K66 acetylation of DisA. Conversely, the transcriptional inhibition of disA was relieved during DasR acetylation at K78. These findings establish a pivotal physiological role for AcP as a mediator to balance c-di-AMP homeostasis. Further studies revealed that acetylated DisA and DasR undergo conformational changes that play crucial roles in differentiation. Considering the broad distribution of AcP-induced acetylation in response to environmental stress, as well as the high conservation of the identified key sites, we propose that this unique regulation of c-di-AMP homeostasis may constitute a fundamental property of central circuits in Actinobacteria and thus the global control of cellular physiology.IMPORTANCESince the identification of c-di-AMP is required for bacterial growth and cellular physiology, a major challenge is the cell signals and stimuli that feed into the decision-making process of c-di-AMP concentration and how that information is integrated into the regulatory pathways. Using the bacterium Saccharopolyspora erythraea as a model, we established that AcP-dependent acetylation of the diadenylate cyclase DisA and its newly identified transcriptional repressor DasR is involved in coordinating environmental and intracellular signals, which are crucial for c-di-AMP homeostasis. Specifically, DisA acetylated at K66 directly inactivates its diadenylate cyclase activity, hence the production of c-di-AMP, whereas DasR acetylation at K78 leads to increased disA expression and c-di-AMP levels. Thus, AcP represents an essential molecular switch in c-di-AMP maintenance, responding to environmental changes and possibly hampering efficient development. Therefore, AcP-mediated posttranslational processes constitute a network beyond the usual and well-characterized synthetase/hydrolase governing c-di-AMP homeostasis.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Chang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Shen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Yu Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
15
|
Mikkat S, Kreutzer M, Patenge N. Lysine Phoshoglycerylation Is Widespread in Bacteria and Overlaps with Acylation. Microorganisms 2024; 12:1556. [PMID: 39203397 PMCID: PMC11356508 DOI: 10.3390/microorganisms12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Phosphoglycerylation is a non-enzymatic protein modification in which a phosphoglyceryl moiety is covalently bound to the ε-amino group of lysine. It is enriched in glycolytic enzymes from humans and mice and is thought to provide a feedback mechanism for regulating glycolytic flux. We report the first proteomic analysis of this post-translational modification in bacteria by profiling phosphoglyceryl-lysine during the growth of Streptococcus pyogenes in different culture media. The identity of phosphoglyceryl-lysine was confirmed by a previously unknown diagnostic cyclic immonium ion generated during MS/MS. We identified 370 lysine phosphoglycerylation sites in 123 proteins of S. pyogenes. Growth in a defined medium on 1% fructose caused a significant accumulation of phosphoglycerylation compared to growth in a rich medium containing 0.2% glucose. Re-analysis of phosphoproteomes from 14 bacterial species revealed that phosphoglycerylation is generally widespread in bacteria. Many phosphoglycerylation sites were conserved in several bacteria, including S. pyogenes. There was considerable overlap between phosphoglycerylation, acetylation, succinylation, and other acylations on the same lysine residues. Despite some exceptions, most lysine phosphoglycerylations in S. pyogenes occurred with low stoichiometry. Such modifications may be meaningless, but it is also conceivable that phosphoglycerylation, acetylation, and other acylations jointly contribute to the overall regulation of metabolism.
Collapse
Affiliation(s)
- Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Kreutzer
- Medical Research Center, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
16
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
17
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
18
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
19
|
Carr RA, Tucker T, Newman PM, Jadalla L, Jaludi K, Reid BE, Alpheaus DN, Korrapati A, Pivonka AE, Carabetta VJ. N ε-lysine acetylation of the histone-like protein HBsu influences antibiotic survival and persistence in Bacillus subtilis. Front Microbiol 2024; 15:1356733. [PMID: 38835483 PMCID: PMC11148388 DOI: 10.3389/fmicb.2024.1356733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Nε-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In Bacillus subtilis, the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure. Acetylation of the HBsu ortholog HupB decondenses the chromosome to escape this drug-induced, non-growing state, and in addition, regulates the formation of drug-tolerant subpopulations by altering gene expression. We hypothesized that the acetylation of HBsu plays similar regulatory roles. First, we measured nucleoid area by fluorescence microscopy and in agreement, we found that wild-type cells compacted their nucleoids upon kanamycin exposure, but not exposure to tetracycline. We analyzed a collection of HBsu mutants that contain lysine substitutions that mimic the acetylated (glutamine) or unacetylated (arginine) forms of the protein. Our findings indicate that some level of acetylation is required at K3 for a proper response and K75 must be deacetylated. Next, we performed time-kill assays of wild-type and mutant strains in the presence of different antibiotics and found that interfering with HBsu acetylation led to faster killing rates. Finally, we examined the persistent subpopulation and found that altering the acetylation status of HBsu led to an increase in persister cell formation. In addition, we found that most of the deacetylation-mimic mutants, which have compacted nucleoids, were delayed in resuming growth following removal of the antibiotic, suggesting that acetylation is required to escape the persistent state. Together, this data adds an additional regulatory role for HBsu acetylation and further supports the existence of a histone-like code in bacteria.
Collapse
Affiliation(s)
- Rachel A. Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Lama Jadalla
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Kamayel Jaludi
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Briana E. Reid
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Damian N. Alpheaus
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Anish Korrapati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - April E. Pivonka
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
20
|
Zhu L, Li J, Pan Y, Huang J, Yao H. Metabolomics reveals high fructose-1,6-bisphosphate from fluoride-resistant Streptococcus mutans. BMC Microbiol 2024; 24:151. [PMID: 38702601 PMCID: PMC11067228 DOI: 10.1186/s12866-024-03310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.
Collapse
Affiliation(s)
- Laikuan Zhu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Stomatology, Hainan Western Central Hospital, Hainan, 571700, China
| | - Jiehang Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yueping Pan
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Hui Yao
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
21
|
Christianson DW. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Acc Chem Res 2024; 57:1135-1148. [PMID: 38530703 PMCID: PMC11021156 DOI: 10.1021/acs.accounts.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/β fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.
Collapse
Affiliation(s)
- David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
22
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
23
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
24
|
Liu Y, Zhou M, Bu Y, Qin L, Zhang Y, Shao S, Wang Q. Lysine acetylation regulates the AT-rich DNA possession ability of H-NS. Nucleic Acids Res 2024; 52:1645-1660. [PMID: 38059366 PMCID: PMC10899749 DOI: 10.1093/nar/gkad1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
H-NS, the histone-like nucleoid-structuring protein in bacteria, regulates the stability of the bacterial genome by inhibiting the transcription of horizontally transferred genes, such as the type III and type VI secretion systems (T3/T6SS). While eukaryotic histone posttranslational modifications (PTMs) have been extensively studied, little is known about prokaryotic H-NS PTMs. Here, we report that the acetylation of H-NS attenuates its ability to silence horizontally transferred genes in response to amino acid nutrition and immune metabolites. Moreover, LC-MS/MS profiling showed that the acetyllysine sites of H-NS and K120 are indispensable for its DNA-binding ability. Acetylation of K120 leads to a low binding affinity for DNA and enhances T3/T6SS expression. Furthermore, acetylation of K120 impairs the AT-rich DNA recognition ability of H-NS. In addition, lysine acetylation in H-NS modulates in vivo bacterial virulence. These findings reveal the mechanism underlying H-NS PTMs and propose a novel mechanism by which bacteria counteract the xenogeneic silencing of H-NS.
Collapse
Affiliation(s)
- Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Qin
- New Product R&D, GenScript Biotech Corporation, Nanjing 211100, China
| | - Yuanxing Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| |
Collapse
|
25
|
Lozano-Terol G, Chiozzi RZ, Gallego-Jara J, Sola-Martínez RA, Vivancos AM, Ortega Á, Heck AJ, Díaz MC, de Diego Puente T. Relative impact of three growth conditions on the Escherichia coli protein acetylome. iScience 2024; 27:109017. [PMID: 38333705 PMCID: PMC10850759 DOI: 10.1016/j.isci.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Nε-lysine acetylation is a common posttranslational modification observed in Escherichia coli. In the present study, integrative analysis of the proteome and acetylome was performed using label-free quantitative mass spectrometry to analyze the relative influence of three factors affecting growth. The results revealed differences in the proteome, mainly owing to the type of culture medium used (defined or complex). In the acetylome, 7482 unique acetylation sites were identified. Acetylation is directly related to the abundance of proteins, and the level of acetylation in each type of culture is associated with extracellular acetate concentration. Furthermore, most acetylated lysines in the exponential phase remained in the stationary phase without dynamic turnover. Interestingly, unique acetylation sites were detected in proteins whose presence or abundance was linked to the type of culture medium. Finally, the biological function of the acetylation changes was demonstrated for three central metabolic proteins (GapA, Mdh, and AceA).
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padulaan 8, Utrecht 3584 CH, the Netherlands
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
26
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
28
|
Tejada-Arranz A, Lulla A, Bouilloux-Lafont M, Turlin E, Pei XY, Douché T, Matondo M, Williams AH, Raynal B, Luisi BF, De Reuse H. Acetylation regulates the oligomerization state and activity of RNase J, the Helicobacter pylori major ribonuclease. Nat Commun 2023; 14:8072. [PMID: 38057323 PMCID: PMC10700544 DOI: 10.1038/s41467-023-43825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H. pylori is acetylated on multiple lysine residues. Alanine substitution of several of these residues impacts on H. pylori morphology, and thus on RNase J function in vivo. Mutations of Lysine 649 modulates RNase J oligomerization in vitro, which in turn influences ribonuclease activity in vitro. Our structural analyses of RNase J reveal loops that gate access to the active site and rationalizes how acetylation state of K649 can influence activity. We propose acetylation as a regulatory level controlling the activity of RNase J and its potential cooperation with other enzymes of RNA metabolism in H. pylori.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- Biozentrum, University of Basel, Basel, Switzerland
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Maxime Bouilloux-Lafont
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Evelyne Turlin
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Xue-Yuan Pei
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Allison H Williams
- University of California San Francisco, Cellular Molecular Pharmacology, San Francisco, CA, USA
| | - Bertrand Raynal
- Département de Biologie structurale et chimie, Plateforme de biophysique moléculaire, Institut Pasteur, Paris, France
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Hilde De Reuse
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France.
| |
Collapse
|
29
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Collars OA, Jones BS, Hu DD, Weaver SD, Sherman TA, Champion MM, Champion PA. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio 2023; 14:e0098723. [PMID: 37772840 PMCID: PMC10653941 DOI: 10.1128/mbio.00987-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Taylor A. Sherman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| |
Collapse
|
31
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Kumari S, Kumar P. Identification and characterization of putative biomarkers and therapeutic axis in Glioblastoma multiforme microenvironment. Front Cell Dev Biol 2023; 11:1236271. [PMID: 37538397 PMCID: PMC10395518 DOI: 10.3389/fcell.2023.1236271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Non-cellular secretory components, including chemokines, cytokines, and growth factors in the tumor microenvironment, are often dysregulated, impacting tumorigenesis in Glioblastoma multiforme (GBM) microenvironment, where the prognostic significance of the current treatment remains unsatisfactory. Recent studies have demonstrated the potential of post-translational modifications (PTM) and their respective enzymes, such as acetylation and ubiquitination in GBM etiology through modulating signaling events. However, the relationship between non-cellular secretory components and post-translational modifications will create a research void in GBM therapeutics. Therefore, we aim to bridge the gap between non-cellular secretory components and PTM modifications through machine learning and computational biology approaches. Herein, we highlighted the importance of BMP1, CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1 in GBM etiology. Further, we demonstrated the positive relationship between the E2 conjugating enzymes (Ube2E1, Ube2H, Ube2J2, Ube2C, Ube2J2, and Ube2S), E3 ligases (VHL and GNB2L1) and substrate (HIF1A). Additionally, we reported the novel HAT1-induced acetylation sites of Ube2S (K211) and Ube2H (K8, K52). Structural and functional characterization of Ube2S (8) and Ube2H (1) have identified their association with protein kinases. Lastly, our results found a putative therapeutic axis HAT1-Ube2S(K211)-GNB2L1-HIF1A and potential predictive biomarkers (CTSB, HAT1, Ube2H, VHL, and GNB2L1) that play a critical role in GBM pathogenesis.
Collapse
|
33
|
Fragoso MSI, de Siqueira CM, Vitorino FNL, Vieira AZ, Martins-Duarte ÉS, Faoro H, da Cunha JPC, Ávila AR, Nardelli SC. TgKDAC4: A Unique Deacetylase of Toxoplasma' s Apicoplast. Microorganisms 2023; 11:1558. [PMID: 37375060 DOI: 10.3390/microorganisms11061558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world's population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.
Collapse
Affiliation(s)
| | | | - Francisca Nathália Luna Vitorino
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Érica Santos Martins-Duarte
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, Brazil
| | - Júlia Pinheiro Chagas da Cunha
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signalling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | | | | |
Collapse
|
34
|
Couto-Rodríguez RL, Koh J, Chen S, Maupin-Furlow JA. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants (Basel) 2023; 12:1203. [PMID: 37371933 PMCID: PMC10294847 DOI: 10.3390/antiox12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.
Collapse
Affiliation(s)
- Ricardo L. Couto-Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
35
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
36
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
37
|
Dikalov S, Kirabo A. Meet the Novel Players in Hypertensive Kidney Disease: Septin4 and SIRT2. Circ Res 2023; 132:625-627. [PMID: 36862813 PMCID: PMC9991072 DOI: 10.1161/circresaha.123.322552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
38
|
Liu Y, Liu X, Dong X, Yin Z, Xie Z, Luo Y. Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans Strain ORS571. Microbiol Spectr 2023; 11:e0353922. [PMID: 36475778 PMCID: PMC9927263 DOI: 10.1128/spectrum.03539-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation can quickly modify the physiology of bacteria to respond to changes in environmental or nutritional conditions, but little information on these modifications is available in rhizobia. In this study, we report the lysine acetylome of Azorhizobium caulinodans strain ORS571, a model rhizobium isolated from stem nodules of the tropical legume Sesbania rostrata that is capable of fixing nitrogen in the free-living state and during symbiosis. Antibody enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used to characterize the acetylome. There are 2,302 acetylation sites from 982 proteins, accounting for 20.8% of the total proteins. Analysis of the acetylated motifs showed the preferences for the amino acid residues around acetylated lysines. The response regulator CheY1, previously characterized to be involved in chemotaxis in strain ORS571, was identified as an acetylated protein, and a mutation of the acetylated site of CheY1 significantly impaired the strain's motility. In addition, a Zn+-dependent deacetylase (AZC_0414) was characterized, and the construction of a deletion mutant strain showed that it played a role in chemotaxis. Our study provides the first global analysis of lysine acetylation in ORS571, suggesting that acetylation plays a role in various physiological processes. In addition, we demonstrate its involvement in the chemotaxis process. The acetylome of ORS571 provides insights to investigate the regulation mechanism of rhizobial physiology. IMPORTANCE Acetylation is an important modification that regulates protein function and has been found to regulate physiological processes in various bacteria. The physiology of rhizobium A. caulinodans ORS571 is regulated by multiple mechanisms both when free living and in symbiosis with the host; however, the regulatory role of acetylation is not yet known. Here, we took an acetylome-wide approach to identify acetylated proteins in A. caulinodans ORS571 and performed clustering analyses. Acetylation of chemotaxis proteins was preliminarily investigated, and the upstream acetylation-regulating enzyme involved in chemotaxis was characterized. These findings provide new insights to explore the physiological mechanisms of rhizobia.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
39
|
Acetylation of Cyclic AMP Receptor Protein by Acetyl Phosphate Modulates Mycobacterial Virulence. Microbiol Spectr 2023; 11:e0400222. [PMID: 36700638 PMCID: PMC9927398 DOI: 10.1128/spectrum.04002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen is partly attributed to its ability to sense and respond to dynamic host microenvironments. The cyclic AMP (cAMP) receptor protein (CRP) is closely related to the pathogenicity of Mtb and plays an important role in this process. However, the molecular mechanisms guiding the autoregulation and downstream target genes of CRP while Mtb responds to its environment are not fully understood. Here, it is demonstrated that the acetylation of conserved lysine 193 (K193) within the C-terminal DNA-binding domain of CRP reduces its DNA-binding ability and inhibits transcriptional activity. The reversible acetylation status of CRP K193 was shown to significantly affect mycobacterial growth phenotype, alter the stress response, and regulate the expression of biologically relevant genes using a CRP K193 site-specific mutation. Notably, the acetylation level of K193 decreases under CRP-activating conditions, including the presence of cAMP, low pH, high temperature, and oxidative stress, suggesting that microenvironmental signals can directly regulate CRP K193 acetylation. Both cell- and murine-based infection assays confirmed that CRP K193 is critical to the regulation of Mtb virulence. Furthermore, the acetylation of CRP K193 was shown to be dependent on the intracellular metabolic intermediate acetyl phosphate (AcP), and deacetylation was mediated by NAD+-dependent deacetylases. These findings indicate that AcP-mediated acetylation of CRP K193 decreases CRP activity and negatively regulates the pathogenicity of Mtb. We believe that the underlying mechanisms of cross talk between transcription, posttranslational modifications, and metabolites are a common regulatory mechanism for pathogenic bacteria. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, and the ability of Mtb to survive harsh host conditions has been the subject of intensive research. As a result, we explored the molecular mechanisms guiding downstream target genes of CRP when Mtb responds to its environment. Our study makes a contribution to the literature because we describe the role of acetylated K193 in regulating its binding affinity to target DNA and influencing the virulence of mycobacteria. We discovered that mycobacteria can regulate their pathogenicity through the reversible acetylation of CRP K193 and that this reversible acetylation is mediated by AcP and a NAD+-dependent deacetylase. The regulation of CRPMtb by posttranslational modifications, at the transcriptional level, and by metabolic intermediates contribute to a better understanding of its role in the survival and pathogenicity of mycobacteria.
Collapse
|
40
|
Peng ZY, Fu Y, Zhao LC, Dong YQ, Chen ZQ, You D, Ye BC. Protein acylation links metabolism and the control of signal transduction, transcription regulation, growth, and pathogenicity in Actinobacteria. Mol Microbiol 2023; 119:151-160. [PMID: 36349384 DOI: 10.1111/mmi.14998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
Actinobacteria have a complex life cycle, including morphological and physiological differentiation which are often associated with the biosynthesis of secondary metabolites. Recently, increased interest in post-translational modifications (PTMs) in these Gram-positive bacteria has highlighted the importance of PTMs as signals that provide functional diversity and regulation by modifying proteins to respond to diverse stimuli. Here, we review the developments in research on acylation, a typical PTM that uses acyl-CoA or related metabolites as donors, as well as the understanding of the direct link provided by acylation between cell metabolism and signal transduction, transcriptional regulation, cell growth, and pathogenicity in Actinobacteria.
Collapse
Affiliation(s)
- Zhi-Yao Peng
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Chang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Qi Dong
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Qin Chen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
41
|
Schastnaya E, Doubleday PF, Maurer L, Sauer U. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. Cell Rep 2023; 42:111950. [PMID: 36640332 DOI: 10.1016/j.celrep.2022.111950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Advanced mass spectrometry methods have detected thousands of post-translational phosphorylation and acetylation sites in bacteria, but their functional role and the enzymes catalyzing these modifications remain largely unknown. In addition to enzymatic acetylation, lysine residues can also be chemically acetylated by the metabolite acetyl phosphate. In Escherichia coli, acetylation at over 3,000 sites has been linked to acetyl phosphate, but the functionality of this widespread non-enzymatic acetylation is even less clear than the enzyme-catalyzed one. Here, we investigate the role of acetyl-phosphate-mediated acetylation in E. coli central metabolism. Out of 19 enzymes investigated, only GapA and GpmA are acetylated at high stoichiometry, which inhibits their activity by interfering with substrate binding, effectively reducing glycolysis when flux to or from acetate is high. Extrapolating our results to the whole proteome, maximally 10% of the reported non-enzymatically acetylated proteins are expected to reach a stoichiometry that could inhibit their activity.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology, 8093 Zurich, Switzerland
| | | | - Luca Maurer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
42
|
Xu Y, Wen J, Han W, Yan J, Jia W, Su X. Differential expression of lysine acetylation proteins in gastric cancer treated with a new antitumor agent bioactive peptide chelate selenium. PeerJ 2023; 11:e14384. [PMID: 36684675 PMCID: PMC9854375 DOI: 10.7717/peerj.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023] Open
Abstract
The method of anticancer bioactive peptide (ACBP) functionalized selenium particle (Se), which has enhanced anticancer activity, inhibited the growth of gastric cancer (GC) cells, and increased the ability of apoptosis in vitro, has been reported in previous studies. We used tandem mass spectrometry (TMT) labeling to construct a complete atlas of the acetylation-modified proteome in GC MKN-45 cells treated with ACBP-Se. The proteomics data database was searched and analyzed by bioinformatics: Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), functional enrichment, and protein-protein interaction network. Finally, we conducted a quantitative PRM analysis of the selected target-modified peptides. We identified 4,958 acetylation sites from 1,926 proteins in this research. Among these, 4,467 acetylation sites corresponding to 1,777 proteins were quantified. Based on the above data and standards, we found that in the ACBP-Se group vs. the control group, 297 sites were upregulated, and 665 sites were downregulated. We systematically assessed the proteins containing quantitative information sites, including protein annotation, functional classification, and functional enrichment, cluster analysis supported by functional enrichment, domain structures, and protein interaction networks. Finally, we evaluated differentially expressed lysine acetylation sites. We revealed that SHMT2 K200 and PGK1 K97 were the most critical acetylated non-histone proteins, which may have an essential role in ACBP-Se treatment. Here, we identified and quantified the lysine acetylation proteins in GC cells treated with ACBP-Se. The characterization of acetylation indicates that acetylated proteins might be pivotal in the biological process, molecular binding, and metabolic pathways of ACBP-Se treatment progress. Our findings provide a broad understanding of acetylation ACBP-Se treatment of GC, suggesting a potential application for molecular targeted therapy.
Collapse
Affiliation(s)
- Yanan Xu
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Jianxun Wen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wenyan Han
- Clinical Laboratory, The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Jin Yan
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Wei Jia
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Xiulan Su
- Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
43
|
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K, Kan Y, Tan M, Xu JY. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics 2023; 271:104767. [PMID: 36336260 DOI: 10.1016/j.jprot.2022.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.
Collapse
Affiliation(s)
- Mingya Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - TianXian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Le Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rufeng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunbo Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Minjia Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
44
|
Dong H, Zhang J, Zhang H, Han Y, Lu C, Chen C, Tan X, Wang S, Bai X, Zhai G, Tian S, Zhang T, Cheng Z, Li E, Xu L, Zhang K. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun 2022; 13:6628. [PMID: 36333310 PMCID: PMC9636275 DOI: 10.1038/s41467-022-34399-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Lysine lactylation (Kla) has recently been reported to participate in regulating transcription in human cells. However, the characterization, regulatory mechanism and functional consequence of Kla in prokaryotes remain unclear. Here, we report that YiaC functions as a lysine lactylase and that CobB serves as a lysine delactylase in the regulation of metabolism. We demonstrate that YiaC catalyzes the addition of Kla, while CobB erases this PTM both in vitro and intracellularly. Moreover, we show that YdiF can catalyze the formation of a lactyl-coenzyme A, which donates lactyl group for Kla. Quantitative proteomic analysis further reveals 446 endogenous Kla sites targeted by CobB and 79 candidates targeted by YiaC in Escherichia coli (E. coli). Furthermore, we present that Kla can influence the functions of metabolic enzymes. Interestingly, we demonstrate that CobB can specifically modulate the activity of PykF by regulating K382la, promoting glycolysis and bacterial growth. Our study identifies the regulatory enzymes and functional network of Kla and reveals a Kla-mediated molecular mechanism catalyzed by CobB for glycolysis regulation in E. coli.
Collapse
Affiliation(s)
- Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Congcong Lu
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoxia Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Tao Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou, 310018, Zhejiang, China
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
45
|
Tang H, Zhan Z, Zhang Y, Huang X. Propionylation of lysine, a new mechanism of short-chain fatty acids affecting bacterial virulence. Am J Transl Res 2022; 14:5773-5784. [PMID: 36105019 PMCID: PMC9452321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Propionic acid (PA) is a major component of short-chain fatty acids produced by Bacteroidetes spp. Lysine propionylation is a novel type of protein regulatory posttranslational modification that is widespread in prokaryotes and eukaryotes, as well as in cellular processes, it affects DNA binding affinity, protein stability, and enzyme activity. In this review of published literature, we provide evidence that the level of propionyl modification is influenced by the concentration of PA and the PA metabolic intermediate (propionyl-CoA) and discuss the possibility of PA affecting enteropathogenic bacterial virulence. The understanding of propionyl modification is helpful to better understand the mechanism of PA-producing Bacteroidetes affecting the virulence of pathogenic intestinal bacteria. It may provide novel choices for the prevention and treatment of pathogenic intestinal bacteria.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ziyang Zhan
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
46
|
PFKM inhibits doxorubicin-induced cardiotoxicity by enhancing oxidative phosphorylation and glycolysis. Sci Rep 2022; 12:11684. [PMID: 35804014 PMCID: PMC9266090 DOI: 10.1038/s41598-022-15743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Heart failure (HF) is a global pandemic which affects about 26 million people. PFKM (Phosphofructokinase, Muscle), catalyzing the phosphorylation of fructose-6-phosphate, plays a very important role in cardiovascular diseases. However, the effect of PFKM in glycolysis and HF remains to be elucidated. H9c2 rat cardiomyocyte cells were treated with doxorubicin (DOX) to establish injury models, and the cell viability, apoptosis and glycolysis were measured. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting were used for gene expression. DOX treatment significantly inhibited PFKM expression in H9c2 cells. Overexpression of PFKM inhibited DOX-induced cell apoptosis and DOX-decreased glycolysis and oxidative phosphorylation (OXPHOS), while silencing PFKM promoted cell apoptosis and inhibited glycolysis and OXPHOS in H9c2 cells. Moreover, PFKM regulated DOX-mediated cell viability and apoptosis through glycolysis pathway. Mechanism study showed that histone deacetylase 1 (HDAC1) inhibited H3K27ac-induced transcription of PFKM in DOX-treated cells and regulated glycolysis. PFKM could inhibit DOX-induced cardiotoxicity by enhancing OXPHOS and glycolysis, which might benefit us in developing novel therapeutics for prevention or treatment of HF.
Collapse
|
47
|
Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa. mBio 2022; 13:e0054722. [PMID: 35467416 PMCID: PMC9239060 DOI: 10.1128/mbio.00547-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogenic bacterium that can adapt to a variety environments. The ability to effectively sense and respond to host local nutrients is critical for the infection of P. aeruginosa. However, the mechanisms employed by the bacterium to respond to nutrients remain to be explored. CspA family proteins are RNA binding proteins that are involved in gene regulation. We previously demonstrated that the P. aeruginosa CspA family protein CspC regulates the type III secretion system in response to temperature shift. In this study, we found that CspC regulates the quorum-sensing (QS) systems by repressing the translation of a QS negative regulatory gene, rsaL. Through RNA immunoprecipitation coupled with real-time quantitative reverse transcription-PCR (RIP-qRT-PCR) and electrophoretic mobility shift assays (EMSAs), we found that CspC binds to the 5′ untranslated region of the rsaL mRNA. Unlike glucose, itaconate (a metabolite generated by macrophages during infection) reduces the acetylation of CspC, which increases the affinity between CspC and the rsaL mRNA, leading to upregulation of the QS systems. Our results revealed a novel regulatory mechanism of the QS systems in response to a host-generated metabolite.
Collapse
|
48
|
Xu Z, Wang L, Wang X, Wan M, Tang M, Ding Y. Characterizing the Effect of the Lysine Deacetylation Modification on Enzyme Activity of Pyruvate Kinase I and Pathogenicity of Vibrio alginolyticus. Front Vet Sci 2022; 9:877067. [PMID: 35795782 PMCID: PMC9252168 DOI: 10.3389/fvets.2022.877067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Pyruvate kinase I (PykF) is one of the key enzymes of glycolysis and plays a crucial role in bacterial metabolism. Several acetylation sites of Vibrio alginolyticus PykF were reported in previous studies and then 11 sites were first verified in this study, however, the specific roles of PykF acetylation remains unclear. Overlap-PCR and homologous recombination were implied to delete V. alginolyticus pykF gene and constructed complementary strains of site-directed mutagenesis for the further research focus on the deacetylation regulation on PykF. The results showed that the pyruvate kinase activity was sharply suppressed in the deacetylation status of K52, K68, and K317 of PykF, as well as the extracellular protease activity was significantly decreased in the deacetylation status of K52 and K68, but not induced with K317. Moreover, the growth rates of V. alginolyticus were not influenced with these three deacetylation sites. The ΔpykF mutant exhibited a 6-fold reduction in virulence to zebrafish. Site-directed mutations of K52R and K68R also showed reduced virulence while mutations of K317R didn't. The in vitro experiments showed that PykF was acetylated by acetyl phosphate (AcP), with the increase of incubation time by AcP, the acetylation level of PykF increased while the enzyme activity of PykF decreased correspondingly. Besides, PykF was deacetylated by CobB deacetylase and in result that the deacetylation was significantly down-regulated while the pyruvate kinase activity of PykF increased. Moreover, deletion of cobB gene had no significant difference in pyruvate kinase activity. These results confirm that CobB can regulate the acetylation level and pyruvate kinase activity of PykF. In summary, the results of this study provide a theoretical basis for further understanding of the deacetylation modification of PykF. It provides a new idea for the prevention and cure of vibriosis.
Collapse
Affiliation(s)
- Zhou Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Linjing Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Xudong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mingyue Wan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mei Tang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Ding
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Yu Ding
| |
Collapse
|
49
|
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell. One such regulatory mechanism involves lysine acetylation, a covalent modification involving the transfer of an acetyl group from central metabolite acetyl-coenzyme A or acetyl phosphate to a lysine residue in a protein.
Collapse
|
50
|
Nefissi Ouertani R, Arasappan D, Ruhlman TA, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen RK. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int J Mol Sci 2022; 23:5006. [PMID: 35563398 PMCID: PMC9103072 DOI: 10.3390/ijms23095006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|