1
|
Amr RM, Bishr AS, Saad BT, Alshahrani MY, Aboshanab KM, Hassouna NA. A novel thermostable lytic phage vB_EF_Enf3_CCASU-2024-3 against clinical Enterococcus faecium and Enterococcus faecalis. AMB Express 2025; 15:65. [PMID: 40285822 PMCID: PMC12033158 DOI: 10.1186/s13568-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Enterococci, Gram-positive bacteria, have become a major concern in healthcare settings due to their significant virulence and antibiotic resistance. This research focuses on isolating, phenotypic, and genotypic analysis of enterococci-specific lytic phages to be used as potential candidates in combating multidrug-resistant (MDR) Enterococcus clinical isolates. The virulence of Enterococcus isolates was analyzed by testing for gelatinase and biofilm formation. The phage(s) was isolated from a sewage sample, then purified, propagated, and physiochemically analyzed. The phage was examined using transmission electron microscopy, and the whole genome sequence (WGS) was performed. Sixety-five clinical enterococci including, 27 (41.5%), 33 (50.7%) 3 (4.6%), and 2 (3%) E. faecalis, E. faecium, E. avium, and E. durans, respectively were isolated. Linezolid, teicoplanin, chloramphenicol, and vancomycin exhibited the lowest resistance. Twenty-five (38.5%) isolates were both gelatinase- and biofilm-producers. A novel lytic vB_EF_Enf3 phage belonging to Caudoviricetes class, characterized by an icosahedral head with a diameter of 100 ± 5 nm and a tail measuring 70 ± 5 nm in length was isolated. The phage demonstrated good thermal stability, and viability across various pH levels and exhibited a broad- spectrum of activity against E. faecium and E. faecalis. The vB_EF_Enf3 phage (36,202 bp length) harbored 36 open reading frames (ORFs) with a GC content of 34.4% (GenBank accession, PP747318). In conclusion, a novel thermostable lytic bacteriophage vB_EF_Enf3, belonging to class Caudoviricetes, was isolated from sewage showing broad-spectrum potent lytic activity against E. faecium and E. faecalis and maintained stability under various extreme conditions, including temperature, and pH fluctuations.
Collapse
Affiliation(s)
- Rana M Amr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Amr S Bishr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co, Cairo, 11765, Egypt
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Lyon LM, Marroquin SM, Thorstenson JC, Joyce LR, Fuentes EJ, Doran KS, Horswill AR. Genome-wide mutagenesis identifies factors involved in MRSA vaginal colonization. Cell Rep 2025; 44:115421. [PMID: 40085646 DOI: 10.1016/j.celrep.2025.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen that colonizes various body sites, including the nares, skin, and vagina. During pregnancy,colonization can lead to dysbiosis, adverse pregnancy outcomes, and invasive disease. To identify genes contributing to MRSA vaginal fitness, we performed transposon sequencing (Tn-seq) using a murine model of vaginal colonization, identifying over 250 conditionally essential genes. Five genes were validated in our murine model, including those encoding the aerobic respiration protein QoxB, bacillithiol biosynthesis component BshB2, sialic acid catabolism enzyme NanE, and staphylococcal regulator of respiration SrrAB. RNA sequencing and comparative analysis identified over 30 SrrAB-regulated genes potentially important for fitness in vaginal-like conditions, particularly under oxygen stress. These findings highlight pathways such as aerobic respiration, bacillithiol biosynthesis, sialic acid catabolism, and transcriptional regulation that support MRSA's competitive fitness in the vaginal tract.
Collapse
Affiliation(s)
- Laurie M Lyon
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Stephanie M Marroquin
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA
| | - John C Thorstenson
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Luke R Joyce
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Ernesto J Fuentes
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kelly S Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Alexander R Horswill
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, CO, USA; Department of Veterans Affairs Eastern, Colorado Healthcare System, Aurora, CO, USA.
| |
Collapse
|
4
|
Salamzade R, Tran P, Martin C, Manson A, Gilmore M, Earl A, Anantharaman K, Kalan L. zol and fai: large-scale targeted detection and evolutionary investigation of gene clusters. Nucleic Acids Res 2025; 53:gkaf045. [PMID: 39907107 PMCID: PMC11795205 DOI: 10.1093/nar/gkaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements, such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to handle thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) performing population genetic investigations of BGCs for a fungal species, and (iii) uncovering evolutionary trends for a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Cody Martin
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Michael S Gilmore
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02114, United States
- Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02115, United States
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
5
|
Davis JL, Norwood JS, Smith RE, O'Dea F, Chellappa K, Rowe ML, Williamson MP, Stafford GP, Vinogradov E, Maes E, Guérardel Y, Mesnage S. Dissecting the Enterococcal Polysaccharide Antigen (EPA) structure to explore innate immune evasion and phage specificity. Carbohydr Polym 2025; 347:122686. [PMID: 39486929 DOI: 10.1016/j.carbpol.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/04/2024]
Abstract
Streptococci, Lactococci and Enterococci all produce L-rhamnose-containing cell wall polysaccharides which define Lancefield serotypes and represent promising candidates for the design of glycoconjugate vaccines. The L-rhamnose containing Enterococcal Polysaccharide Antigen (EPA), produced by the opportunistic pathogen Enterococcus faecalis, plays a critical role in normal growth, division, biofilm formation, antimicrobial resistance, phage susceptibility, and innate immune evasion. Despite the critical role of this polymer in E. faecalis physiology and host-pathogen interactions, little information is available on its structure and biosynthesis. Here, using an NMR approach, we elucidate the structure of EPA and propose a model for biosynthesis. We report the structure of the EPA-peptidoglycan linkage unit and reveal an unprecedented complexity of the EPA rhamnose backbone and decoration subunits. Finally, we explore the impact of several EPA structural modifications on innate immune evasion and recognition by bacteriophages. This work represents a first step towards the functional characterisation of EPA and the rational design of therapeutic strategies against a group of important pathogens.
Collapse
Affiliation(s)
- Jessica L Davis
- School of Biosciences, University of Sheffield, Sheffield, UK.
| | | | - Robert E Smith
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Finn O'Dea
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Michelle L Rowe
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Evguenii Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Canada
| | - Emmanuel Maes
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41, UAR 2014, PLBS, Lille, France
| | - Yann Guérardel
- UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for GlycO-Core Research (iGCORE), Gifu University, Gifu, Japan
| | | |
Collapse
|
6
|
Hendrix H, Itterbeek A, Longin H, Delanghe L, Vriens E, Vallino M, Lammens EM, Haque F, Yusuf A, Noben JP, Boon M, Koch MD, van Noort V, Lavigne R. PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding. Nat Commun 2024; 15:8717. [PMID: 39379373 PMCID: PMC11461919 DOI: 10.1038/s41467-024-52732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV pili (T4P) are thin, flexible filaments exposed on the cell surface of gram-negative bacteria and are involved in pathogenesis-related processes, including cell adsorption, biofilm formation, and twitching motility. Bacteriophages often use these filaments as receptors to infect host cells. Here, we describe the identification of a protein that inhibits T4P assembly in Pseudomonas aeruginosa, discovered during a screen for host factors influencing phage infection. We show that expression of PA2560 (renamed PlzR) in P. aeruginosa inhibits adsorption of T4P-dependent phages. PlzR does this by directly binding the T4P chaperone PilZ, which in turn regulates the ATPase PilB and results in disturbed T4P assembly. As the plzR promoter is induced by cyclic di-GMP, PlzR might play a role in coupling T4P function to levels of this second messenger.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Annabel Itterbeek
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Laboratory for Host Pathogen Interactions in Livestock, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Hannelore Longin
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
| | - Lize Delanghe
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Eveline Vriens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, IPSP-CNR Headquarter, Turin, Italy
| | - Eveline-Marie Lammens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Farhana Haque
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ahmed Yusuf
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Matthias D Koch
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
7
|
Alrafaie AM, Pyrzanowska K, Smith EM, Partridge DG, Rafferty J, Mesnage S, Shepherd J, Stafford GP. A diverse set of Enterococcus-infecting phage provides insight into phage host-range determinants. Virus Res 2024; 347:199426. [PMID: 38960003 PMCID: PMC11269942 DOI: 10.1016/j.virusres.2024.199426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Enterococci are robust Gram-positive bacteria that pose a significant threat in healthcare settings due to antibiotic resistance, with vancomycin-resistant enterococci (VRE) most prominent. To tackle this issue, bacteriophages (bacterial viruses) can be exploited as they specifically and efficiently target bacteria. Here, we successfully isolated and characterised a set of novel phages: SHEF10, SHEF11, SHEF13, SHEF14, and SHEF16 which target E. faecalis (SHEF10,11,13), or E. faecium (SHEF13, SHEF14 & SHEF16) strains including a range of clinical and VRE isolates. Genomic analysis shows that all phages are strictly lytic and diverse in terms of genome size and content, quickly and effectively lysing strains at different multiplicity of infections. Detailed analysis of the broad host-range SHEF13 phage revealed the crucial role of the enterococcal polysaccharide antigen (EPA) variable region in its infection of E. faecalis V583. In parallel, the discovery of a carbohydrate-targeting domain (CBM22) found conserved within the three phage genomes indicates a role in cell surface interactions that may be important in phage-bacterial interactons. These findings advance our comprehension of phage-host interactions and pave the way for targeted therapeutic strategies against antibiotic-resistant enterococcal infections.
Collapse
Affiliation(s)
- Alhassan M Alrafaie
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Karolina Pyrzanowska
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - Elspeth M Smith
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - David G Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - John Rafferty
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanna Shepherd
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK; School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
8
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. FEMS MICROBES 2024; 5:xtae022. [PMID: 39156124 PMCID: PMC11328733 DOI: 10.1093/femsmc/xtae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Increased prevalence of multidrug-resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics, we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered that numerous uncharacterized phage proteins are produced during phage infection of E. faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum-sensing-regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the quorum-sensing regulator fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the putative murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K Sheriff
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Shelby E Andersen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| |
Collapse
|
9
|
Garrett SR, Higginson AB, Palmer T. Multiple variants of the type VII secretion system in Gram-positive bacteria. MICROLIFE 2024; 5:uqae013. [PMID: 38957458 PMCID: PMC11217815 DOI: 10.1093/femsml/uqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew B Higginson
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
10
|
de Melo AG, Morency C, Moineau S. Virulence-associated factors as targets for phage infection. Curr Opin Microbiol 2024; 79:102471. [PMID: 38569419 DOI: 10.1016/j.mib.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Bacterial pathogens can infect a wide range of hosts and pose a threat to public and animal health as well as to agriculture. The emergence of antibiotic-resistant strains has increased this risk by making the treatment of bacterial infections even more challenging. Pathogenic bacteria thrive in various ecological niches, but they can also be specifically targeted and killed by bacteriophages (phages). Lytic phages are now investigated and even used, in some cases, as alternatives or complements to antibiotics for preventing or treating bacterial infections (phage therapy). As such, it is key to identify factors responsible for phage specificity and efficiency. Here, we review recent advances in virulence-associated factors that are targeted by phages. We highlight components of the bacterial cell surface, effector systems, and motility structures exploited by phages and the effects of phages on cell aggregation and communication. We also look at the fitness trade-off of phage resistance.
Collapse
Affiliation(s)
- Alessandra G de Melo
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Carlee Morency
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
11
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593607. [PMID: 38766208 PMCID: PMC11100838 DOI: 10.1101/2024.05.10.593607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Increased prevalence of multidrug resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered numerous uncharacterized phage proteins are produced during phage infection of Enterococcus faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum sensing regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
12
|
Boeder AM, Spiller F, Carlstrom M, Izídio GS. Enterococcus faecalis: implications for host health. World J Microbiol Biotechnol 2024; 40:190. [PMID: 38702495 DOI: 10.1007/s11274-024-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.
Collapse
Affiliation(s)
- Ariela Maína Boeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Geison Souza Izídio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Laboratório de Genética do Comportamento, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianopolis, SC, Brazil.
| |
Collapse
|
13
|
Mahony J. Biological and bioinformatic tools for the discovery of unknown phage-host combinations. Curr Opin Microbiol 2024; 77:102426. [PMID: 38246125 DOI: 10.1016/j.mib.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The field of microbial ecology has been transformed by metagenomics in recent decades and has culminated in vast datasets that facilitate the bioinformatic dissection of complex microbial communities. Recently, attention has turned from defining the microbiota composition to the interactions and relationships that occur between members of the microbiota. Within complex microbiota, the identification of bacteriophage-host combinations has been a major challenge. Recent developments in artificial intelligence tools to predict protein structure and function as well as the relationships between bacteria and their infecting bacteriophages allow a strategic approach to identifying and validating phage-host relationships. However, biological validation of these predictions remains essential and will serve to improve the existing predictive tools. In this review, I provide an overview of the most recent developments in both bioinformatic and experimental approaches to predicting and experimentally validating unknown phage-host combinations.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland.
| |
Collapse
|
14
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci 2023; 24:15628. [PMID: 37958612 PMCID: PMC10650657 DOI: 10.3390/ijms242115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keisuke Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
- Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
17
|
Chen L, Hou X, Chu H. The Novel Role of Phage Particles in Chronic Liver Diseases. Microorganisms 2023; 11:1181. [PMID: 37317156 PMCID: PMC10220600 DOI: 10.3390/microorganisms11051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.
Collapse
Affiliation(s)
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
18
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
19
|
Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa lasI Quorum-Sensing Mutant. J Bacteriol 2022; 204:e0055721. [PMID: 35389255 PMCID: PMC9112912 DOI: 10.1128/jb.00557-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa, the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa ΔlasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa ΔlasI strain. We show that, in response to a phage infection, the P. aeruginosa ΔlasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa ΔlasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.
Collapse
|
20
|
Johnson CN, Palacios Araya D, Schink V, Islam M, Mangalea MR, Decurtis EK, Ngo TC, Palmer KL, Duerkop BA. Genetically distant bacteriophages select for unique genomic changes in Enterococcus faecalis. Microbiologyopen 2022; 11:e1273. [PMID: 35478284 PMCID: PMC8924694 DOI: 10.1002/mbo3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Viviane Schink
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Moutusee Islam
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Mihnea R. Mangalea
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Emily K. Decurtis
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Tuong‐Vi C. Ngo
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Kelli L. Palmer
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Breck A. Duerkop
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
21
|
Kieft K, Anantharaman K. Virus genomics: what is being overlooked? Curr Opin Virol 2022; 53:101200. [DOI: 10.1016/j.coviro.2022.101200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023]
|
22
|
Huang L, Guo W, Lu J, Pan W, Song F, Wang P. Enterococcus faecalis Bacteriophage vB_EfaS_efap05-1 Targets the Surface Polysaccharide and ComEA Protein as the Receptors. Front Microbiol 2022; 13:866382. [PMID: 35432223 PMCID: PMC9009173 DOI: 10.3389/fmicb.2022.866382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes nosocomial infections in humans. Due to the growing threat of antibiotic resistance of E. faecalis, bacteriophage therapy is a promising option for treating of E. faecalis infection. Here, we characterized a lytic E. faecalis bacteriophage vB_EfaS_efap05-1 with a dsDNA genome of 56,563 bp. Phage vB_EfaS_efap05-1 had a prolate head and a tail, and belongs to Saphexavirus which is a member of Siphoviridae. Efap05-1 uses either surface polysaccharide or membrane protein ComEA as the receptor because the mutation of both genes (ComEA and UDP-glucose 4-epimerase galE) prevents phage adsorption and leads to phage resistance, and complementation of ComEA or galE could recover its phage sensitivity. Our results provided a comprehensive analysis of a new E. faecalis phage and suggest efap05-1 as a potential antimicrobial agent.
Collapse
Affiliation(s)
- Lingqiong Huang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
| | - Wenqiong Guo
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Jiahui Lu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wuliang Pan
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Fuqiang Song
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
- *Correspondence: Fuqiang Song,
| | - Peng Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
- Peng Wang,
| |
Collapse
|
23
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
24
|
Rahimi-Midani A, Kim MJ, Choi TJ. Identification of a Cupin Protein Gene Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of Acidovorax citrulli. THE PLANT PATHOLOGY JOURNAL 2021; 37:555-565. [PMID: 34897248 PMCID: PMC8666233 DOI: 10.5423/ppj.oa.08.2021.0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 05/12/2023]
Abstract
Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.
Collapse
Affiliation(s)
| | - Min-Jung Kim
- Department of Microbiology, Pukyong National University, Busan 48513,
Korea
| | - Tae-Jin Choi
- Department of Microbiology, Pukyong National University, Busan 48513,
Korea
- Division of Marine Biosciences, Pukyong National University, Busan 48513,
Korea
- Corresponding author: Phone) +82-51-620-6367, FAX) +82-51-611-6358, E-mail)
| |
Collapse
|
25
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress. Viruses 2021; 13:v13101955. [PMID: 34696385 PMCID: PMC8540345 DOI: 10.3390/v13101955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative foodborne pathogen that causes diarrheal disease and is associated with severe post-infectious sequelae. Bacteriophages (phages) are a possible means of reducing Campylobacter colonization in poultry to prevent downstream human infections. However, the factors influencing phage-host interactions must be better understood before this strategy can be predictably employed. Most studies have focused on Campylobacter phage binding to the host surface, with all phages classified as either capsule- or flagella-specific. Here we describe the characterization of a C. jejuni phage that requires functional flagellar glycosylation and motor genes for infection, without needing the flagella for adsorption to the cell surface. Through phage infectivity studies of targeted C. jejuni mutants, transcriptomic analysis of phage-resistant mutants, and genotypic and phenotypic analysis of a spontaneous phage variant capable of simultaneously overcoming flagellar gene dependence and sensitivity to oxidative stress, we have uncovered a link between oxidative stress, flagellar motility, and phage infectivity. Taken together, our results underscore the importance of understanding phage-host interactions beyond the cell surface and point to host oxidative stress state as an important and underappreciated consideration for future phage-host interaction studies.
Collapse
|
27
|
Ramos Y, Sansone S, Morales DK. Sugarcoating it: Enterococcal polysaccharides as key modulators of host-pathogen interactions. PLoS Pathog 2021; 17:e1009822. [PMID: 34499702 PMCID: PMC8428557 DOI: 10.1371/journal.ppat.1009822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
| | - Stephanie Sansone
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
30
|
Lavelle K, Sinderen DV, Mahony J. Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Comput Struct Biotechnol J 2021; 19:4018-4031. [PMID: 34377367 PMCID: PMC8327497 DOI: 10.1016/j.csbj.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacterial cell walls are characterised by the presence of a thick peptidoglycan layer which provides protection from extracellular stresses, maintains cell integrity and determines cell morphology, while it also serves as a foundation to anchor a number of crucial polymeric structures. For ovococcal species, including streptococci, enterococci and lactococci, such structures are represented by rhamnose-containing cell wall polysaccharides, which at least in some instances appear to serve as a functional replacement for wall teichoic acids. The biochemical composition of several streptococcal, lactococcal and enterococcal rhamnose-containing cell wall polysaccharides have been elucidated, while associated functional genomic analyses have facilitated the proposition of models for individual biosynthetic pathways. Here, we review the genomic loci which encode the enzymatic machinery to produce rhamnose-containing, cell wall-associated polysaccharide (Rha cwps) structures of the afore-mentioned ovococcal bacteria with particular emphasis on gene content, biochemical structure and common biosynthetic steps. Furthermore, we discuss the role played by these saccharidic polymers as receptors for bacteriophages and the important role phages play in driving Rha cwps diversification and evolution.
Collapse
Affiliation(s)
- Katherine Lavelle
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| |
Collapse
|
31
|
Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation. mBio 2021; 12:e0101121. [PMID: 34126766 PMCID: PMC8262879 DOI: 10.1128/mbio.01011-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar discs, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by six Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions and identifies multiple new genetic determinants of biofilm formation.
Collapse
|
32
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
33
|
Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, Feser ML, Demoruelle MK, Sakatos A, Anantharaman K, Deane KD, Kuhn KA, Holers VM, Duerkop BA. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe 2021; 29:726-739.e5. [PMID: 33957082 PMCID: PMC8186507 DOI: 10.1016/j.chom.2021.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary metabolic genes, which associate with anti-CCP status, suggesting that these phages directly influence the metabolic and immunomodulatory capability of the microbiota. This work sets the stage for the use of phages as preclinical biomarkers and provides insight into a possible microbial-based causation of RA disease development.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Meagan E Chriswell
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer A Seifert
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium. Antimicrob Agents Chemother 2021; 65:AAC.00143-21. [PMID: 33649110 PMCID: PMC8092871 DOI: 10.1128/aac.00143-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecium, a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium, three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR, and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could serve as effective antimicrobials for the treatment of E. faecium infections.
Collapse
|
35
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, Read TD. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. mSphere 2021; 6:e01263-20. [PMID: 33441407 PMCID: PMC7845607 DOI: 10.1128/msphere.01263-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.
Collapse
Affiliation(s)
- Abraham G Moller
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kyle Winston
- Department of Epidemiology, Rollins School of Public Health (RSPH), Emory University, Atlanta, Georgia, USA
| | - Shiyu Ji
- Eugene Gangarosa Laboratory Research Fellowship, Emory College Online & Summer Programs, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Junting Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michelle N Hargita Davis
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia R Solís-Lemus
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet 2021; 17:e1009204. [PMID: 33411815 PMCID: PMC7790226 DOI: 10.1371/journal.pgen.1009204] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (phages) are being considered as alternative therapeutics for the treatment of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. We have discovered that lytic phage infection induces transcription of type VIIb secretion system (T7SS) genes in the pathobiont Enterococcus faecalis. Membrane damage during phage infection induces T7SS gene expression resulting in cell contact dependent antagonism of different Gram positive bystander bacteria. Deletion of essB, a T7SS structural component, abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene expression and bystander inhibition requires IreK, a serine/threonine kinase, and OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of membrane targeting and DNA damaging antibiotics activated T7SS expression independent of phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could impose collateral damage to polymicrobial communities. Renewed interest in phages as alternative therapeutics to combat multi-drug resistant bacterial infections, highlights the importance of understanding the consequences of phage-bacteria interactions in the context of microbial communities. Although it is well established that phages are highly specific for their host bacterium, there is no clear consensus on whether or not phage infection (and thus phage therapy) would impose collateral damage to non-target bacteria in polymicrobial communities. Here we provide direct evidence of how phage infection of a clinically relevant pathogen triggers an intrinsic type VII secretion system (T7SS) antibacterial response that consequently restricts the growth of neighboring bacterial cells that are not susceptible to phage infection. Phage induction of T7SS activity is a stress response and in addition to phages, T7SS antagonism can be induced using sub-inhibitory concentrations of antibiotics that facilitate membrane or DNA damage. Together these data show that a bacterial pathogen responds to diverse stressors to induce T7SS activity which manifests through the antagonism of neighboring non-kin bystander bacterial cells.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
38
|
Affiliation(s)
- Felicity Alcock
- Microbes in Health and Disease Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Michaux C, Hansen EE, Jenniches L, Gerovac M, Barquist L, Vogel J. Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Front Cell Infect Microbiol 2020; 10:600325. [PMID: 33324581 PMCID: PMC7724050 DOI: 10.3389/fcimb.2020.600325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Laura Jenniches
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Milan Gerovac
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
40
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
41
|
Alhajjar N, Chatterjee A, Spencer BL, Burcham LR, Willett JLE, Dunny GM, Duerkop BA, Doran KS. Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infect Immun 2020; 88:e00270-20. [PMID: 32778611 PMCID: PMC7504943 DOI: 10.1128/iai.00270-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract, and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin-resistant and -sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical, and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro but did not contribute to colonization in vivo Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5, and 8 days postinoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.
Collapse
Affiliation(s)
- Norhan Alhajjar
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brady L Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lindsey R Burcham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julia L E Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
42
|
Clokie MR, Blasdel BG, Demars BO, Sicheritz-Pontén T. Rethinking Phage Ecology by Rooting it Within an Established Plant Framework. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:121-136. [PMID: 36147824 PMCID: PMC9041459 DOI: 10.1089/phage.2020.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Despite the abundance and significance of bacteriophages to microbial ecosystems, no broad ecological frameworks exist within which to determine "bacteriophage types" that reflect their ecological strategies and ways in which they interact with bacterial cells. To address this, we repurposed the well-established Grime's triangular CSR framework, which classifies plants according to three axes: competitiveness (C), ability to tolerate stress (S), and capacity to cope with disturbance (R). This framework is distinguished from other accepted schemes, as it seeks to identify individual characteristics of plants to understand their biological strategies and roles within an ecosystem. Our repurposing of the CSR triangle is based on phage transcription and the observation that typically phages have three major distinguishable transcription phases: early, middle, and late. We hypothesize that the proportion of genes expressed in these phases reflects key information about the phage "ecological strategy," namely the C, S, and R strategies, allowing us to examine phages in a similar way to how plants are projected onto the triangle. In the "phage version" of this scheme, we suggest: (1) that some phages prioritize the early phase of transcription that shuts off host defense mechanisms, which reflects competitiveness; (2) other phages prioritize tuning resource management mechanisms in the cell such as nucleotide metabolism during their "mid" expression profile to tolerate stress; and (3) a further subset of phages (termed Ruderals) survive disturbance by investing significant resources into regeneration so they express a higher proportion of their genes during late infection. We examined 42 published phage transcriptomes and show that they fall into discrete CSR categories according to their expression profiles. We discuss these positions in the context of their biology, which is largely consistent with our predictions of specific phage characteristics. In this opinion article, we suggest a starting point to ascribe phages into different functional types and thus understand them in an ecological framework. We suggest that this may have far-reaching implications for the application of phages in therapy and their exploitation to manipulate bacterial communities. We invite further use of this framework via our online tool; www.PhageCSR.ml.
Collapse
Affiliation(s)
- Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Address correspondence to: Martha R.J. Clokie, PhD, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | | | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Address correspondence to: Thomas Sicheritz Pontén, PhD, Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Bygning 7, Copenhagen 1353, Denmark
| |
Collapse
|
43
|
Topka-Bielecka G, Bloch S, Nejman-Faleńczyk B, Grabski M, Jurczak-Kurek A, Górniak M, Dydecka A, Necel A, Węgrzyn G, Węgrzyn A. Characterization of the Bacteriophage vB_EfaS-271 Infecting Enterococcus faecalis. Int J Mol Sci 2020; 21:ijms21176345. [PMID: 32882938 PMCID: PMC7503890 DOI: 10.3390/ijms21176345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
A newly isolated bacteriophage infecting Enterococcus faecalis strains has been characterized, including determination of its molecular features. This phage, named vB_EfaS-271, has been classified as a Siphoviridae member, according to electron microscopy characterization of the virions, composed of a 50 nm-diameter head and a long, flexible, noncontractable tail (219 × 12.5 nm). Analysis of the whole dsDNA genome of this phage showed that it consists of 40,197 bp and functional modules containing genes coding for proteins that are involved in DNA replication (including DNA polymerase/primase), morphogenesis, packaging and cell lysis. Mass spectrometry analysis allowed us to identify several phage-encoded proteins. vB_EfaS-271 reveals a relatively narrow host range, as it is able to infect only a few E. faecalis strains. On the other hand, it is a virulent phage (unable to lysogenize host cells), effectively and quickly destroying cultures of sensitive host bacteria, with a latent period as short as 8 min and burst size of approximately 70 phages per cell at 37 °C. This phage was also able to destroy biofilms formed by E. faecalis. These results contribute to our understanding of the biodiversity of bacteriophages, confirming the high variability among these viruses and indicating specific genetic and functional features of vB_EfaS-271.
Collapse
Affiliation(s)
- Gracja Topka-Bielecka
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland;
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
- Laboratory of Marine Biogeochemistry, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Agata Jurczak-Kurek
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.J.-K.); (M.G.)
| | - Marcin Górniak
- Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.J.-K.); (M.G.)
| | - Aleksandra Dydecka
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
| | - Agnieszka Necel
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (G.T.-B.); (B.N.-F.); (M.G.); (A.D.); (A.N.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland;
- Correspondence: ; Tel.: +48-58-523-6040
| |
Collapse
|
44
|
Kortright KE, Chan BK, Turner PE. High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria. Proc Natl Acad Sci U S A 2020; 117:18670-18679. [PMID: 32675236 PMCID: PMC7414163 DOI: 10.1073/pnas.2001888117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the most abundant microbes on Earth, novel bacteriophages (phages; bacteria-specific viruses) are readily isolated from environmental samples. However, it remains challenging to characterize phage-bacteria interactions, such as the host receptor(s) phages bind to initiate infection. Here, we tested whether transposon insertion sequencing (INSeq) could be used to identify bacterial genes involved in phage binding. As proof of concept, results showed that INSeq screens successfully identified genes encoding known receptors for previously characterized viruses of Escherichia coli (phages T6, T2, T4, and T7). INSeq screens were then used to identify genes involved during infection of six newly isolated coliphages. Results showed that candidate receptors could be successfully identified for the majority (five of six) of the phages; furthermore, genes encoding the phage receptor(s) were the top hit(s) in the analyses of the successful screens. INSeq screens provide a generally useful method for high-throughput discovery of phage receptors. We discuss limitations of our approach when examining uncharacterized phages, as well as usefulness of the method for exploring the evolution of broad versus narrow use of cellular receptors among phages in the biosphere.
Collapse
Affiliation(s)
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| | - Paul E Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
45
|
Molecular mechanisms of enterococcal-bacteriophage interactions and implications for human health. Curr Opin Microbiol 2020; 56:38-44. [PMID: 32652484 DOI: 10.1016/j.mib.2020.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
Once overlooked as passive bystanders of the human intestinal microbiota, new evidence is shedding light on the importance of enterococci and their bacteriophages (phages) in shaping human health. Natural predators of enterococci, phages represent a narrow spectrum, precision targeting modality for the eradication of problematic enterococci within the microbiota or infected tissue. The identification of enterococcal phage receptors, absorption factors, and transcriptional responses following phage infection reveals a complex predator-prey relationship that modulates enterococcal cell surface architecture, susceptibility to antibiotics, and adaptation to host associated environments. Considering the dry up of contemporary antibiotic discovery pipelines in the pharmaceutical industry and a continued emergence of multidrug-resistant enterococci, enterococcal phages may serve as bonafide therapeutics. We highlight current advances in enterococcal phage biology with emphasis on recent breakthroughs in potential therapeutic applications that place enterococcal phages at the forefront of next-generation biologics.
Collapse
|
46
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|