1
|
Sasikala A, Prakash C, Valli Ramamoorthy M, Ganesan S. Coxiella burnetii as a model system for understanding host immune response against obligate intracellular, vacuolar pathogens. PLoS Pathog 2025; 21:e1013071. [PMID: 40435199 PMCID: PMC12119012 DOI: 10.1371/journal.ppat.1013071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Affiliation(s)
- Akhila Sasikala
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Chandhana Prakash
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Mullai Valli Ramamoorthy
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Sandhya Ganesan
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Bird LE, Xu B, Hobbs AD, Ziegler AR, Scott NE, Newton P, Thomas DR, Edgington-Mitchell LE, Newton HJ. Coxiella burnetii manipulates the lysosomal protease cathepsin B to facilitate intracellular success. Nat Commun 2025; 16:3844. [PMID: 40274809 PMCID: PMC12022341 DOI: 10.1038/s41467-025-59283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii establishes an intracellular replicative niche termed the Coxiella-containing vacuole (CCV), which has been characterised as a bacterially modified phagolysosome. How C. burnetii withstands the acidic and degradative properties of this compartment is not well understood. We demonstrate that the key lysosomal protease cathepsin B is actively and selectively removed from C. burnetii-infected cells through a mechanism involving the Dot/Icm type IV-B secretion system effector CvpB. Overexpression of cathepsin B leads to defects in CCV biogenesis and bacterial replication, indicating that removal of this protein represents a strategy to reduce the hostility of the intracellular niche. In addition, we show that C. burnetii infection of mammalian cells induces the secretion of a wider cohort of lysosomal proteins, including cathepsin B, to the extracellular milieu via a mechanism dependent on retrograde traffic. This study reveals that C. burnetii is actively modulating the hydrolase cohort of its replicative niche to promote intracellular success and demonstrates that infection incites the secretory pathway to maintain lysosomal homoeostasis.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew D Hobbs
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Alexander R Ziegler
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrice Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Zhao M, Zhang S, Wan W, Zhou C, Li N, Cheng R, Yu Y, Ouyang X, Zhou D, Jiao J, Xiong X. Coxiella burnetii effector CvpE maintains biogenesis of Coxiella-containing vacuoles by suppressing lysosome tubulation through binding PI(3)P and perturbing PIKfyve activity on lysosomes. Virulence 2024; 15:2350893. [PMID: 38725096 PMCID: PMC11085968 DOI: 10.1080/21505594.2024.2350893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.
Collapse
Affiliation(s)
- Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, China
| | - Chunyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Nana Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ruxi Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
Killips B, Heaton EJB, Augusto L, Omsland A, Gilk SD. Coxiella burnetii inhibits nuclear translocation of TFEB, the master transcription factor for lysosomal biogenesis. J Bacteriol 2024; 206:e0015024. [PMID: 39057917 PMCID: PMC11340324 DOI: 10.1128/jb.00150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Coxiella burnetii is a highly infectious, Gram-negative, obligate intracellular bacterium and the causative agent of human Q fever. The Coxiella Containing Vacuole (CCV) is a modified phagolysosome that forms through fusion with host endosomes and lysosomes. While an initial acidic pH < 4.7 is essential to activate Coxiella metabolism, the mature, growth-permissive CCV has a luminal pH of ~5.2 that remains stable throughout infection. Inducing CCV acidification to a lysosomal pH (~4.7) causes Coxiella degradation, suggesting that Coxiella regulates CCV pH. Supporting this hypothesis, Coxiella blocks host lysosomal biogenesis, leading to fewer host lysosomes available to fuse with the CCV. Host cell lysosome biogenesis is primarily controlled by the transcription factor EB (TFEB), which binds Coordinated Lysosomal Expression And Regulation (CLEAR) motifs upstream of genes involved in lysosomal biogenesis and function. TFEB is a member of the microphthalmia/transcription factor E (MiT/TFE) protein family, which also includes MITF, TFE3, and TFEC. This study examines the roles of MiT/TFE proteins during Coxiella infection. We found that in cells lacking TFEB, both Coxiella growth and CCV size increase. Conversely, TFEB overexpression or expression in the absence of other family members leads to significantly less bacterial growth and smaller CCVs. TFE3 and MITF do not appear to play a significant role during Coxiella infection. Surprisingly, we found that Coxiella actively blocks TFEB nuclear translocation in a Type IV Secretion System-dependent manner, thus decreasing lysosomal biogenesis. Together, these results suggest that Coxiella inhibits TFEB nuclear translocation to limit lysosomal biogenesis, thus avoiding further CCV acidification through CCV-lysosomal fusion. IMPORTANCE The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonotic disease Q fever, which is characterized by a debilitating flu-like illness in acute cases and life-threatening endocarditis in patients with chronic disease. While Coxiella survives in a unique lysosome-like vacuole called the Coxiella Containing Vacuole (CCV), the bacterium inhibits lysosome biogenesis as a mechanism to avoid increased CCV acidification. Our results establish that transcription factor EB (TFEB), a member of the microphthalmia/transcription factor E (MiT/TFE) family of transcription factors that regulate lysosomal gene expression, restricts Coxiella infection. Surprisingly, Coxiella blocks TFEB translocation from the cytoplasm to the nucleus, thus downregulating the expression of lysosomal genes. These findings reveal a novel bacterial mechanism to regulate lysosomal biogenesis.
Collapse
Affiliation(s)
- Brigham Killips
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily J. Bremer Heaton
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Thomas DR, Garnish SE, Khoo CA, Padmanabhan B, Scott NE, Newton HJ. Coxiella burnetii protein CBU2016 supports CCV expansion. Pathog Dis 2024; 82:ftae018. [PMID: 39138067 PMCID: PMC11352601 DOI: 10.1093/femspd/ftae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Coxiella burnetii is a globally distributed obligate intracellular pathogen. Although often asymptomatic, infections can cause acute Q fever with influenza-like symptoms and/or severe chronic Q fever. Coxiella burnetii develops a unique replicative niche within host cells called the Coxiella-containing vacuole (CCV), facilitated by the Dot/Icm type IV secretion system translocating a cohort of bacterial effector proteins into the host. The role of some effectors has been elucidated; however, the actions of the majority remain enigmatic and the list of true effectors is disputable. This study examined CBU2016, a unique C. burnetii protein previously designated as an effector with a role in infection. We were unable to validate CBU2016 as a translocated effector protein. Employing targeted knock-out and complemented strains, we found that the loss of CBU2016 did not cause a replication defect within Hela, THP-1, J774, or iBMDM cells or in axenic media, nor did it affect the pathogenicity of C. burnetii in the Galleria mellonella infection model. The absence of CBU2016 did, however, result in a consistent decrease in the size of CCVs in HeLa cells. These results suggest that although CBU2016 may not be a Dot/Icm effector, it is still able to influence the host environment during infection.
Collapse
Affiliation(s)
- David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sarah E Garnish
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Chen Ai Khoo
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Bhavna Padmanabhan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hayley J Newton
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Wang T, Wang C, Li C, Song L. The intricate dance: host autophagy and Coxiella burnetii infection. Front Microbiol 2023; 14:1281303. [PMID: 37808314 PMCID: PMC10556474 DOI: 10.3389/fmicb.2023.1281303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii, an obligatory intracellular bacterial pathogen. Like other intracellular pathogens, C. burnetii is able to survive and reproduce within host cells by manipulating host cellular processes. In particular, the relationship between C. burnetii infection and host autophagy, a cellular process involved in degradation and recycling, is of great interest due to its intricate nature. Studies have shown that autophagy can recognize and target intracellular pathogens such as Legionella and Salmonella for degradation, limiting their replication and promoting bacterial clearance. However, C. burnetii can actively manipulate the autophagic pathway to create an intracellular niche, known as the Coxiella-containing vacuole (CCV), where it can multiply and evade host immune responses. C. burnetii promotes the fusion of CCVs with lysosomes through mechanisms involving virulence factors such as Cig57 and CvpF. This review summarizes the latest findings on the dynamic interaction between host autophagy and C. burnetii infection, highlighting the complex strategies employed by both the bacterium and the host. A better understanding of these mechanisms could provide important insights into the development of novel therapeutic interventions and vaccine strategies against C. burnetii infections.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Infectious Diseases, First Hospital of Zibo City, Zibo, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, First Hospital of Zibo City, Zibo, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Clemente TM, Angara RK, Gilk SD. Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Front Cell Infect Microbiol 2023; 13:1206037. [PMID: 37645379 PMCID: PMC10461009 DOI: 10.3389/fcimb.2023.1206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.
Collapse
Affiliation(s)
| | | | - Stacey D. Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Kodori M, Amani J, Meshkat Z, Ahmadi A. Coxiella burnetii Pathogenesis: Emphasizing the Role of the Autophagic Pathway. ARCHIVES OF RAZI INSTITUTE 2023; 78:785-796. [PMID: 38028822 PMCID: PMC10657931 DOI: 10.22092/ari.2023.361161.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/04/2023] [Indexed: 12/01/2023]
Abstract
Coxiella burnetii (C. burnetii), the etiological agent of the Q fever disease, ranks among the most sporadic and persistent global public health concerns. Ruminants are the principal source of human infections and diseases present in both acute and chronic forms. This bacterium is an intracellular pathogen that can survive and reproduce under acidic (pH 4 to 5) and harsh circumstances that contain Coxiella-containing vacuoles. By undermining the autophagy defense system of the host cell, C. burnetii is able to take advantage of the autophagy pathway, which allows it to improve the movement of nutrients and the membrane, thereby extending the vacuole of the reproducing bacteria. For this method to work, it requires the participation of many bacterial effector proteins. In addition, the precise and prompt identification of the causative agent of an acute disease has the potential to delay the onset of its chronic form. Moreover, to make accurate and rapid diagnoses, it is necessary to create diagnostic devices. This review summarizes the most recent research on the epidemiology, pathogenesis, and diagnosis approaches of C. burnetii. This study also explored the complicated relationships between C. burnetii and the autophagic pathway, which are essential for intracellular reproduction and survival in host cells for the infection to be effective.
Collapse
Affiliation(s)
- M Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, the Islamic Republic of Iran
| | - J Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
| | - Z Meshkat
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Bird LE, Edgington-Mitchell LE, Newton HJ. Eat, prey, love: Pathogen-mediated subversion of lysosomal biology. Curr Opin Immunol 2023; 83:102344. [PMID: 37245414 DOI: 10.1016/j.coi.2023.102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The mammalian lysosome is classically considered the 'garbage can' of the cell, contributing to clearance of infection through its primary function as a degradative organelle. Intracellular pathogens have evolved several strategies to evade contact with this harsh environment through subversion of endolysosomal trafficking or escape into the cytosol. Pathogens can also manipulate pathways that lead to lysosomal biogenesis or alter the abundance or activity of lysosomal content. This pathogen-driven subversion of lysosomal biology is highly dynamic and depends on a range of factors, including cell type, stage of infection, intracellular niche and pathogen load. The growing body of literature in this field highlights the nuanced and complex relationship between intracellular pathogens and the host lysosome, which is critical for our understanding of infection biology.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia
| | | | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia.
| |
Collapse
|
10
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
MicroRNAs Contribute to Host Response to Coxiella burnetii. Infect Immun 2023; 91:e0019922. [PMID: 36537791 PMCID: PMC9872603 DOI: 10.1128/iai.00199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNAs, are critical to gene regulation in eukaryotes. They are involved in modulating a variety of physiological processes, including the host response to intracellular infections. Little is known about miRNA functions during infection by Coxiella burnetii, the causative agent of human Q fever. This bacterial pathogen establishes a large replicative vacuole within macrophages by manipulating host processes such as apoptosis and autophagy. We investigated miRNA expression in C. burnetii-infected macrophages and identified several miRNAs that were down- or upregulated during infection. We further explored the functions of miR-143-3p, an miRNA whose expression is downregulated in macrophages infected with C. burnetii, and show that increasing the abundance of this miRNA in human cells results in increased apoptosis and reduced autophagy-conditions that are unfavorable to C. burnetii intracellular growth. In sum, this study demonstrates that C. burnetii infection elicits a robust miRNA-based host response, and because miR-143-3p promotes apoptosis and inhibits autophagy, downregulation of miR-143-3p expression during C. burnetii infection likely benefits the pathogen.
Collapse
|
12
|
Coxiella burnetii Plasmid Effector B Promotes LC3-II Accumulation and Contributes To Bacterial Virulence in a SCID Mouse Model. Infect Immun 2022; 90:e0001622. [PMID: 35587202 DOI: 10.1128/iai.00016-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.
Collapse
|
13
|
Lau N, Thomas DR, Lee YW, Knodler LA, Newton HJ. Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles. Mol Microbiol 2022; 117:235-251. [PMID: 34874584 PMCID: PMC8844213 DOI: 10.1111/mmi.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Anti-bacterial autophagy, known as xenophagy, is a host innate immune response that targets invading pathogens for degradation. Some intracellular bacteria, such as the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilize effector proteins to interfere with autophagy. One such S. Typhimurium effector, SopF, inhibits recruitment of ATG16L1 to damaged Salmonella-containing vacuoles (SCVs), thereby inhibiting the host xenophagic response. SopF is also required to maintain the integrity of the SCV during the early stages of infection. Here we show disruption of the SopF-ATG16L1 interaction leads to an increased proportion of cytosolic S. Typhimurium. Furthermore, SopF was utilized as a molecular tool to examine the requirement for ATG16L1 in the intracellular lifestyle of Coxiella burnetii, a bacterium that requires a functional autophagy pathway to replicate efficiently and form a single, spacious vacuole called the Coxiella-containing vacuole (CCV). ATG16L1 is required for CCV expansion and fusion but does not influence C. burnetii replication. In contrast, SopF did not affect CCV formation or replication, demonstrating that the contribution of ATG16L1 to CCV biogenesis is via its role in autophagy, not xenophagy. This study highlights the diverse capabilities of bacterial effector proteins to dissect the molecular details of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David R Thomas
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Wei Lee
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Leigh A Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hayley J Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Coxiella burnetii Virulent Phase I and avirulent Phase II Variants Differentially Manipulate Autophagy pathway in Neutrophils. Infect Immun 2022; 90:e0053421. [PMID: 35100012 DOI: 10.1128/iai.00534-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes Q fever in humans. Virulent C. burnetii Nine Mile Phase I (NMI) strain causes disease in animal models, while avirulent NM phase II (NMII) strain does not. In this study, we found that NMI infection induces severe splenomegaly and bacterial burden in the spleen in BALB/c mice, while NMII infection does not. Compared to NMII-infected mice, a significantly higher number of CD11b+Ly6g+ neutrophils accumulated in the liver, lung and spleen of NMI-infected mice. Thus, neutrophil accumulation correlates with NMI and NMII infection induced inflammatory response. In vitro studies also demonstrated that although NMII exhibited a higher infection rate than NMI in mouse bone-marrow neutrophils (BMNs), NMI-infected BMNs survive longer than NMII-infected BMNs. These results suggest that the differential interactions of NMI and NMII with neutrophils may be related to their ability to cause disease in animals. To understand the molecular mechanism underlying the differential interactions of NMI and NMII with neutrophils, the global transcriptomic gene expressions were compared between NMI- and NMII-infected-BMNs by RNA-seq analysis. Interestingly, several genes involved in autophagy related pathways, particularly the membrane-trafficking and lipid metabolism are upregulated in NMII-infected BMNs but downregulated in NMI-infected BMNs. Immunofluorescence and immunoblot analysis indicate that compared to NMI-infected BMNs, vacuoles in NMII-infected-BMNs exhibit increased autophagic flux along with phosphatidylserine translocation in cell membrane. Similar to neutrophils, NMII activated LC3-mediated autophagy in human macrophage. These findings suggest that NMI and NMII's differential manipulation of autophagy may relate to their pathogenesis.
Collapse
|
15
|
Osbron CA, Goodman AG. To die or not to die: Programmed cell death responses and their interactions with Coxiella burnetii infection. Mol Microbiol 2022; 117:717-736. [PMID: 35020241 PMCID: PMC9018580 DOI: 10.1111/mmi.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
Abstract
Coxiella burnetii is a Gram-negative, obligate intracellular, macrophage-tropic bacterium and the causative agent of the zoonotic disease Q fever. The epidemiology of Q fever is associated with the presence of infected animals; sheep, goats, cattle, and humans primarily become infected by inhalation of contaminated aerosols. In humans, the acute phase of the disease is characterized primarily by influenza-like symptoms, and approximately 3-5% of the infected individuals develop chronic infection. C. burnetii infection activates many types of immune responses, and the bacteria's genome encodes for numerous effector proteins that interact with host immune signaling mechanisms. Here, we will discuss two forms of programmed cell death, apoptosis and pyroptosis. Apoptosis is a form of non-inflammatory cell death that leads to phagocytosis of small membrane-bound bodies. Conversely, pyroptosis results in lytic cell death accompanied by the release of proinflammatory cytokines. Both apoptosis and pyroptosis have been implicated in the clearance of intracellular bacterial pathogens, including C. burnetii. Finally, we will discuss the role of autophagy, the degradation of unwanted cellular components, during C. burnetii infection. Together, the review of these forms of programmed cell death will open new research questions aimed at combating this highly infectious pathogen for which treatment options are limited.
Collapse
Affiliation(s)
- Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164.,Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| |
Collapse
|
16
|
Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells. mSphere 2021; 6:e0044221. [PMID: 34232075 PMCID: PMC8386451 DOI: 10.1128/msphere.00442-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is a highly infectious, intracellular, Gram-negative bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis. C. burnetii is transmitted to humans via aerosols and has long been considered a potential biological warfare agent. Although antibiotics, such as doxycycline, effectively treat acute Q fever, a recently identified antibiotic-resistant strain demonstrates the ability of C. burnetii to resist traditional antimicrobials, and chronic disease is extremely difficult to treat with current options. These findings highlight the need for new Q fever therapeutics, and repurposed drugs that target eukaryotic functions to prevent bacterial replication are of increasing interest in infectious disease. To identify this class of anti-C. burnetii therapeutics, we screened a library of 727 FDA-approved or late-stage clinical trial compounds using a human macrophage-like cell model of infection. Eighty-eight compounds inhibited bacterial replication, including known antibiotics, antipsychotic or antidepressant treatments, antihistamines, and several additional compounds used to treat a variety of conditions. The majority of identified anti-C. burnetii compounds target host neurotransmitter system components. Serotoninergic, dopaminergic, and adrenergic components are among the most highly represented targets and potentially regulate macrophage activation, cytokine production, and autophagy. Overall, our screen identified multiple host-directed compounds that can be pursued for potential use as anti-C. burnetii drugs. IMPORTANCECoxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed. Here, we identified many new potential treatment options in the form of drugs that are either FDA approved or have been used in late-stage clinical trials and target human neurotransmitter systems. These compounds are poised for future characterization as nontraditional anti-C. burnetii therapies.
Collapse
|
17
|
Delaney MA, Hartigh AD, Carpentier SJ, Birkland TP, Knowles DP, Cookson BT, Frevert CW. Avoidance of the NLRP3 Inflammasome by the Stealth Pathogen, Coxiella burnetii. Vet Pathol 2021; 58:624-642. [PMID: 33357072 DOI: 10.1177/0300985820981369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coxiella burnetii, a highly adapted obligate intracellular bacterial pathogen and the cause of the zoonosis Q fever, is a reemerging public health threat. C. burnetii employs a Type IV secretion system (T4SS) to establish and maintain its intracellular niche and modulate host immune responses including the inhibition of apoptosis. Interactions between C. burnetii and caspase-1-mediated inflammasomes are not fully elucidated. This study confirms that C. burnetii does not activate caspase-1 during infection of mouse macrophages in vitro. C. burnetii-infected cells did not develop NLRP3 and ASC foci indicating its ability to avoid cytosolic detection. C. burnetii is unable to inhibit the pyroptosis and IL-1β secretion that is induced by potent inflammasome stimuli but rather enhances these caspase-1-mediated effects. We found that C. burnetii upregulates pro-IL-1β and robustly primes NLRP3 inflammasomes via TLR2 and MyD88 signaling. As for wildtype C. burnetii, T4SS-deficient mutants primed and potentiated NLRP3 inflammasomes. An in vivo model of pulmonary infection in C57BL/6 mice was developed. Mice deficient in NLRP3 or caspase-1 were like wildtype mice in the development and resolution of splenomegaly due to red pulp hyperplasia, and histologic lesions and macrophage kinetics, but had slightly higher pulmonary bacterial burdens at the greatest measured time point. Together these findings indicate that C. burnetii primes but avoids cytosolic detection by NLRP3 inflammasomes, which are not required for the clinical resistance of C57BL/6 mice. Determining mechanisms employed by C. burnetii to avoid cytosolic detection via NLRP3 inflammasomes will be beneficial to the development of preventative and interventional therapies for Q fever.
Collapse
Affiliation(s)
- Martha A Delaney
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
- Current address: Martha A. Delaney, Zoological Pathology Program, University of Illinois, Brookfield, IL, USA
| | - Andreas den Hartigh
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Samuel J Carpentier
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Timothy P Birkland
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| | - Donald P Knowles
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA
- Department of Veterinary Microbiology and Pathology, 6760Washington State University, Pullman, WA
| | - Brad T Cookson
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Charles W Frevert
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| |
Collapse
|
18
|
Burette M, Bonazzi M. From neglected to dissected: How technological advances are leading the way to the study of Coxiella burnetii pathogenesis. Cell Microbiol 2021; 22:e13180. [PMID: 32185905 DOI: 10.1111/cmi.13180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen responsible for severe worldwide outbreaks of the zoonosis Q fever. The remarkable resistance to environmental stress, extremely low infectious dose and ease of dissemination, contributed to the classification of C. burnetii as a class B biothreat. Unique among intracellular pathogens, C. burnetii escapes immune surveillance and replicates within large autophagolysosome-like compartments called Coxiella-containing vacuoles (CCVs). The biogenesis of these compartments depends on the subversion of several host signalling pathways. For years, the obligate intracellular nature of C. burnetii imposed significant experimental obstacles to the study of its pathogenic traits. With the development of an axenic culture medium in 2009, C. burnetii became genetically tractable, thus allowing the implementation of mutagenesis tools and screening approaches to identify its virulence determinants and investigate its complex interaction with host cells. Here, we review the key advances that have contributed to our knowledge of C. burnetii pathogenesis, leading to the rise of this once-neglected pathogen to an exceptional organism to study the intravacuolar lifestyle.
Collapse
Affiliation(s)
- Melanie Burette
- IRIM, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Matteo Bonazzi
- IRIM, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Thomas DR, Newton P, Lau N, Newton HJ. Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins. Front Cell Infect Microbiol 2020; 10:599762. [PMID: 33251162 PMCID: PMC7676224 DOI: 10.3389/fcimb.2020.599762] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a fundamental and highly conserved eukaryotic process, responsible for maintaining cellular homeostasis and releasing nutrients during times of starvation. An increasingly important function of autophagy is its role in the cell autonomous immune response; a process known as xenophagy. Intracellular pathogens are engulfed by autophagosomes and targeted to lysosomes to eliminate the threat to the host cell. To counteract this, many intracellular bacterial pathogens have developed unique approaches to overcome, evade, or co-opt host autophagy to facilitate a successful infection. The intracellular bacteria Legionella pneumophila and Coxiella burnetii are able to avoid destruction by the cell, causing Legionnaires' disease and Q fever, respectively. Despite being related and employing homologous Dot/Icm type 4 secretion systems (T4SS) to translocate effector proteins into the host cell, these pathogens have developed their own unique intracellular niches. L. pneumophila evades the host endocytic pathway and instead forms an ER-derived vacuole, while C. burnetii requires delivery to mature, acidified endosomes which it remodels into a large, replicative vacuole. Throughout infection, L. pneumophila effectors act at multiple points to inhibit recognition by xenophagy receptors and disrupt host autophagy, ensuring it avoids fusion with destructive lysosomes. In contrast, C. burnetii employs its effector cohort to control autophagy, hypothesized to facilitate the delivery of nutrients and membrane to support the growing vacuole and replicating bacteria. In this review we explore the effector proteins that these two organisms utilize to modulate the host autophagy pathway in order to survive and replicate. By better understanding how these pathogens manipulate this highly conserved pathway, we can not only develop better treatments for these important human diseases, but also better understand and control autophagy in the context of human health and disease.
Collapse
Affiliation(s)
| | | | | | - Hayley J. Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microbes Infect 2020; 22:100-110. [PMID: 31574310 PMCID: PMC7101257 DOI: 10.1016/j.micinf.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Coxiella burnetii is an intracellular bacterium that causes acute and chronic Q fever. This unique pathogen has been historically challenging to study due to obstacles in genetically manipulating the organism and the inability of small animal models to fully mimic human Q fever. Here, we review the current state of C. burnetii research, highlighting new approaches that allow the mechanistic study of infection in disease relevant settings.
Collapse
Affiliation(s)
- Amanda L Dragan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
21
|
Siadous FA, Cantet F, Van Schaik E, Burette M, Allombert J, Lakhani A, Bonaventure B, Goujon C, Samuel J, Bonazzi M, Martinez E. Coxiella effector protein CvpF subverts RAB26-dependent autophagy to promote vacuole biogenesis and virulence. Autophagy 2020; 17:706-722. [PMID: 32116095 PMCID: PMC8032239 DOI: 10.1080/15548627.2020.1728098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Coxiella burnetii, the etiological agent of the zoonosis Q fever, replicates inside host cells within a large vacuole displaying autolysosomal characteristics. The development of this compartment is mediated by bacterial effectors, which interfere with a number of host membrane trafficking pathways. By screening a Coxiella transposon mutant library, we observed that transposon insertions in cbu0626 led to intracellular replication and vacuole biogenesis defects. Here, we demonstrate that CBU0626 is a novel member of the Coxiella vacuolar protein (Cvp) family of effector proteins, which is translocated by the Dot/Icm secretion system and localizes to vesicles with autolysosomal features as well as Coxiella-containing vacuoles (CCVs). We thus renamed this effector CvpF for Coxiella vacuolar protein F. CvpF specifically interacts with the host small GTPase RAB26, leading to the recruitment of the autophagosomal marker MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) to CCVs. Importantly, cvpF::Tn mutants were highly attenuated compared to wild-type bacteria in the SCID mouse model of infection, highlighting the importance of CvpF for Coxiella virulence. These results suggest that CvpF manipulates endosomal trafficking and macroautophagy/autophagy induction for optimal C. burnetii vacuole biogenesis. Abbreviations: ACCM: acidified citrate cystein medium; AP: adaptor related protein complex; CCV: Coxiella-containing vacuole; Cvp: Coxiella vacuolar protein; GDI: guanosine nucleotide dissociation inhibitor; GDF: GDI dissociation factor; GEF: guanine exchange factor; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase MTOR complex 1; PBS: phosphate-buffered saline; PMA: phorbol myristate acetate; SQSTM1/p62: sequestosome 1; WT: wild-type.
Collapse
Affiliation(s)
- Fernande Ayenoue Siadous
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Erin Van Schaik
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Mélanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Anissa Lakhani
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Boris Bonaventure
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Biogenesis of the Spacious Coxiella-Containing Vacuole Depends on Host Transcription Factors TFEB and TFE3. Infect Immun 2020; 88:IAI.00534-19. [PMID: 31818957 DOI: 10.1128/iai.00534-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived Coxiella-containing vacuole (CCV). To establish this unique niche, C. burnetii requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during C. burnetii infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of C. burnetii infection. During infection with C. burnetii, both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports C. burnetii intracellular replication.
Collapse
|
23
|
Samanta D, Clemente TM, Schuler BE, Gilk SD. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth. PLoS Pathog 2019; 15:e1007855. [PMID: 31869379 PMCID: PMC6953889 DOI: 10.1371/journal.ppat.1007855] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/10/2020] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Upon host cell infection, the obligate intracellular bacterium Coxiella burnetii resides and multiplies within the Coxiella–Containing Vacuole (CCV). The nascent CCV progresses through the endosomal maturation pathway into a phagolysosome, acquiring endosomal and lysosomal markers, as well as acidic pH and active proteases and hydrolases. Approximately 24–48 hours post infection, heterotypic fusion between the CCV and host endosomes/lysosomes leads to CCV expansion and bacterial replication in the mature CCV. Initial CCV acidification is required to activate C. burnetii metabolism and the Type 4B Secretion System (T4BSS), which secretes effector proteins required for CCV maturation. However, we found that the mature CCV is less acidic (pH~5.2) than lysosomes (pH~4.8). Further, inducing CCV acidification to pH~4.8 causes C. burnetii lysis, suggesting C. burnetii actively regulates pH of the mature CCV. Because heterotypic fusion with host endosomes/lysosomes may influence CCV pH, we investigated endosomal maturation in cells infected with wildtype (WT) or T4BSS mutant (ΔdotA) C. burnetii. In WT-infected cells, we observed a significant decrease in proteolytically active, LAMP1-positive endolysosomal vesicles, compared to mock or ΔdotA-infected cells. Using a ratiometric assay to measure endosomal pH, we determined that the average pH of terminal endosomes in WT-infected cells was pH~5.8, compared to pH~4.75 in mock and ΔdotA-infected cells. While endosomes progressively acidified from the periphery (pH~5.5) to the perinuclear area (pH~4.7) in both mock and ΔdotA-infected cells, endosomes did not acidify beyond pH~5.2 in WT-infected cells. Finally, increasing lysosomal biogenesis by overexpressing the transcription factor EB resulted in smaller, more proteolytically active CCVs and a significant decrease in C. burnetii growth, indicating host lysosomes are detrimental to C. burnetii. Overall, our data suggest that C. burnetii inhibits endosomal maturation to reduce the number of proteolytically active lysosomes available for heterotypic fusion with the CCV, possibly as a mechanism to regulate CCV pH. The obligate intracellular bacterium Coxiella burnetii causes human Q fever, which manifests as a flu-like illness but can develop into a life-threatening and difficult to treat endocarditis. C. burnetii, in contrast to many other intracellular bacteria, thrives within a lysosome-like vacuole in host cells. However, we previously found that the C. burnetii vacuole is not as acidic as lysosomes and increased acidification kills the bacteria, suggesting that C. burnetii regulates the pH of its vacuole. Here, we discovered that C. burnetii blocks endolysosomal maturation and acidification during host cell infection, resulting in fewer lysosomes in the host cell. Moreover, increasing lysosomes in the host cells inhibited C. burnetii growth. Together, our study suggests that C. burnetii regulates vacuole acidity and blocks endosomal maturation in order to produce a permissive intracellular niche.
Collapse
Affiliation(s)
- Dhritiman Samanta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tatiana M. Clemente
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Baleigh E. Schuler
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stacey D. Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Miller HE, Hoyt FH, Heinzen RA. Replication of Coxiella burnetii in a Lysosome-Like Vacuole Does Not Require Lysosomal Hydrolases. Infect Immun 2019; 87:e00493-19. [PMID: 31405956 PMCID: PMC6803326 DOI: 10.1128/iai.00493-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023] Open
Abstract
Coxiella burnetii is an intracellular bacterium that causes query, or Q fever, a disease that typically manifests as a severe flu-like illness. The initial target of C. burnetii is the alveolar macrophage. Here, it regulates vesicle trafficking pathways and fusion events to establish a large replication vacuole called the Coxiella-containing vacuole (CCV). Similar to a phagolysosome, the CCV has an acidic pH and contains lysosomal hydrolases obtained via fusion with late endocytic vesicles. Lysosomal hydrolases break down various lipids, carbohydrates, and proteins; thus, it is assumed C. burnetii derives nutrients for growth from these degradation products. To investigate this possibility, we utilized a GNPTAB-/- HeLa cell line that lacks lysosomal hydrolases in endocytic compartments. Unexpectedly, examination of C. burnetii growth in GNPTAB-/- HeLa cells revealed replication and viability are not impaired, indicating C. burnetii does not require by-products of hydrolase degradation to survive and grow in the CCV. However, although bacterial growth was normal, CCVs were abnormal, appearing dark and condensed rather than clear and spacious. Lack of degradation within CCVs allowed waste products to accumulate, including intraluminal vesicles, autophagy protein LC3, and cholesterol. The build-up of waste products coincided with an altered CCV membrane, where LAMP1 was decreased and CD63 and LAMP1 redistributed from a punctate to uniform localization. This disruption of CCV membrane organization may account for the decreased CCV size due to impaired fusion with late endocytic vesicles. Collectively, these results demonstrate lysosomal hydrolases are not required for C. burnetii survival and growth but are needed for normal CCV development. These data provide insight into mechanisms of CCV biogenesis while raising the important question of how C. burnetii obtains essential nutrients from its host.
Collapse
Affiliation(s)
- Heather E Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Forrest H Hoyt
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
25
|
Haloul M, Oliveira ERA, Kader M, Wells JZ, Tominello TR, El Andaloussi A, Yates CC, Ismail N. mTORC1-mediated polarization of M1 macrophages and their accumulation in the liver correlate with immunopathology in fatal ehrlichiosis. Sci Rep 2019; 9:14050. [PMID: 31575880 PMCID: PMC6773708 DOI: 10.1038/s41598-019-50320-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
A polarized macrophage response into inflammatory (M1) or regenerative/anti-inflammatory (M2) phenotypes is critical in host response to multiple intracellular bacterial infections. Ehrlichia is an obligate Gram-negative intracellular bacterium that causes human monocytic ehrlichiosis (HME): a febrile illness that may progress to fatal sepsis with multi-organ failure. We have shown that liver injury and Ehrlichia-induced sepsis occur due to dysregulated inflammation. Here, we investigated the contribution of macrophages to Ehrlichia-induced sepsis using murine models of mild and fatal ehrlichiosis. Lethally-infected mice showed accumulation of M1 macrophages (iNOS-positive) in the liver. In contrast, non-lethally infected mice showed polarization of M2 macrophages and their accumulation in peritoneum, but not in the liver. Predominance of M1 macrophages in lethally-infected mice was associated with expansion of IL-17-producing T, NK, and NKT cells. Consistent with the in vivo data, infection of bone marrow-derived macrophages (BMM) with lethal Ehrlichia polarized M0 macrophages into M1 phenotype under an mTORC1-dependent manner, while infection with non-lethal Ehrlichia polarized these cells into M2 types. This work highlights that mTORC1-mediated polarization of macrophages towards M1 phenotype may contribute to induction of pathogenic immune responses during fatal ehrlichiosis. Targeting mTORC1 pathway may provide a novel aproach for treatment of HME.
Collapse
Affiliation(s)
- Mohamed Haloul
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Muhamuda Kader
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jakob Z Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abdeljabar El Andaloussi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Cecelia C Yates
- Nursing School, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|