1
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
2
|
Ray SK, Mukherjee S. Interaction Among Noncoding RNAs, DNA Damage Reactions, and Genomic Instability in the Hypoxic Tumor: Is it Therapeutically Exploitable Practice? Curr Mol Med 2023; 23:200-215. [PMID: 35048804 DOI: 10.2174/1566524022666220120123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Hypoxia is a classical function of the tumor's microenvironment with a substantial effect on the development and therapeutic response of cancer. When put in hypoxic environments, cells undergo several biological reactions, including activation of signaling pathways that control proliferation, angiogenesis, and death. These pathways have been adapted by cancer cells to allow tumors to survive and even develop in hypoxic conditions, and poor prognosis is associated with tumor hypoxia. The most relevant transcriptional regulator in response to hypoxia, Hypoxia-inducible factor-1 alpha (HIF-1α), has been shown to modulate hypoxic gene expression and signaling transduction networks significantly. The significance of non-coding RNAs in hypoxic tumor regions has been revealed in an increasing number of studies over the past few decades. In regulating hypoxic gene expression, these hypoxia-responsive ncRNAs play pivotal roles. Hypoxia, a general characteristic of the tumor's microenvironment, significantly affects the expression of genes and is closely associated with the development of cancer. Indeed, the number of known hypoxia-associated lncRNAs has increased dramatically, demonstrating the growing role of lncRNAs in cascades and responses to hypoxia signaling. Decades of research have helped us create an image of the shift in hypoxic cancer cells' DNA repair capabilities. Emerging evidence suggests that hypoxia can trigger genetic instability in cancer cells because of microenvironmental tumor stress. Researchers have found that critical genes' expression is coordinately repressed by hypoxia within the DNA damage and repair pathways. In this study, we include an update of current knowledge on the presentation, participation, and potential clinical effect of ncRNAs in tumor hypoxia, DNA damage reactions, and genomic instability, with a specific emphasis on their unusual cascade of molecular regulation and malignant progression induced by hypoxia.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
3
|
MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3. Oncogene 2022; 41:4606-4617. [PMID: 36071275 DOI: 10.1038/s41388-022-02456-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
The transcription factor MYB proto-oncogene like 2 (MYBL2) is critical in regulating gene expression and tumorigenesis. However, the biological function of MYBL2 in bladder cancer (BLCA) remains to be elucidated. Here, we first revealed that MYBL2 was elevated in BLCA tissues and significantly correlated with clinicopathological parameters and cancer-specific survival in BLCA patients. Phenotypic assays showed that MYBL2 deficiency suppressed the proliferation and migration of BLCA cells in vitro and in vivo, whereas MYBL2 overexpression contributed to the opposite phenotype. Mechanistically, MYBL2 could bind to the promoter of its downstream target gene cell division cycle-associated protein 3 (CDCA3) and transactivate it, which in turn promoted the malignant phenotype of BLCA cells. Further investigations revealed that MYBL2 interacted with forkhead box M1 (FOXM1) to co-regulate the transcription of CDCA3. In addition, MYBL2/FOXM1 and CDCA3 might activate Wnt/β-catenin signaling, thereby promoting the malignant phenotype of BLCA cells. In conclusion, the current study identifies MYBL2 as an oncogene in BLCA. MYBL2 can accelerate the proliferation and metastasis of BLCA through the transactivation of CDCA3.
Collapse
|
4
|
The hypoxia-inducible factor 1 inhibitor LW6 mediates the HIF-1α/PD-L1 axis and suppresses tumor growth of hepatocellular carcinoma in vitro and in vivo. Eur J Pharmacol 2022; 930:175154. [PMID: 35868447 DOI: 10.1016/j.ejphar.2022.175154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
The low survival rate of hepatocellular carcinoma (HCC) remains a major challenge for clinicians and patients, and its progression may be related to hypoxia-inducible factor (HIF) and PD-L1. LW6 is a drug that inhibits hypoxia by reducing HIF-1α accumulation and gene transcriptional activity. However, its effect and regulatory mechanism in HCC remain to be revealed, especially under hypoxic conditions. The HIF-1α and PD-L1 expression in HCC specimens and paracarcinoma tissues was evaluated by a tissue microarray (TMA). The effects of LW6 were evaluated by cell viability, colony formation, and Transwell assays and xenografted nude mice. Cell cycle and apoptosis of HCC cells were detected by flow cytometry. The effects of LW6 on HIF-1α signaling and its targets PD-L1 and VEGF were evaluated through qRT-PCR, Western blots, Cell transfection, Transwell migration and invasion assays, immunohistochemistry, immunofluorescence and luciferase assays. In this study, we found that LW6 had antiproliferative effects on HCC and promoted HCC cell apoptosis, inhibited their migration and invasion, and affected their cell cycle. LW6 dramatically decreased HIF-1α expression through the VHL-dependent proteasome system pathway, inhibited HIF-1α transcriptional activation, and reduced PD-L1 expression by inhibiting EGFR pathway activation. These results suggest that LW6 can promote apoptosis of HCC cells by inhibiting HIF-1α, inhibit tumor angiogenesis, and downregulate the expression of PD-L1, which is an effective choice for the treatment of HCC. Moreover, inhibiting the hypoxic microenvironment combined with immunotherapy is expected to be a potentially effective strategy.
Collapse
|
5
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
6
|
Shulman M, Shi R, Zhang Q. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer. J Genet Genomics 2021; 48:552-559. [PMID: 34376376 PMCID: PMC8453047 DOI: 10.1016/j.jgg.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
Collapse
Affiliation(s)
- Maxwell Shulman
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Hu L, Wu H, Jiang T, Kuang M, Liu B, Guo X, He D, Chen M, Gu J, Gu J, Chang L, Feng M, Ruan Y. pVHL promotes lysosomal degradation of YAP in lung adenocarcinoma. Cell Signal 2021; 83:110002. [PMID: 33823241 DOI: 10.1016/j.cellsig.2021.110002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022]
Abstract
Yes-associated protein (YAP) is a vital transcriptional co-activator that activates cell proliferation and evasion of apoptosis for the promotion of tumorigenesis. The von Hippel-Lindau tumor suppressor protein (pVHL), as a critical component of E3 ubiquitin ligase, targets various substrates to regulate tumor progression. However, the precise molecular mechanisms of pVHL during tumorigenesis remain largely unclear. Herein, we found that there was a significant negative correlation between pVHL and YAP at protein level in the TCGA-LUAD dataset and our cohort. Over-expression of pVHL decreased YAP protein expression and reduced its transcriptional activity. Further study indicated that pVHL did not affect YAP mRNA level but decreased YAP protein stability in a lysosome-dependent manner. In addition, the pVHL-mediated degradation of YAP inhibited cellular proliferation, migration, and enhanced chemosensitivity to cisplatin in lung adenocarcinoma cells. Interestingly, the pVHL-mediated YAP degradation was blocked by elevated O-GlcNAcylation. Collectively, our findings demonstrate that pVHL modulates the lysosomal degradation of YAP, and may provide more clues to better understanding the tumor suppressive effects of pVHL.
Collapse
Affiliation(s)
- Lan Hu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengzhen Kuang
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bo Liu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinying Guo
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Daochuan He
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengqian Chen
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Li C, Hu S, Yue Y. Ultrasound Microbubble-Mediated VHL Regulates the Biological Behavior of Ovarian Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:723-732. [PMID: 33261909 DOI: 10.1016/j.ultrasmedbio.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
According to the literature, the von Hippel-Lindau (VHL) gene has a certain correlation with ovarian cancer. In this study, we investigated the effect and mechanism of ultrasound microbubble-mediated VHL on the biological function of ovarian cancer cells. Non-targeting lipid microbubbles and targeted lipid microbubbles were prepared. OVCAR-3 cells were treated with VHL mediated by ultrasound and microbubbles alone or together. Expressions of VHL, Akt, epithelial-mesenchymal-transition-related proteins and apoptosis-related proteins were detected by Western blot and quantitative real-time polymerase chain reaction as needed. The effect of ultrasound microbubble-mediated VHL on the proliferation, apoptosis, cell cycle, migration and invasion of OVCAR-3 cells was examined by Cell Counting Kit-8, flow cytometry, wound-healing assay and Transwell. Compared with other treatment methods, ultrasound microbubble mediation enhanced VHL expression in OVCAR-3 cells. Overexpression of liposome-mediated VHL inhibited the proliferation and migration; caused cell-cycle arrest; promoted apoptosis: downregulated the expressions of MMP2, MMP9, E-cadherin, Akt and Bcl-2; and upregulated the expressions of VHL and BCL2-associated X protein (BAX) in OVCAR-3 cells. The effect of microbubble-treated VHL was similar to liposome-mediated regulation, while ultrasound treatment enhanced the effect of VHL on OVCAR-3 cells. More interestingly, ultrasound microbubble-mediated VHL had the most obvious regulatory effect on OVCAR-3 cells. Ultrasound microbubble technology increases the transfection efficiency of VHL into OVCAR-3 cells and enhances the effect of VHL gene on the biological function of OVCAR-3 cells.
Collapse
Affiliation(s)
- Cong Li
- Ultrasonography Department, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Suling Hu
- Functional Department, Baoding Infectious Disease Hospital, Baoding, Hebei Province, China
| | - Yan Yue
- Department of Gynaecology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
9
|
Extracellular vesicle-encapsulated microRNA-424 exerts inhibitory function in ovarian cancer by targeting MYB. J Transl Med 2021; 19:4. [PMID: 33407591 PMCID: PMC7786507 DOI: 10.1186/s12967-020-02652-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have suggested a crucial role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in ovarian cancer treatment. We, therefore, set out to explore the mechanism through which MSC-derived EVs delivered microRNA-424 (miR-424) to influence the development of ovarian cancer. Methods Bioinformatics analyses were first performed to screen ovarian cancer-related differentially expressed genes and to predict regulatory miRNAs. Then, dual-luciferase reporter gene assay was carried out to verify the relationship between miR-424 and MYB. Subsequently, the characterized MSCs and isolated EVs were co-cultured with ovarian cancer cells, followed by determination of the expression patterns of miR-424, MYB, vascular endothelial growth factor (VEGF), and VEGF receptor (VEGFR), respectively. In addition, the effects of EVs-delivered miR-424 on the proliferation, migration, invasion and tube formation of ovarian cancer cells were assessed using gain- and loss-of-function approaches. Lastly, tumor xenograft was induced in nude mice to illustrate the influence of EVs-loaded miR-424 on ovarian cancer in vivo. Results Our data exhibited that MYB was highly-expressed and miR-424 was poorly-expressed in ovarian cancer. More importantly, MYB was identified as a target gene of miR-424. Additionally, the transfer of miR-424 by MSC-derived EVs was found to repress the proliferation, migration, and invasion of ovarian cancer cells, with a reduction in the expressions of VEGF and VEGFR. Furthermore, MSC-derived EVs over-expressing miR-424 could inhibit the proliferation, migration, and tube formation of human umbilical vein endothelial cells, and also suppressed tumorigenesis and angiogenesis of ovarian tumors in vivo. Conclusion Collectively, our findings indicate that MSC-derived EVs transfer miR-424 to down-regulate MYB, which ultimately led to the inhibition of the tumorigenesis and angiogenesis of ovarian cancer. Hence, this study offers a potential prognostic marker and a therapeutic target for ovarian cancer.
Collapse
|
10
|
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression. Int J Mol Sci 2020; 21:ijms21218162. [PMID: 33142830 PMCID: PMC7663541 DOI: 10.3390/ijms21218162] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer.
Collapse
|
11
|
Liao C, Zhang Q. Understanding the Oxygen-Sensing Pathway and Its Therapeutic Implications in Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1584-1595. [PMID: 32339495 DOI: 10.1016/j.ajpath.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Maintaining oxygen homeostasis is a most basic cellular process for adapting physiological oxygen variations, and its abnormality typically leads to various disorders in the human body. The key molecules of the oxygen-sensing system include the transcriptional regulator hypoxia-inducible factor (HIF), which controls a wide range of oxygen responsive target genes (eg, EPO and VEGF), certain members of the oxygen/2-oxoglutarate-dependent dioxygenase family, including the HIF proline hydroxylase (PHD, alias EGLN), and an E3 ubiquitin ligase component for HIF destruction called von Hippel-Lindau. In this review, we summarize the physiological role and highlight the pathologic function for each protein of the oxygen-sensing system. A better understanding of their molecular mechanisms of action will help uncover novel therapeutic targets and develop more effective treatment approaches for related human diseases, including cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
12
|
The Tumor Suppressor Roles of MYBBP1A, a Major Contributor to Metabolism Plasticity and Stemness. Cancers (Basel) 2020; 12:cancers12010254. [PMID: 31968688 PMCID: PMC7017249 DOI: 10.3390/cancers12010254] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The MYB binding protein 1A (MYBBP1A, also known as p160) acts as a co-repressor of multiple transcription factors involved in many physiological processes. Therefore, MYBBP1A acts as a tumor suppressor in multiple aspects related to cell physiology, most of them very relevant for tumorigenesis. We explored the different roles of MYBBP1A in different aspects of cancer, such as mitosis, cellular senescence, epigenetic regulation, cell cycle, metabolism plasticity and stemness. We especially reviewed the relationships between MYBBP1A, the inhibitory role it plays by binding and inactivating c-MYB and its regulation of PGC-1α, leading to an increase in the stemness and the tumor stem cell population. In addition, MYBBP1A causes the activation of PGC-1α directly and indirectly through c-MYB, inducing the metabolic change from glycolysis to oxidative phosphorylation (OXPHOS). Therefore, the combination of these two effects caused by the decreased expression of MYBBP1A provides a selective advantage to tumor cells. Interestingly, this only occurs in cells lacking pVHL. Finally, the loss of MYBBP1A occurs in 8%–9% of renal tumors. tumors, and this subpopulation could be studied as a possible target of therapies using inhibitors of mitochondrial respiration.
Collapse
|
13
|
Liu X, Zurlo G, Zhang Q. The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:173-186. [PMID: 31898228 DOI: 10.1007/978-981-15-1025-0_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posttranslational protein modifications play an important role in regulating protein stability and cellular function. There are at least eight Cullin family members. Among them, Cullin-2 forms a functional E3 ligase complex with elongin B, elongin C, RING-box protein 1 (RBX1, also called ROC1), as well as the substrate recognition subunit (SRS) to promote the substrate ubiquitination and degradation. In this book chapter, we will review Cullin-2 E3 ligase complexes that include various SRS proteins, including von Hippel Lindau (pVHL), leucine-rich repeat protein-1 (LRR-1), preferentially expressed antigen of melanoma (PRAME), sex-determining protein FEM-1 and early embryogenesis protein ZYG-11. We will focus on the VHL signaling pathway in clear cell renal cell carcinoma (ccRCC), which may reveal various therapeutic avenues in treating this lethal cancer.
Collapse
Affiliation(s)
- Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
15
|
Wakamatsu Y, Suzuki K. Sequence alteration in the enhancer contributes to the heterochronic Sox9 expression in marsupial cranial neural crest. Dev Biol 2019; 456:31-39. [PMID: 31430446 DOI: 10.1016/j.ydbio.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
Neonates of marsupial mammals are altricial at birth, because their gestation period is relatively short compared to placental mammals. Yet, as they need to travel to the teat from the birth canal, and suckle on the mother's milk, forelimbs and jaws develop significantly early. Previous studies in opossum (Monodelphis domestica), an experimental marsupial model, have revealed that cranial neural crest cells are generated significantly early compared to those in placental mammals, such as mouse, leading to an early development of jaw primordia. We have previously found that Sox9, an important neural crest-specifier gene, is expressed in the future cranial neural crest of the opossum embryonic ectoderm significantly earlier than that in mouse or quail embryos. As Sox9 is essential for neural crest formation in various vertebrates, it seems likely that the heterochronic expression of Sox9 is critical for the early cranial neural crest formation in the marsupial embryos. In this study, we show a marsupial-specific sequence in the Sox9 neural crest enhancer E3. We also reveal that the mouse E3 enhancer is activated in the cranial neural crest cells of quail embryos, that the E3 enhancer with marsupial-specific sequence is activated earlier in the Pax7-expressing neural border prior to the onset of endogenous Sox9 expression, and that a misexpression of cMyb, which is also a transcriptional activator of Pax7, in the neural border can ectopically activate the "marsupialized" enhancer. Thus, we suggest that the modification of the E3 enhancer sequence in the marsupial ancestor would have promoted the early expression of Sox9 in the neural border, facilitating the early formation of the cranial neural crest cells and the subsequent heterochronic development of the jaw primordia.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| | - Kunihiro Suzuki
- Department of Biology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
16
|
Felipe-Abrio B, Verdugo-Sivianes EM, Carnero A. c-MYB- and PGC1a-dependent metabolic switch induced by MYBBP1A loss in renal cancer. Mol Oncol 2019; 13:1519-1533. [PMID: 31066170 PMCID: PMC6599841 DOI: 10.1002/1878-0261.12499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment may alter the original tumorigenic potential of tumor cells. Under harsh environmental conditions, genetic alterations conferring selective advantages may initiate the growth of tumor subclones, providing new opportunities for these tumors to grow. We performed a genetic loss-of-function screen to identify genetic alterations able to promote tumor cell growth in the absence of glucose. We identified that downregulation of MYBBP1A increases tumorigenic properties under nonpermissive conditions. MYBBP1A downregulation simultaneously activates PGC1α, directly by alleviating direct repression and indirectly by increasing PGC1α mRNA levels through c-MYB, leading to a metabolic switch from glycolysis to OXPHOS and increased tumorigenesis in low-glucose microenvironments. We have also identified reduced MYBBP1A expression in human renal tumor samples, which show high expression levels of genes involved in oxidative metabolism. In summary, our data support the role of MYBBP1A as a tumor suppressor by regulating c-MYB and PGC1α. Therefore, loss of MYBBP1A increases adaptability spanning of tumors through metabolic switch.
Collapse
Affiliation(s)
- Blanca Felipe-Abrio
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018; 6:biomedicines6010035. [PMID: 29562667 PMCID: PMC5874692 DOI: 10.3390/biomedicines6010035] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Dong XF, Liu TQ, Zhi XT, Zou J, Zhong JT, Li T, Mo XL, Zhou W, Guo WW, Liu X, Chen YY, Li MY, Zhong XG, Han YM, Wang ZH, Dong ZR. COX-2/PGE2 Axis Regulates HIF2α Activity to Promote Hepatocellular Carcinoma Hypoxic Response and Reduce the Sensitivity of Sorafenib Treatment. Clin Cancer Res 2018. [PMID: 29514844 DOI: 10.1158/1078-0432.ccr-17-2725] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiao-Feng Dong
- Department of Hepatobiliary Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tian-Qi Liu
- Department of Hepatobiliary Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xu-Ting Zhi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jie Zou
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Jing-Tao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xiang-Lan Mo
- Department of Pathology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Zhou
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Wen-Wen Guo
- Department of Pathology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xia Liu
- Department of Pathology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuan-Yuan Chen
- Department of Hepatobiliary Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Meng-Yang Li
- Department of Hepatobiliary Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiao-Gang Zhong
- Department of Gastrointestinal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ya-Min Han
- Department of Gastrointestinal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhong-Hao Wang
- Department of Clinical Medicine, Second Military Medical University, Shanghai, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Mol Biol Cell 2017; 28:3532-3541. [PMID: 28931592 PMCID: PMC5683763 DOI: 10.1091/mbc.e17-07-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022] Open
Abstract
Eph receptor tyrosine kinases are important for cancer development and progression as well as in cellular repulsive responses. We determined that SOCS box-containing protein SPSB4 destabilizes EphB2 cytoplasmic fragments. SPSB4 is a novel ubiquitin ligase regulating EphB2-dependent cell repulsive responses. Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Keisuke Obara
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Alexander Petersen
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
20
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. Hypoxia-inducible factor-2α stabilizes the von Hippel-Lindau (VHL) disease suppressor, Myb-related protein 2. PLoS One 2017; 12:e0175593. [PMID: 28394947 PMCID: PMC5386292 DOI: 10.1371/journal.pone.0175593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin ligase von Hippel–Lindau tumor suppressor (pVHL) negatively regulates protein levels of hypoxia-inducible factor-α (HIF-α). Loss of pVHL causes HIF-α accumulation, which contributes to the pathogenesis of von Hippel-Lindau (VHL) disease. In contrast, v-Myb avian myeloblastosis viral oncogene homolog–like 2 (MYBL2; B-Myb), a transcription factor, prevents VHL pathogenesis by regulating gene expression of HIF-independent pathways. Both HIF-α and B-Myb are targets of pVHL-mediated polyubiquitination and proteasomal degradation. Here, we show that knockdown of HIF-2α induces downregulation of B-Myb in 786-O cells, which are deficient in pVHL, and this downregulation is prevented by proteasome inhibition. In the presence of pVHL and under hypoxia-like conditions, B-Myb and HIF-2α are both upregulated, and the upregulation of B-Myb requires expression of HIF-2α. We also show that HIF-2α and B-Myb interact in the nucleus, and this interaction is mediated by the central region of HIF-2α and the C-terminal region of B-Myb. These data indicate that oncogenic HIF-2α stabilizes B-Myb to suppress VHL pathogenesis.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
- * E-mail: (FO); (TK)
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
- * E-mail: (FO); (TK)
| |
Collapse
|
21
|
Liu X, Cai X, Hu B, Mei Z, Zhang D, Ouyang G, Wang J, Zhang W, Xiao W. Forkhead Transcription Factor 3a (FOXO3a) Modulates Hypoxia Signaling via Up-regulation of the von Hippel-Lindau Gene (VHL). J Biol Chem 2016; 291:25692-25705. [PMID: 27777301 DOI: 10.1074/jbc.m116.745471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/20/2016] [Indexed: 01/26/2023] Open
Abstract
FOXO3a, a member of the forkhead homeobox type O (FOXO) family of transcriptional factors, regulates cell survival in response to DNA damage, caloric restriction, and oxidative stress. The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of the E3 ubiquitin ligase complex that mediates hypoxia-inducible factor α degradation under aerobic conditions, thus acting as one of the key regulators of hypoxia signaling. However, whether FOXO3a impacts cellular hypoxia stress remains unknown. Here we show that FOXO3a directly binds to the VHL promoter and up-regulates VHL expression. Using a zebrafish model, we confirmed the up-regulation of vhl by foxo3b, an ortholog of mammalian FOXO3a Furthermore, by employing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease Cas9 (CRISPR/Cas9) technology, we deleted foxo3b in zebrafish and determined that expression of hypoxia-inducible genes was affected under hypoxia. Moreover, foxo3b-null zebrafish exhibited impaired acute hypoxic tolerance, resulting in death. In conclusion, our findings suggest that, by modulating hypoxia-inducible factor activity via up-regulation of VHL, FOXO3a (foxo3b) plays an important role in survival in response to hypoxic stress.
Collapse
Affiliation(s)
- Xing Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Xiaolian Cai
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Bo Hu
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Zhichao Mei
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Dawei Zhang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Gang Ouyang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Jing Wang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Wei Zhang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation and .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|