1
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Lozano-Andrade CN, Dinesen C, Wibowo M, Bach NA, Hesselberg-Thomsen V, Jarmusch SA, Strube ML, Kovács ÁT. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. THE ISME JOURNAL 2025; 19:wraf013. [PMID: 39846898 PMCID: PMC11833321 DOI: 10.1093/ismejo/wraf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation. Despite the growing body of knowledge on their mode of action, biosynthesis, and regulation, we still do not fully understand the role of secondary metabolites on the ecology of the producers and resident communities in situ. Here, we specifically examine the influence of Bacillus subtilis-produced cyclic lipopeptides during the assembly of a bacterial synthetic community, and simultaneously, explore the impact of cyclic lipopeptides on B. subtilis establishment success in a synthetic community propagated in an artificial soil microcosm. We found that surfactin production facilitates B. subtilis establishment success within multiple synthetic communities. Although neither a wild type nor a cyclic lipopeptide non-producer mutant had a major impact on the synthetic community composition over time, both the B. subtilis and the synthetic community metabolomes were altered during co-cultivation. Overall, our work demonstrates the importance of surfactin production in microbial communities, suggesting a broad spectrum of action of this natural product.
Collapse
Affiliation(s)
| | - Caja Dinesen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Nil Arenos Bach
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
3
|
Juang DS, Wightman WE, Lozano GL, Juang TD, Barkal LJ, Yu J, Garavito MF, Hurley A, Venturelli OS, Handelsman J, Beebe DJ. Microbial community interactions on a chip. Proc Natl Acad Sci U S A 2024; 121:e2403510121. [PMID: 39288179 PMCID: PMC11441501 DOI: 10.1073/pnas.2403510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.
Collapse
Affiliation(s)
- Duane S. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Wren E. Wightman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Gabriel L. Lozano
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Terry D. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Layla J. Barkal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Manuel F. Garavito
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Amanda Hurley
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
4
|
Roghair Stroud M, Vang DX, Halverson LJ. Optimized CRISPR Interference System for Investigating Pseudomonas alloputida Genes Involved in Rhizosphere Microbiome Assembly. ACS Synth Biol 2024; 13:2912-2925. [PMID: 39163848 PMCID: PMC11421427 DOI: 10.1021/acssynbio.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Pseudomonas alloputida KT2440 (formerly P. putida) has become both a well-known chassis organism for synthetic biology and a model organism for rhizosphere colonization. Here, we describe a CRISPR interference (CRISPRi) system in KT2440 for exploring microbe-microbe interactions in the rhizosphere and for use in industrial systems. Our CRISPRi system features three different promoter systems (XylS/Pm, LacI/Plac, and AraC/PBAD) and a dCas9 codon-optimized for Pseudomonads, all located on a mini-Tn7-based transposon that inserts into a neutral site in the genome. It also includes a suite of pSEVA-derived sgRNA expression vectors, where the expression is driven by synthetic promoters varying in strength. We compare the three promoter systems in terms of how well they can precisely modulate gene expression, and we discuss the impact of environmental factors, such as media choice, on the success of CRISPRi. We demonstrate that CRISPRi is functional in bacteria colonizing the rhizosphere, with repression of essential genes leading to a 10-100-fold reduction in P. alloputida cells per root. Finally, we show that CRISPRi can be used to modulate microbe-microbe interactions. When the gene pvdH is repressed and P. alloputida is unable to produce pyoverdine, it loses its ability to inhibit other microbes in vitro. Moreover, our design is amendable for future CRISPRi-seq studies and in multispecies microbial communities, with the different promoter systems providing a means to control the level of gene expression in many different environments.
Collapse
Affiliation(s)
- Marissa
N. Roghair Stroud
- Department
of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
| | - Dua X. Vang
- Department
of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
| | - Larry J. Halverson
- Department
of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Svendsen PB, Henriksen NNSE, Jarmusch SA, Andersen AJC, Smith K, Selsmark MW, Zhang SD, Schostag MD, Gram L. Co-existence of two antibiotic-producing marine bacteria: Pseudoalteromonas piscicida reduce gene expression and production of the antibacterial compound, tropodithietic acid, in Phaeobacter sp. Appl Environ Microbiol 2024; 90:e0058824. [PMID: 39136490 PMCID: PMC11409694 DOI: 10.1128/aem.00588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
Many bacteria co-exist and produce antibiotics, yet we know little about how they cope and occupy the same niche. The purpose of the present study was to determine if and how two potent antibiotic-producing marine bacteria influence the secondary metabolome of each other. We established an agar- and broth-based system allowing co-existence of a Phaeobacter species and Pseudoalteromonas piscicida that, respectively, produce tropodithietic acid (TDA) and bromoalterochromides (BACs). Co-culturing of Phaeobacter sp. strain A36a-5a on Marine Agar with P. piscicida strain B39bio caused a reduction of TDA production in the Phaeobacter colony. We constructed a transcriptional gene reporter fusion in the tdaC gene in the TDA biosynthetic pathway in Phaeobacter and demonstrated that the reduction of TDA by P. piscicida was due to the suppression of the TDA biosynthesis. A stable liquid co-cultivation system was developed, and the expression of tdaC in Phaeobacter was reduced eightfold lower (per cell) in the co-culture compared to the monoculture. Mass spectrometry imaging of co-cultured colonies revealed a reduction of TDA and indicated that BACs diffused into the Phaeobacter colony. BACs were purified from Pseudoalteromonas; however, when added as pure compounds or a mixture they did not influence TDA production. In co-culture, the metabolome was dominated by Pseudoalteromonas features indicating that production of other Phaeobacter compounds besides TDA was reduced. In conclusion, co-existence of two antibiotic-producing bacteria may be allowed by one causing reduction in the antagonistic potential of the other. The reduction (here of TDA) was not caused by degradation but by a yet uncharacterized mechanism allowing Pseudoalteromonas to reduce expression of the TDA biosynthetic pathway.IMPORTANCEThe drug potential of antimicrobial secondary metabolites has been the main driver of research into these compounds. However, in recent years, their natural role in microbial systems and microbiomes has become important to determine the assembly and development of microbiomes. Herein, we demonstrate that two potent antibiotic-producing bacteria can co-exist, and one mechanism allowing the co-existence is the specific reduction of antibiotic production in one bacterium by the other. Understanding the molecular mechanisms in complex interactions provides insights for applied uses, such as when developing TDA-producing bacteria for use as biocontrol in aquaculture.
Collapse
Affiliation(s)
- Peter Bing Svendsen
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nathalie N. S. E. Henriksen
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Scott A. Jarmusch
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Aaron J. C. Andersen
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kirsty Smith
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Chemistry, University of Aberdeen, King’s College, Aberdeen, United Kingdom
| | - Marcus Weichel Selsmark
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Morten D. Schostag
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Center for Microbial Secondary Metabolites, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
8
|
Du J, Khemmani M, Halverson T, Ene A, Limeira R, Tinawi L, Hochstedler-Kramer BR, Noronha MF, Putonti C, Wolfe AJ. Cataloging the phylogenetic diversity of human bladder bacterial isolates. Genome Biol 2024; 25:75. [PMID: 38515176 PMCID: PMC10958879 DOI: 10.1186/s13059-024-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, such as the gut and oral cavity. RESULTS To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, we present a bladder-specific bacterial isolate reference collection comprising 1134 genomes, primarily from adult females. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial isolate reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2% of the genera found when re-examining previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis finds that the taxonomies and functions of the bladder microbiota share more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder Escherichia coli isolates and 387 gut Escherichia coli isolates support the hypothesis that phylogroup distribution and functions of Escherichia coli strains differ dramatically between these two very different niches. CONCLUSIONS This bladder-specific bacterial isolate reference collection is a unique resource that will enable bladder microbiota research and comparison to isolates from other anatomical sites.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Present address: Division of Nutritional Science, Cornell University, Ithaca, NY, 14850, USA
| | - Mark Khemmani
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Thomas Halverson
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Roberto Limeira
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Lana Tinawi
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Baylie R Hochstedler-Kramer
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Melline Fontes Noronha
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Alan J Wolfe
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
9
|
Magesh S, Hurley AI, Nepper JF, Chevrette MG, Schrope JH, Li C, Beebe DJ, Handelsman J. Surface colonization by Flavobacterium johnsoniae promotes its survival in a model microbial community. mBio 2024; 15:e0342823. [PMID: 38329367 PMCID: PMC10936215 DOI: 10.1128/mbio.03428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F. Nepper
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Iloabuchi K, Spiteller D. Bacillus sp. G2112 Detoxifies Phenazine-1-carboxylic Acid by N5 Glucosylation. Molecules 2024; 29:589. [PMID: 38338334 PMCID: PMC10856480 DOI: 10.3390/molecules29030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'β-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.
Collapse
Affiliation(s)
- Kenechukwu Iloabuchi
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Obukpa Road, Nsukka 410105, Nigeria
| | - Dieter Spiteller
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
12
|
Sun X, Xie J, Zheng D, Xia R, Wang W, Xun W, Huang Q, Zhang R, Kovács ÁT, Xu Z, Shen Q. Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 2023; 8:e0104523. [PMID: 37971263 PMCID: PMC10734490 DOI: 10.1128/msystems.01045-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Co-occurrence network analysis is an effective tool for predicting complex networks of microbial interactions in the natural environment. Using isolates from a rhizosphere, we constructed multi-species biofilm communities and investigated co-occurrence patterns between microbial species in genome-scale metabolic models and in vitro experiments. According to our results, metabolic exchanges and resource competition may partially explain the co-occurrence network analysis results found in synthetic bacterial biofilm communities.
Collapse
Affiliation(s)
- Xinli Sun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiyu Xie
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daoyue Zheng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Riyan Xia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weibing Xun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiwei Huang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifu Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Zhihui Xu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
14
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
15
|
McAtamney A, Heaney C, Lizama-Chamu I, Sanchez LM. Reducing Mass Confusion over the Microbiome. Anal Chem 2023; 95:16775-16785. [PMID: 37934885 PMCID: PMC10841885 DOI: 10.1021/acs.analchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As genetic tools continue to emerge and mature, more information is revealed about the identity and diversity of microbial community members. Genetic tools can also be used to make predictions about the chemistry that bacteria and fungi produce to function and communicate with one another and the host. Ongoing efforts to identify these products and link genetic information to microbiome chemistry rely on analytical tools. This tutorial highlights recent advancements in microbiome studies driven by techniques in mass spectrometry.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Casey Heaney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Itzel Lizama-Chamu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
16
|
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol 2023; 31:959-971. [PMID: 37173204 DOI: 10.1016/j.tim.2023.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bacteroidetes are prevalent in soil ecosystems and are associated with various eukaryotic hosts, including plants, animals, and humans. The ubiquity and diversity of Bacteroidetes exemplify their impressive versatility in niche adaptation and genomic plasticity. Over the past decade, a wealth of knowledge has been obtained on the metabolic functions of clinically relevant Bacteroidetes, but much less attention has been given to Bacteroidetes living in close association with plants. To improve our understanding of the functional roles of Bacteroidetes for plants and other hosts, we review the current knowledge of their taxonomy and ecology, in particular their roles in nutrient cycling and host fitness. We highlight their environmental distribution, stress resilience, genomic diversity, and functional importance in diverse ecosystems, including, but not limited to, plant-associated microbiomes.
Collapse
Affiliation(s)
- Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Málaga, Spain.
| |
Collapse
|
17
|
Martins SJ, Pasche J, Silva HAO, Selten G, Savastano N, Abreu LM, Bais HP, Garrett KA, Kraisitudomsook N, Pieterse CMJ, Cernava T. The Use of Synthetic Microbial Communities to Improve Plant Health. PHYTOPATHOLOGY 2023; 113:1369-1379. [PMID: 36858028 DOI: 10.1094/phyto-01-23-0016-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.
Collapse
Affiliation(s)
- Samuel J Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Josephine Pasche
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Hiago Antonio O Silva
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Gijs Selten
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Noah Savastano
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Lucas Magalhães Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Karen A Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | | | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8020, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|
18
|
Aguilar-Salinas B, Olmedo-Álvarez G. A three-species synthetic community model whose rapid response to antagonism allows the study of higher-order dynamics and emergent properties in minutes. Front Microbiol 2023; 14:1057883. [PMID: 37333661 PMCID: PMC10272403 DOI: 10.3389/fmicb.2023.1057883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Microbial communities can be considered complex adaptive systems. Understanding how these systems arise from different components and how the dynamics of microbial interactions allow for species coexistence are fundamental questions in ecology. To address these questions, we built a three-species synthetic community, called BARS (Bacillota A + S + R). Each species in this community exhibits one of three ecological roles: Antagonistic, Sensitive, or Resistant, assigned in the context of a sediment community. We show that the BARS community reproduces features of complex communities and exhibits higher-order interaction (HOI) dynamics. In paired interactions, the majority of the S species (Sutcliffiella horikoshii 20a) population dies within 5 min when paired with the A species (Bacillus pumilus 145). However, an emergent property appears upon adding the third interactor, as antagonism of species A over S is not observed in the presence of the R species (Bacillus cereus 111). For the paired interaction, within the first 5 min, the surviving population of the S species acquires tolerance to species A, and species A ceases antagonism. This qualitative change reflects endogenous dynamics leading to the expression for tolerance to an antagonistic substance. The stability reached in the triple interaction exhibits a nonlinear response, highly sensitive to the density of the R species. In summary, our HOI model allows the study of the assembly dynamics of a three-species community and evaluating the immediate outcome within a 30 min frame. The BARS has features of a complex system where the paired interactions do not predict the community dynamics. The model is amenable to mechanistic dissection and to modeling how the parts integrate to achieve collective properties.
Collapse
|
19
|
Du J, Khemmani M, Halverson T, Ene A, Limeira R, Tinawi L, Hochstedler-Kramer BR, Noronha MF, Putonti C, Wolfe AJ. Cataloging the Phylogenetic Diversity of Human Bladder Bacterial Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541916. [PMID: 37292924 PMCID: PMC10245883 DOI: 10.1101/2023.05.23.541916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, e.g., the gut and oral cavity. To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, here we present a bladder-specific bacterial reference collection comprised of 1134 genomes. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2 % of the genera found when we reexamined previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis found that the taxonomies and functions of the bladder microbiota shared more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder E. coli isolates and 387 gut E. coli isolates supports the hypothesis that phylogroup distribution and functions of E. coli strains differ dramatically between these two very different niches. This bladder-specific bacterial reference collection is a unique resource that will enable hypothesis-driven bladder microbiota research and comparison to isolates from other anatomical sites.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Mark Khemmani
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Thomas Halverson
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660
| | - Roberto Limeira
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Lana Tinawi
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Baylie R. Hochstedler-Kramer
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Melline Fontes Noronha
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660
- Department of Biology, Loyola University Chicago, Chicago, IL 60660
| | - Alan J. Wolfe
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
- Loyola Genomics Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
20
|
Lyng M, Kovács ÁT. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol 2023:S0966-842X(23)00050-1. [PMID: 36878770 DOI: 10.1016/j.tim.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Bacillus and Pseudomonas ubiquitously occur in natural environments and are two of the most intensively studied bacterial genera in the soil. They are often coisolated from environmental samples, and as a result, several studies have experimentally cocultured bacilli and pseudomonads to obtain emergent properties. Even so, the general interaction between members of these genera is virtually unknown. In the past decade, data on interspecies interactions between natural isolates of Bacillus and Pseudomonas has become more detailed, and now, molecular studies permit mapping of the mechanisms behind their pairwise ecology. This review addresses the current knowledge about microbe-microbe interactions between strains of Bacillus and Pseudomonas and discusses how we can attempt to generalize the interaction on a taxonomic and molecular level.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
McDaniel EA, van Steenbrugge JJM, Noguera DR, McMahon KD, Raaijmakers JM, Medema MH, Oyserman BO. TbasCO: trait-based comparative 'omics identifies ecosystem-level and niche-differentiating adaptations of an engineered microbiome. ISME COMMUNICATIONS 2022; 2:111. [PMID: 37938301 PMCID: PMC9723799 DOI: 10.1038/s43705-022-00189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2023]
Abstract
A grand challenge in microbial ecology is disentangling the traits of individual populations within complex communities. Various cultivation-independent approaches have been used to infer traits based on the presence of marker genes. However, marker genes are not linked to traits with complete fidelity, nor do they capture important attributes, such as the timing of gene expression or coordination among traits. To address this, we present an approach for assessing the trait landscape of microbial communities by statistically defining a trait attribute as a shared transcriptional pattern across multiple organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate that a majority (65%) of traits present in 10 or more genomes have niche-differentiating expression attributes. For example, while many genomes containing high-affinity phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under phosphorus starvation), we identified another attribute shared by many genomes where transcription was highest under high phosphorus conditions. Taken together, we provide a novel framework for unravelling the functional dynamics of uncultivated microorganisms by assigning trait-attributes through genome-resolved time-series metatranscriptomics.
Collapse
Affiliation(s)
- E A McDaniel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - J J M van Steenbrugge
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | - D R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - K D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J M Raaijmakers
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - M H Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - B O Oyserman
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.
- Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Microbiome composition modulates secondary metabolism in a multispecies bacterial community. Proc Natl Acad Sci U S A 2022; 119:e2212930119. [PMID: 36215464 PMCID: PMC9586298 DOI: 10.1073/pnas.2212930119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.
Collapse
|
23
|
Beura S, Kundu P, Das AK, Ghosh A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Comput Biol Med 2022; 149:105997. [DOI: 10.1016/j.compbiomed.2022.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
|
24
|
Abstract
The diversity, ubiquity, and significance of microbial communities is clear. However, the predictable and reliable manipulation of microbiomes to impact human, environmental, and agricultural health remains a challenge.
Collapse
|
25
|
Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol 2022; 65:56-63. [PMID: 34739927 DOI: 10.1016/j.mib.2021.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Microbial interactions are key aspects of the biology of microbiomes. Recently, there has been a shift in the field towards studying interactions in more representative contexts, whether using multispecies model microbial communities or by looking at interactions in situ. Across diverse microbial systems, these studies have begun to identify common interaction mechanisms. These mechanisms include interactions related to toxic molecules, nutrient competition and cross-feeding, access to metals, signaling pathways, pH changes, and interactions within biofilms. Leveraging technological innovations, many of these studies have used an interdisciplinary approach combining genetic, metabolomic, imaging, and/or microfluidic techniques to gain insight into mechanisms of microbial interactions and into the impact of these interactions on microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
26
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
27
|
Molina-Santiago C, Vela-Corcía D, Petras D, Díaz-Martínez L, Pérez-Lorente AI, Sopeña-Torres S, Pearson J, Caraballo-Rodríguez AM, Dorrestein PC, de Vicente A, Romero D. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep 2021; 36:109449. [PMID: 34320359 PMCID: PMC8333196 DOI: 10.1016/j.celrep.2021.109449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P. chlororaphis and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance of B. amyloliquefaciens to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked by a decrease of Bacillus cell membrane permeability, among other pleiotropic responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial adaptive dynamics that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication. Bacillus and Pseudomonas interaction ranges from antagonism to co-existence Bacillaene from Bacillus is a bacteriostatic that targets FusA of Pseudomonas GlpK mutations in Bacillus confer unspecific antimicrobial resistance
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Daniel Petras
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA; University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Alicia Isabel Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Sara Sopeña-Torres
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - John Pearson
- Nano-imaging Unit, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Málaga, Spain
| | | | - Pieter C Dorrestein
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain.
| |
Collapse
|
28
|
Burman E, Bengtsson-Palme J. Microbial Community Interactions Are Sensitive to Small Changes in Temperature. Front Microbiol 2021; 12:672910. [PMID: 34093493 PMCID: PMC8175644 DOI: 10.3389/fmicb.2021.672910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are essential for human and environmental health, often forming complex interaction networks responsible for driving ecosystem processes affecting their local environment and their hosts. Disturbances of these communities can lead to loss of interactions and thereby important ecosystem functionality. The research on what drives interactions in microbial communities is still in its infancy, and much information has been gained from the study of model communities. One purpose of using these model microbial communities is that they can be cultured under controlled conditions. Yet, it is not well known how fluctuations of abiotic factors such as temperature affect their interaction networks. In this work, we have studied the effect of temperature on interactions between the members of the model community THOR, which consists of three bacterial species: Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus. Our results show that the community-intrinsic properties resulting from their interspecies interactions are highly dependent on incubation temperature. We also found that THOR biofilms had remarkably different abundances of their members when grown at 11, 18, and 25°C. The results suggest that the sensitivity of community interactions to changes in temperature is influenced, but not completely dictated, by different growth rates of the individual members at different temperatures. Our findings likely extend to other microbial communities and environmental parameters. Thus, temperature could affect community stability and may influence diverse processes including soil productivity, bioprocessing, and disease suppression. Moreover, to establish reproducibility between laboratories working with microbial model communities, it is crucial to ensure experimental stability, including carefully managed temperature conditions.
Collapse
Affiliation(s)
- Emil Burman
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Abstract
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Collapse
Affiliation(s)
- Emilee E Shine
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Current affiliation: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Aguirre de Cárcer D. Experimental and computational approaches to unravel microbial community assembly. Comput Struct Biotechnol J 2020; 18:4071-4081. [PMID: 33363703 PMCID: PMC7736701 DOI: 10.1016/j.csbj.2020.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a preponderant role in the life support processes of our common home planet Earth. These extremely diverse communities drive global biogeochemical cycles, and develop intimate relationships with most multicellular organisms, with a significant impact on their fitness. Our understanding of their composition and function has enjoyed a significant thrust during the last decade thanks to the rise of high-throughput sequencing technologies. Intriguingly, the diversity patterns observed in nature point to the possible existence of fundamental community assembly rules. Unfortunately, these rules are still poorly understood, despite the fact that their knowledge could spur a scientific, technological, and economic revolution, impacting, for instance, agricultural, environmental, and health-related practices. In this minireview, I recapitulate the most important wet lab techniques and computational approaches currently employed in the study of microbial community assembly, and briefly discuss various experimental designs. Most of these approaches and considerations are also relevant to the study of microbial microevolution, as it has been shown that it can occur in ecological relevant timescales. Moreover, I provide a succinct review of various recent studies, chosen based on the diversity of ecological concepts addressed, experimental designs, and choice of wet lab and computational techniques. This piece aims to serve as a primer to those new to the field, as well as a source of new ideas to the more experienced researchers.
Collapse
|
31
|
Bengtsson-Palme J. Microbial model communities: To understand complexity, harness the power of simplicity. Comput Struct Biotechnol J 2020; 18:3987-4001. [PMID: 33363696 PMCID: PMC7744646 DOI: 10.1016/j.csbj.2020.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this complexity, we can apply lessons learned from the study of model organisms and try to find simpler systems that can shed light on the same questions. Here, microbial model communities are essential, as they can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles governing and structuring communities. A variety of microbial model communities of varying complexity have already been developed, representing different purposes, environments and phenomena. However, choosing a suitable model community for one's research question is no easy task. This review aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-studied model community that also fulfills other relevant criteria. For example, a good model community should consist of species that are easy to grow, have been evaluated for community behaviors, provide simple readouts and - in some cases - be of relevance for natural ecosystems. Finally, there is a need to standardize growth conditions for microbial model communities and agree on definitions of community-specific phenomena and frameworks for community interactions. Such developments would be the key to harnessing the power of simplicity to start disentangling complex community interactions.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
McClure R, Naylor D, Farris Y, Davison M, Fansler SJ, Hofmockel KS, Jansson JK. Development and Analysis of a Stable, Reduced Complexity Model Soil Microbiome. Front Microbiol 2020; 11:1987. [PMID: 32983014 PMCID: PMC7479069 DOI: 10.3389/fmicb.2020.01987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The soil microbiome is central to the cycling of carbon and other nutrients and to the promotion of plant growth. Despite its importance, analysis of the soil microbiome is difficult due to its sheer complexity, with thousands of interacting species. Here, we reduced this complexity by developing model soil microbial consortia that are simpler and more amenable to experimental analysis but still represent important microbial functions of the native soil ecosystem. Samples were collected from an arid grassland soil and microbial communities (consisting mainly of bacterial species) were enriched on agar plates containing chitin as the main carbon source. Chitin was chosen because it is an abundant carbon and nitrogen polymer in soil that often requires the coordinated action of several microorganisms for complete metabolic degradation. Several soil consortia were derived that had tractable richness (30–50 OTUs) with diverse phyla representative of the native soil, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. The resulting consortia could be stored as glycerol or lyophilized stocks at −80°C and revived while retaining community composition, greatly increasing their use as tools for the research community at large. One of the consortia that was particularly stable was chosen as a model soil consortium (MSC-1) for further analysis. MSC-1 species interactions were studied using both pairwise co-cultivation in liquid media and during growth in soil under several perturbations. Co-abundance analyses highlighted interspecies interactions and helped to define keystone species, including Mycobacterium, Rhodococcus, and Rhizobiales taxa. These experiments demonstrate the success of an approach based on naturally enriching a community of interacting species that can be stored, revived, and shared. The knowledge gained from querying these communities and their interactions will enable better understanding of the soil microbiome and the roles these interactions play in this environment.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Dan Naylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Michelle Davison
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
33
|
Koskella B, Bergelson J. The study of host-microbiome (co)evolution across levels of selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190604. [PMID: 32772660 PMCID: PMC7435161 DOI: 10.1098/rstb.2019.0604] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including-in the case of host-associated microbiomes-interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host-microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host-microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Hansen BL, Pessotti RDC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 2020; 11:e01917-20. [PMID: 32843548 PMCID: PMC7448283 DOI: 10.1128/mbio.01917-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Microbiomes associated with various plant structures often contain members with the potential to make specialized metabolites, e.g., molecules with antibacterial, antifungal, or siderophore activities. However, when and where microbes associated with plants produce specialized metabolites, and the potential role of these molecules in mediating intramicrobiome interactions, is not well understood. Root nodules of legume plants are organs devoted to hosting symbiotic bacteria that fix atmospheric nitrogen and have recently been shown to harbor a relatively simple accessory microbiome containing members with the ability to produce specialized metabolites in vitro On the basis of these observations, we sought to develop a model nodule microbiome system for evaluating specialized microbial metabolism in planta Starting with an inoculum derived from field-grown Medicago sativa nodules, serial passaging through gnotobiotic nodules yielded a simplified accessory community composed of four members: Brevibacillus brevis, Paenibacillus sp., Pantoea agglomerans, and Pseudomonas sp. Some members of this community exhibited clear cooperation in planta, while others were antagonistic and capable of disrupting cooperation between other partners. Using matrix-assisted laser desorption ionization-imaging mass spectrometry, we found that metabolites associated with individual taxa had unique distributions, indicating that some members of the nodule community were spatially segregated. Finally, we identified two families of molecules produced by B. brevisin planta as the antibacterial tyrocidines and a novel set of gramicidin-type molecules, which we term the britacidins. Collectively, these results indicate that in addition to nitrogen fixation, legume root nodules are likely also sites of active antimicrobial production.
Collapse
Affiliation(s)
- Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alyssa Collins
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Mira D Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
35
|
Eckshtain-Levi N, Harris SL, Roscios RQ, Shank EA. Bacterial Community Members Increase Bacillus subtilis Maintenance on the Roots of Arabidopsis thaliana. PHYTOBIOMES JOURNAL 2020; 4:303-313. [PMID: 34661038 PMCID: PMC8519414 DOI: 10.1094/pbiomes-02-20-0019-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plant-growth-promoting bacteria (PGPB) are used to improve plant health and promote crop production. However, because some PGPB (including Bacillus subtilis) do not maintain substantial colonization on plant roots over time, it is unclear how effective PGPB are throughout the plant growing cycle. A better understanding of the dynamics of plant root community assembly is needed to develop and harness the potential of PGPB. Although B. subtilis is often a member of the root microbiome, it does not efficiently monoassociate with plant roots. We hypothesized that B. subtilis may require other primary colonizers to efficiently associate with plant roots. We utilized a previously designed hydroponic system to add bacteria to Arabidopsis thaliana roots and monitor their attachment over time. We inoculated seedlings with B. subtilis and individual bacterial isolates from the native A. thaliana root microbiome either alone or together. We then measured how the coinoculum affected the ability of B. subtilis to colonize and maintain on A. thaliana roots. We screened 96 fully genome-sequenced strains and identified five bacterial strains that were able to significantly improve the maintenance of B. subtilis. Three of these rhizobacteria also increased the maintenance of two strains of B. amyloliquefaciens commonly used in commercially available bioadditives. These results not only illustrate the utility of this model system to address questions about plant-microbe interactions and how other bacteria affect the ability of PGPB to maintain their relationships with plant roots but also may help inform future agricultural interventions to increase crop yields.
Collapse
Affiliation(s)
- Noam Eckshtain-Levi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Susanna Leigh Harris
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Reizo Quilat Roscios
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Elizabeth Anne Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
- Corresponding author: E. A. Shank;
| |
Collapse
|
36
|
Caldera EJ, Chevrette MG, McDonald BR, Currie CR. Local Adaptation of Bacterial Symbionts within a Geographic Mosaic of Antibiotic Coevolution. Appl Environ Microbiol 2019; 85:e01580-19. [PMID: 31676475 PMCID: PMC6881802 DOI: 10.1128/aem.01580-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022] Open
Abstract
The geographic mosaic theory of coevolution (GMC) posits that coevolutionary dynamics go beyond local coevolution and are comprised of the following three components: geographic selection mosaics, coevolutionary hot spots, and trait remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene transfer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test key GMC predictions in an antibiotic-producing bacterial symbiont (genus Pseudonocardia) that protects the crops of neotropical fungus-farming ants (Apterostigma dentigerum) from a specialized pathogen (genus Escovopsis). We found that Pseudonocardia antibiotic inhibition of common Escovopsis pathogens was elevated in A. dentigerum colonies from Panama compared to those from Costa Rica. Furthermore, a Panama Canal Zone population of Pseudonocardia on Barro Colorado Island (BCI) was locally adapted, whereas two neighboring populations were not, consistent with a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas of maladaptation. Maladaptation was shaped by incongruent Pseudonocardia-Escovopsis population genetic structure, whereas local adaptation was facilitated by geographic isolation on BCI after the flooding of the Panama Canal. Genomic assessments of antibiotic potential of 29 Pseudonocardia strains identified diverse and unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the core genome. The strength of antibiotic inhibition was not correlated with the presence/absence of individual biosynthetic gene clusters or with parasite location. Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that the trait remixing dynamics conferring the long-term maintenance of antibiotic potency rely on evolutionary genetic changes within already-present biosynthetic gene clusters and not simply on the horizontal acquisition of novel genetic elements or pathways.IMPORTANCE Recently, coevolutionary theory in macroorganisms has been advanced by the geographic mosaic theory of coevolution (GMC), which considers how geography and local adaptation shape coevolutionary dynamics. Here, we test GMC in an ancient symbiosis in which the ant Apterostigma dentigerum cultivates fungi in an agricultural system analogous to human farming. The cultivars are parasitized by the fungus Escovopsis The ants maintain symbiotic actinobacteria with antibiotic properties that help combat Escovopsis infection. This antibiotic symbiosis has persisted for tens of millions of years, raising the question of how antibiotic potency is maintained over these time scales. Our study tests the GMC in a bacterial defensive symbiosis and in a multipartite symbiosis framework. Our results show that this multipartite symbiotic system conforms to the GMC and demonstrate that this theory is applicable in both microbes and indirect symbiont-symbiont interactions.
Collapse
Affiliation(s)
- Eric J Caldera
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O'Malley MA, García Martín H, Pfleger BF, Raskin L, Venturelli OS, Weissbrodt DG, Noguera DR, McMahon KD. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol 2019; 17:725-741. [PMID: 31548653 PMCID: PMC8323346 DOI: 10.1038/s41579-019-0255-9] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | | | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee-Knoxville, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbra, CA, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
| | - Héctor García Martín
- DOE Joint Bioenergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
- Basque Center for Applied Mathematics, Bilbao, Spain
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, USA
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Abstract
Low-cost, high-throughput nucleic acid sequencing ushered the field of microbial ecology into a new era in which the microbial composition of nearly every conceivable environment on the planet is under examination. However, static "screenshots" derived from sequence-only approaches belie the underlying complexity of the microbe-microbe and microbe-host interactions occurring within these systems. Reductionist experimental models are essential to identify the microbes involved in interactions and to characterize the molecular mechanisms that manifest as complex host and environmental phenomena. Herein, we focus on three models (Bacillus-Streptomyces, Aliivibrio fischeri-Hawaiian bobtail squid, and gnotobiotic mice) at various levels of taxonomic complexity and experimental control used to gain molecular insight into microbe-mediated interactions. We argue that when studying microbial communities, it is crucial to consider the scope of questions that experimental systems are suited to address, especially for researchers beginning new projects. Therefore, we highlight practical applications, limitations, and tradeoffs inherent to each model.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer R Bratburd
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reed M Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Bacterial Analogs of Plant Tetrahydropyridine Alkaloids Mediate Microbial Interactions in a Rhizosphere Model System. Appl Environ Microbiol 2019; 85:AEM.03058-18. [PMID: 30877115 PMCID: PMC6498172 DOI: 10.1128/aem.03058-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/02/2019] [Indexed: 11/24/2022] Open
Abstract
The microbiomes of plants are critical to host physiology and development. Microbes are attracted to the rhizosphere due to massive secretion of plant photosynthates from roots. Microorganisms that successfully join the rhizosphere community from bulk soil have access to more abundant and diverse molecules, producing a highly competitive and selective environment. In the rhizosphere, as in other microbiomes, little is known about the genetic basis for individual species’ behaviors within the community. In this study, we characterized competition between Pseudomonas koreensis and Flavobacterium johnsoniae, two common rhizosphere inhabitants. We identified a widespread gene cluster in several Pseudomonas spp. that is necessary for the production of a novel family of tetrahydropyridine alkaloids that are structural analogs of plant alkaloids. We expand the known repertoire of antibiotics produced by Pseudomonas in the rhizosphere and demonstrate the role of the metabolites in interactions with other rhizosphere bacteria. Plants expend significant resources to select and maintain rhizosphere communities that benefit their growth and protect them from pathogens. A better understanding of assembly and function of rhizosphere microbial communities will provide new avenues for improving crop production. Secretion of antibiotics is one means by which bacteria interact with neighboring microbes and sometimes change community composition. In our analysis of a taxonomically diverse consortium from the soybean rhizosphere, we found that Pseudomonas koreensis selectively inhibits growth of Flavobacterium johnsoniae and other members of the Bacteroidetes grown in soybean root exudate. A genetic screen in P. koreensis identified a previously uncharacterized biosynthetic gene cluster responsible for the inhibitory activity. Metabolites were isolated based on biological activity and were characterized using tandem mass spectrometry, multidimensional nuclear magnetic resonance, and Mosher ester analysis, leading to the discovery of a new family of bacterial tetrahydropyridine alkaloids, koreenceine A to D (metabolites 1 to 4). Three of these metabolites are analogs of the plant alkaloid γ-coniceine. Comparative analysis of the koreenceine cluster with the γ-coniceine pathway revealed distinct polyketide synthase routes to the defining tetrahydropyridine scaffold, suggesting convergent evolution. Koreenceine-type pathways are widely distributed among Pseudomonas species, and koreenceine C was detected in another Pseudomonas species from a distantly related cluster. This work suggests that Pseudomonas and plants convergently evolved the ability to produce similar alkaloid metabolites that can mediate interbacterial competition in the rhizosphere. IMPORTANCE The microbiomes of plants are critical to host physiology and development. Microbes are attracted to the rhizosphere due to massive secretion of plant photosynthates from roots. Microorganisms that successfully join the rhizosphere community from bulk soil have access to more abundant and diverse molecules, producing a highly competitive and selective environment. In the rhizosphere, as in other microbiomes, little is known about the genetic basis for individual species’ behaviors within the community. In this study, we characterized competition between Pseudomonas koreensis and Flavobacterium johnsoniae, two common rhizosphere inhabitants. We identified a widespread gene cluster in several Pseudomonas spp. that is necessary for the production of a novel family of tetrahydropyridine alkaloids that are structural analogs of plant alkaloids. We expand the known repertoire of antibiotics produced by Pseudomonas in the rhizosphere and demonstrate the role of the metabolites in interactions with other rhizosphere bacteria.
Collapse
|
41
|
The Spectrum of Interactions between Cryptococcus neoformans and Bacteria. J Fungi (Basel) 2019; 5:jof5020031. [PMID: 31013706 PMCID: PMC6617360 DOI: 10.3390/jof5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that infects immunocompromised people and causes life-threatening meningoencephalitis. C. neoformans does not occur in isolation either in the environment or in the human host, but is surrounded by other microorganisms. Bacteria are ubiquitously distributed in nature, including soil, and make up the dominant part of the human microbiota. Pioneering studies in the 1950s demonstrated antifungal activity of environmental bacteria against C. neoformans. However, the mechanisms and implications of these interactions remain largely unknown. Recently, interest in polymicrobial interaction studies has been reignited by the development of improved sequencing methodologies, and by the realization that such interactions may have a huge impact on ecology and human health. In this review, we summarize our current understanding of the interaction of bacteria with C. neoformans.
Collapse
|