1
|
Blaszkiewicz M, Johnson CP, Willows JW, Gardner ML, Taplin DR, Freitas MA, Townsend KL. The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells. Adipocyte 2024; 13:2428938. [PMID: 39641403 PMCID: PMC11633174 DOI: 10.1080/21623945.2024.2428938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.
Collapse
Affiliation(s)
| | - Cory P. Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Jake W. Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Miranda L. Gardner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dylan R. Taplin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Kristy L. Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
2
|
Li W, Zhong Q, Deng N, Wang H, Ouyang J, Guan Z, Zhou X, Li K, Sun X, Wang Y. Identification of a novel prognostic model for gastric cancer utilizing glutamine-related genes. Heliyon 2024; 10:e37985. [PMID: 39386842 PMCID: PMC11462029 DOI: 10.1016/j.heliyon.2024.e37985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Glutamine metabolism presents a promising avenue for cancer prevention and treatment, but the underlying mechanisms in gastric cancer (GC) progression remain elusive. METHODS The TCGA-STAD and GEO GSE62254 datasets, containing gene expression, clinical information, and survival outcomes of GC, were meticulously examined. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to excavate a key module (MEturquoise), which was used to intersect with glutamine metabolism-related genes (GMRGs) and differentially expressed genes (DEGs) to identify differentially expressed GMRGs (DE-GMRGs). LASSO and Cox Univariate analyses were implemented to determine risk model genes. Correlation of the risk model with clinical parameters, pathways, and tumor immune microenvironments, was analyzed, and its prognostic independence was validated by Cox analyses. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the expression levels of MYB, LRFN4, LMNB2, and SLC1A5 in GC and para-carcinoma tissue. RESULTS The excavation of 4521 DEGs led to the discovery of the key MEturquoise module, which exhibited robust correlations with GC traits. The intersection analysis identified 42 DE-GMRGs, among which six genes showed consistency. Further LASSO analysis established MYB, LRFN4, LMNB2, and SLC1A5 as pivotal risk model genes. The risk model demonstrated associations with oncogenic and metabolism-related pathways, inversely correlating with responses to immune checkpoint blockade therapies. This risk model, together with "age", was validated to be an independent prognostic factor for GC. RT-qPCR result indicated that MYB, LRFN4, LMNB2, and SLC1A5 expressions were remarkably up-regulated in GC tissues comparison with para-carcinoma tissue. CONCLUSION The present study has generated a novel risk module containing four DE-GMRGs for predicting the prognosis and the response to immune checkpoint blockade treatments for GC. This risk model provides new insights into the involvement of glutamine metabolism in GC, warranting further investigation.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Qixing Zhong
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Naisheng Deng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Zhifen Guan
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, 1142, New Zealand
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| |
Collapse
|
3
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
4
|
Magno S, Ceccarini G, Corvillo F, Pelosini C, Gilio D, Paoli M, Fornaciari S, Pandolfo G, Sanchez-Iglesias S, Nozal P, Curcio M, Sessa MR, López-Trascasa M, Araújo-Vilar D, Santini F. Clinical Characteristics of Patients With Acquired Partial Lipodystrophy: A Multicenter Retrospective Study. J Clin Endocrinol Metab 2024; 109:e932-e944. [PMID: 38061004 DOI: 10.1210/clinem/dgad700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Barraquer-Simons syndrome (BSS) is a rare, acquired form of lipodystrophy characterized by progressive loss of upper body subcutaneous fat, which affects face, upper limbs, and trunk. The pathogenesis of the disease is not entirely known and may involve autoimmune mechanisms. AIM This study aimed to provide a comprehensive picture of the clinical, immunological, and metabolic features of a large cohort of patients with BSS. Our primary objectives included the validation of existing diagnostic tools, the evaluation of novel diagnostic approaches, and the exploration of potential disease triggers or genetic predispositions. SUBJECTS AND METHODS Twenty-six patients were diagnosed with BSS based on accepted criteria defined by international guidelines. Anthropometric parameters, biochemical tests, organ- and non-organ-specific autoantibodies, HLA status, and screening of the LMNB2 gene were performed. RESULTS Patients were predominantly females (73%); fat loss occurred mostly during childhood (77%) at a median age of 8 years. Among various anthropometric measures, the ratio between the proportion of fat mass in upper limbs and lower limbs showed the best predictive value for diagnosis. A total of 11.5% of patients had diabetes, 34.6% dyslipidemia, and 26.9% hepatic steatosis. Seventy-five percent of children and 50% of adults had C3 hypocomplementemia; 76% of patients were positive for 1 or more autoantibodies. HLA-DRB1 11:03 had higher allelic frequencies compared with the general population. A single variant in the LMNB2 gene was found in 1 patient. CONCLUSION BSS has a childhood onset and is often associated with autoimmune diseases. Skinfold thickness measurements and fat assessment by dual energy X-ray absorptiometry are useful tools to identify the disease. C3 hypocomplementemia and the presence of autoantibodies may be used as additional diagnostic supportive criteria but the prevalence of C3 hypocomplementemia may be lower than previously reported.
Collapse
Affiliation(s)
- Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, Madrid 28046, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28046, Spain
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Melania Paoli
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Silvia Fornaciari
- Division of Transfusion Medicine and Transplant Biology, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Giuseppe Pandolfo
- Department of Economics and Statistics, University of Naples Federico II, Naples 80138, Italy
| | - Sofia Sanchez-Iglesias
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela 15700, Spain
| | - Pilar Nozal
- Immunology Unit, La Paz University Hospital, Madrid 28046, Spain
| | - Michele Curcio
- Division of Transfusion Medicine and Transplant Biology, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Maria Rita Sessa
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, Madrid 28046, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela 15700, Spain
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| |
Collapse
|
5
|
Gao J, Xu W, Tang F, Xu M, Zhou Q, Yang X, Zhang N, Ma J, Yang Q, Chen X, Qin X, Ge H. The bacterial effector SidN/Lpg1083 promotes cell death by targeting Lamin-B2. J Mol Cell Biol 2023; 15:mjad036. [PMID: 37253620 PMCID: PMC10729856 DOI: 10.1093/jmcb/mjad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023] Open
Abstract
To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.
Collapse
Affiliation(s)
- Jiajia Gao
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Wenwen Xu
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Feng Tang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Minrui Xu
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xingyuan Yang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Nannan Zhang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Jinming Ma
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Qi Yang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiaofang Chen
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Honghua Ge
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
- School of Life Sciences, Anhui University, Hefei 230601, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Frion J, Meller A, Marbach G, Lévesque D, Roucou X, Boisvert FM. CRISPR/Cas9-mediated knockout of the ubiquitin variant UbKEKS reveals a role in regulating nucleolar structures and composition. Biol Open 2023; 12:bio059984. [PMID: 37670689 PMCID: PMC10537958 DOI: 10.1242/bio.059984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Ubiquitination is a post-translational modification responsible for one of the most complex multilayered communication and regulation systems in the cell. Over the past decades, new ubiquitin variants and ubiquitin-like proteins arose to further enrich this mechanism. Recently discovered ubiquitin variant UbKEKS can specifically target several proteins and yet, functional consequences of this new modification remain unknown. Depletion of UbKEKS induces accumulation of lamin A in the nucleoli, highlighting the need for deeper investigations about protein composition and functions regulation of this highly dynamic and membrane-less compartment. Using data-independent acquisition mass spectrometry and microscopy, we show that despite not impacting protein stability, UbKEKS is required to maintain a normal nucleolar organization. The absence of UbKEKS increases nucleoli's size and accentuate their circularity while disrupting dense fibrillar component and fibrillar centre structures. Moreover, depletion of UbKEKS leads to distinct changes in nucleolar composition. Lack of UbKEKS favours nucleolar sequestration of known apoptotic regulators such as IFI16 or p14ARF, resulting in an increase of apoptosis observed by flow cytometry and real-time monitoring. Overall, these results identify the first cellular functions of the UbKEKS variant and lay the foundation stone to establish UbKEKS as a new universal layer of regulation in the ubiquitination system.
Collapse
Affiliation(s)
- Julie Frion
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Anna Meller
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Gwendoline Marbach
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
7
|
Pujadas EM, Wei X, Acosta N, Carter L, Yang J, Almassalha L, Daneshkhah A, Rao SSP, Agrawal V, Seker-Polat F, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 alters chromatin mobility and induces differential gene expression by a mesoscale-motion dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546573. [PMID: 37425796 PMCID: PMC10326988 DOI: 10.1101/2023.06.26.546573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.
Collapse
|
8
|
Hernández‐Carralero E, Cabrera E, Rodríguez-Torres G, Hernández-Reyes Y, Singh A, Santa-María C, Fernández-Justel J, Janssens R, Marteijn J, Evert B, Mailand N, Gómez M, Ramadan K, Smits VJ, Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; 51:5396-5413. [PMID: 36971114 PMCID: PMC10287915 DOI: 10.1093/nar/gkad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 11/18/2023] Open
Abstract
The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Esperanza Hernández‐Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gara Rodríguez-Torres
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Abhay N Singh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
9
|
Zheng X, Tran JR, Zheng Y. CscoreTool-M infers 3D sub-compartment probabilities within cell population. Bioinformatics 2023; 39:btad314. [PMID: 37166448 PMCID: PMC10206090 DOI: 10.1093/bioinformatics/btad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
MOTIVATION Computational inference of genome organization based on Hi-C sequencing has greatly aided the understanding of chromatin and nuclear organization in three dimensions (3D). However, existing computational methods fail to address the cell population heterogeneity. Here we describe a probabilistic-modeling-based method called CscoreTool-M that infers multiple 3D genome sub-compartments from Hi-C data. RESULTS The compartment scores inferred using CscoreTool-M represents the probability of a genomic region locating in a specific sub-compartment. Compared to published methods, CscoreTool-M is more accurate in inferring sub-compartments corresponding to both active and repressed chromatin. The compartment scores calculated by CscoreTool-M also help to quantify the levels of heterogeneity in sub-compartment localization within cell populations. By comparing proliferating cells and terminally differentiated non-proliferating cells, we show that the proliferating cells have higher genome organization heterogeneity, which is likely caused by cells at different cell-cycle stages. By analyzing 10 sub-compartments, we found a sub-compartment containing chromatin potentially related to the early-G1 chromatin regions proximal to the nuclear lamina in HCT116 cells, suggesting the method can deconvolve cell cycle stage-specific genome organization among asynchronously dividing cells. Finally, we show that CscoreTool-M can identify sub-compartments that contain genes enriched in housekeeping or cell-type-specific functions. AVAILABILITY AND IMPLEMENTATION https://github.com/scoutzxb/CscoreTool-M.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| |
Collapse
|
10
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
11
|
Pathological Nuclear Hallmarks in Dentate Granule Cells of Alzheimer’s Patients: A Biphasic Regulation of Neurogenesis. Int J Mol Sci 2022; 23:ijms232112873. [PMID: 36361662 PMCID: PMC9654738 DOI: 10.3390/ijms232112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.
Collapse
|
12
|
Lestrell E, Chen Y, Aslanoglou S, O'Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45124-45136. [PMID: 36173149 DOI: 10.1021/acsami.2c10583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.
Collapse
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Yaping Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Stella Aslanoglou
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
13
|
Varlet AA, Desgrouas C, Jebane C, Bonello-Palot N, Bourgeois P, Levy N, Helfer E, Dubois N, Valero R, Badens C, Beliard S. A Rare Mutation in LMNB2 Associated with Lipodystrophy Drives Premature Cell Senescence. Cells 2021; 11:50. [PMID: 35011612 PMCID: PMC8750194 DOI: 10.3390/cells11010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Many proteins are causative for inherited partial lipodystrophies, including lamins, the essential constituents of the nuclear envelope scaffold called the lamina. By performing high throughput sequencing on a panel of genes involved in lipodystrophies, we identified a heterozygous mutation in LMNB2 gene (c.700C > T p.(Arg234Trp)) in a female patient presenting early onset type II diabetes, hypertriglyceridemia, and android fat distribution. This mutation is rare in the general population (frequency 0.013% in GnomAD) and was predicted pathogenic by a set of pathogenicity prediction software. Patient-derived fibroblasts showed nuclear shape abnormalities and premature senescence features, which are two typical cellular phenotypes associated with laminopathies. Moreover, we observed an atypical aggregation of lamin B2 in nucleoplasm, which co-distributes with emerin and lamin A/C, along with an abnormal distribution of lamin A/C at the nuclear envelope. Finally, reducing lamin B2 expression level by siRNA targeted toward LMNB2 transcripts resulted in decreased nuclear anomalies and senescence-associated beta-galactosidase, suggesting a role of the mutated protein in the occurrence of the observed cellular phenotype. Altogether, these results suggest that mutations in lamin B2 could produce premature senescence and partial lipodystrophy features as observed with certain mutants of lamin A/C.
Collapse
Affiliation(s)
- Alice-Anaïs Varlet
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
| | - Camille Desgrouas
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
- Aix Marseille Univ, Laboratoire de Chimie Analytique, Faculté de Pharmacie, 13005 Marseille, France
| | - Cécile Jebane
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, 13288 Marseille, France; (C.J.); (E.H.)
| | - Nathalie Bonello-Palot
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
- APHM, Department of Genetics, 13385 Marseille, France
| | - Patrice Bourgeois
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
- APHM, Department of Genetics, 13385 Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
- APHM, Department of Genetics, 13385 Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, 13288 Marseille, France; (C.J.); (E.H.)
| | - Noémie Dubois
- APHM, Metabolic Diseases, Endocrinology, Department of Nutrition, 13385 Marseille, France; (N.D.); (R.V.); (S.B.)
| | - René Valero
- APHM, Metabolic Diseases, Endocrinology, Department of Nutrition, 13385 Marseille, France; (N.D.); (R.V.); (S.B.)
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France; (A.-A.V.); (C.D.); (N.B.-P.); (P.B.); (N.L.)
- APHM, Department of Genetics, 13385 Marseille, France
| | - Sophie Beliard
- APHM, Metabolic Diseases, Endocrinology, Department of Nutrition, 13385 Marseille, France; (N.D.); (R.V.); (S.B.)
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13385 Marseille, France
| |
Collapse
|
14
|
Patil S, Sengupta K. Role of A- and B-type lamins in nuclear structure-function relationships. Biol Cell 2021; 113:295-310. [PMID: 33638183 DOI: 10.1111/boc.202000160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Nuclear lamins are type V intermediate filament proteins that form a filamentous meshwork beneath the inner nuclear membrane. Additionally, a sub-population of A- and B-type lamins localizes in the nuclear interior. The nuclear lamina protects the nucleus from mechanical stress and mediates nucleo-cytoskeletal coupling. Lamins form a scaffold that partially tethers chromatin at the nuclear envelope. The nuclear lamina also stabilises protein-protein interactions involved in gene regulation and DNA repair. The lamin-based protein sub-complexes are implicated in both nuclear and cytoskeletal organisation, the mechanical stability of the nucleus, genome organisation, transcriptional regulation, genome stability and cellular differentiation. Here, we review recent research on nuclear lamins and unique roles of A- and B-type lamins in modulating various nuclear processes and their impact on cell function.
Collapse
Affiliation(s)
- Shalaka Patil
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kundan Sengupta
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
15
|
Zhao CC, Chen J, Zhang LY, Liu H, Zhang CG, Liu Y. Lamin B2 promotes the progression of triple negative breast cancer via mediating cell proliferation and apoptosis. Biosci Rep 2021; 41:BSR20203874. [PMID: 33416073 PMCID: PMC7846963 DOI: 10.1042/bsr20203874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| | - Jing Chen
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Li-Ying Zhang
- Department of internal medicine, Mudanjiang Cancer Hospital, Mudanjiang, P.R. China
| | - Hong Liu
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
- Second Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Chuan-Gui Zhang
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| | - Yan Liu
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| |
Collapse
|
16
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Houston R, Sekine S, Calderon MJ, Seifuddin F, Wang G, Kawagishi H, Malide DA, Li Y, Gucek M, Pirooznia M, Nelson AJ, Stokes MP, Stewart-Ornstein J, Mullett SJ, Wendell SG, Watkins SC, Finkel T, Sekine Y. Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. PLoS Biol 2020; 18:e3000981. [PMID: 33253182 PMCID: PMC7728262 DOI: 10.1371/journal.pbio.3000981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/10/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fayaz Seifuddin
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Hiroyuki Kawagishi
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Daniela A. Malide
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Alissa J. Nelson
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, University of Pittsburgh and Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Satomi E, Ueda M, Katahira J, Hieda M. The SUN1 splicing variants SUN1_888 and SUN1_916 differentially regulate nucleolar structure. Genes Cells 2020; 25:730-740. [PMID: 32931086 DOI: 10.1111/gtc.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
The nucleolar structure is highly dynamic and strictly regulated in response to internal cues, such as metabolic rates, and to external cues, such as mechanical forces applied to cells. Although the multilayered nucleolar structure is largely determined by the liquid-like properties of RNA and proteins, the mechanisms regulating the morphology and number of nucleoli remain elusive. The linker of the nucleoskeleton and cytoskeleton (LINC) complex comprises inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane-localized nesprins. We previously showed that the depletion of SUN1 proteins affects nucleolar morphologies. This study focuses on the function of SUN1 splicing variants in determining nucleolar morphology. An RNA interference strategy showed that the predominantly expressed variants, SUN1_888 and SUN1_916, were crucial for nucleolar morphology but functionally distinct. In addition, the depletion of either SUN1_888 or SUN1_916 altered the chromatin structure and affected the distribution of histone modifications. Based on these results, we propose a model in which the LINC complex plays a role in modulating nucleolar morphology and numbers via chromatin.
Collapse
Affiliation(s)
- Erina Satomi
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Masako Ueda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| |
Collapse
|
19
|
Zhang MY, Han YC, Han Q, Liang Y, Luo Y, Wei L, Yan T, Yang Y, Liu SL, Wang EH. Lamin B2 promotes the malignant phenotype of non-small cell lung cancer cells by upregulating dimethylation of histone 3 lysine 9. Exp Cell Res 2020; 393:112090. [PMID: 32416090 DOI: 10.1016/j.yexcr.2020.112090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
The relationship between Lamin B2 and tumor proliferation and migration is unclear. We explored the impact of Lamin B2 on non-small cell lung cancer (NSCLC) cells. Tissue microarray and immunohistochemistry were combined to evaluate Lamin B2 expression and its relationship with the clinicopathological factors found in NSCLC. Western blotting, immunofluorescence analysis, and bioinformatics were used to investigate the effects of Lamin B2 on various regulatory pathways in cancer. Cytological experiments were conducted to evaluate Lamin B2 expression in tumor cells. We conducted co-immunoprecipitation and chromatin immunoprecipitation to explore the molecular mechanisms underlying the relationship between Lamin B2 and NSCLC and evaluate the results of rescue experiments. Lamin B2 was highly expressed in NSCLC and positively correlated with lymph node metastasis. In NSCLC, Lamin B2 interacted with Cyclin D1, upregulating G9α expression, thus increasing H3K9me2 levels. H3K9me2 binds to the promoter region of the E-cadherin gene (CDH1) to induce CDH1 silencing and promotes cancer cell migration. Thus, we found that Lamin B2 was highly expressed in NSCLC cells and promoted their migration by increasing H3K9me2 levels, which induced E-cadherin gene silencing.
Collapse
Affiliation(s)
- Mei-Yu Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China.
| | - Yu-Chen Han
- Department of Pathology, Shanghai Jiaotong University Affiliated Chest Hospital, China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China; The First Affiliated Hospital of China Medical University, China
| | - Yuan Liang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China
| | - Yuan Luo
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China
| | - Lai Wei
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China
| | - Ting Yan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China
| | - Yue Yang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China
| | - Shu-Li Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China; The First Affiliated Hospital of China Medical University, China.
| | - En-Hua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, China; The First Affiliated Hospital of China Medical University, China.
| |
Collapse
|
20
|
Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT. Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS OMEGA 2020; 5:11248-11261. [PMID: 32478212 PMCID: PMC7254528 DOI: 10.1021/acsomega.9b04301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
With the recent advancement in understanding and control of the structure and optical properties of fluorescent carbon dots (CDs), they have been shown to be valuable in biolabeling of bacteria, tumor cells, tissues, and organelles. Their extremely small size and tunable functional properties coupled with ultrastable fluorescence enable CDs to be used for easy and effective labeling of various organelles. In addition, CDs with advantages of easy preparation and functionalization with recognition elements and/or drugs have emerged as nanocarriers for organelle-targeted drug delivery. In this review, we mainly discuss the applications of fluorescent CDs for the labeling of organelles, including lysosome, nucleoli, nucleus, endoplasmic reticulum, and mitochondria. We highlight the importance of the surface properties (functional groups, hydrophobicity/hydrophilicity, charges, zwitterions) and the size of CDs for labeling. Several interesting examples are provided to highlight the potential and disadvantages of CDs for labeling organelles. Strategies for the preparation of CDs for specific labeling of organelles are suggested. With the edge in preparation of diverse CDs, their potential in labeling and drug delivery is highly expected.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
| | - Ren-Siang Wu
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
- Center
of Excellence for the Oceans, National Taiwan
Ocean University, Keelung 20224, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Huan-Tsung Chang
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
21
|
Abstract
At the nuclear periphery, associations of chromatin with the nuclear lamina through lamina-associated domains (LADs) aid functional organization of the genome. We review the organization of LADs and provide evidence of LAD heterogeneity from cell ensemble and single-cell data. LADs are typically repressive environments in the genome; nonetheless, we discuss findings of lamin interactions with regulatory elements of active genes, and the role lamins may play in genome regulation. We address the relationship between LADs and other genome organizers, and the involvement of LADs in laminopathies. The current data lay the basis for future studies on the significance of lamin-chromatin interactions in health and disease.
Collapse
Affiliation(s)
- Nolwenn Briand
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway.
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
22
|
Nucleolar Organization and Functions in Health and Disease. Cells 2020; 9:cells9030526. [PMID: 32106410 PMCID: PMC7140423 DOI: 10.3390/cells9030526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
The nucleolus is a prominent, membraneless compartment found within the nucleus of eukaryotic cells. It forms around ribosomal RNA (rRNA) genes, where it coordinates the transcription, processing, and packaging of rRNA to produce ribosomal subunits. Recent efforts to characterize the biophysical properties of the nucleolus have transformed our understanding of the assembly and organization of this dynamic compartment. Indeed, soluble macromolecules condense from the nucleoplasm to form nucleoli through a process called liquid–liquid phase separation. Individual nucleolar components rapidly exchange with the nucleoplasm and separate within the nucleolus itself to form distinct subcompartments. In addition to its essential role in ribosome biogenesis, the nucleolus regulates many aspects of cell physiology, including genome organization, stress responses, senescence and lifespan. Consequently, the nucleolus is implicated in several human diseases, such as Hutchinson–Gilford progeria syndrome, Diamond–Blackfan anemia, and various forms of cancer. This Special Issue highlights new insights into the physical and molecular mechanisms that control the architecture and diverse functions of the nucleolus, and how they break down in disease.
Collapse
|
23
|
Brunet A, Forsberg F, Fan Q, Sæther T, Collas P. Nuclear Lamin B1 Interactions With Chromatin During the Circadian Cycle Are Uncoupled From Periodic Gene Expression. Front Genet 2019; 10:917. [PMID: 31632442 PMCID: PMC6785633 DOI: 10.3389/fgene.2019.00917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Many mammalian genes exhibit circadian expression patterns concordant with periodic binding of transcription factors, chromatin modifications, and chromosomal interactions. Here we investigate whether chromatin periodically associates with nuclear lamins. Entrainment of the circadian clock is accompanied, in mouse liver, by a net gain of lamin B1–chromatin interactions genome-wide, after which the majority of lamina-associated domains (LADs) are conserved during the circadian cycle. By tailoring a bioinformatics pipeline designed to identify periodic gene expression patterns, we also observe hundreds of variable lamin B1–chromatin interactions among which oscillations occur at 64 LADs, affecting one or both LAD extremities or entire LADs. Only a small subset of these oscillations however exhibit highly significant 12, 18, 24, or 30 h periodicity. These periodic LADs display oscillation asynchrony between their 5′ and 3′ borders, and are uncoupled from periodic gene expression within or in the vicinity of these LADs. Periodic gene expression is also unrelated to variations in gene-to-nearest LAD distances detected during the circadian cycle. Accordingly, periodic genes, including central clock-control genes, are located megabases away from LADs throughout circadian time, suggesting stable residence in a transcriptionally permissive chromatin environment. We conclude that periodic LADs are not a dominant feature of variable lamin B1–chromatin interactions during the circadian cycle in mouse liver. Our results also suggest that periodic hepatic gene expression is not regulated by rhythmic chromatin associations with the nuclear lamina.
Collapse
Affiliation(s)
- Annaël Brunet
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frida Forsberg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: Old Concepts, New Controversies. Trends Genet 2019; 35:754-767. [PMID: 31376929 PMCID: PMC6852887 DOI: 10.1016/j.tig.2019.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
Ribosomopathies are a diverse subset of diseases caused by reduced expression of, or mutations in, factors necessary for making ribosomes, the protein translation machinery in the cell. Despite the ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue-specific defects and sometimes increased cancer susceptibility, but few treatments target the underlying cause. By highlighting new research in the field, we review current hypotheses for the basis of this tissue specificity. Based on new work, we broaden our understanding of the role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also pose the question of whether previously described human conditions such as aging can be at least partially attributed to defects in making ribosomes.
Collapse
Affiliation(s)
- Katherine I Farley-Barnes
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lisa M Ogawa
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Collas P, Liyakat Ali TM, Brunet A, Germier T. Finding Friends in the Crowd: Three-Dimensional Cliques of Topological Genomic Domains. Front Genet 2019; 10:602. [PMID: 31275364 PMCID: PMC6593077 DOI: 10.3389/fgene.2019.00602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
The mammalian genome is intricately folded in a three-dimensional topology believed to be important for the orchestration of gene expression regulating development, differentiation and tissue homeostasis. Important features of spatial genome conformation in the nucleus are promoter-enhancer contacts regulating gene expression within topologically-associated domains (TADs), short- and long-range interactions between TADs and associations of chromatin with nucleoli and nuclear speckles. In addition, anchoring of chromosomes to the nuclear lamina via lamina-associated domains (LADs) at the nuclear periphery is a key regulator of the radial distribution of chromatin. To what extent TADs and LADs act in concert as genomic organizers to shape the three-dimensional topology of chromatin has long remained unknown. A new study addressing this key question provides evidence of (i) preferred long-range associations between TADs forming TAD “cliques” which organize large heterochromatin domains, and (ii) stabilization of TAD cliques by LADs at the nuclear periphery after induction of terminal differentiation. Here, we review these findings, address the issue of whether TAD cliques exist in single cells and discuss the extent of cell-to-cell heterogeneity in higher-order chromatin conformation. The recent observations provide a first appreciation of changes in 4-dimensional higher-order genome topologies during differentiation.
Collapse
Affiliation(s)
- Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Tharvesh M Liyakat Ali
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Annaël Brunet
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thomas Germier
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS. Nucleolus: A Central Hub for Nuclear Functions. Trends Cell Biol 2019; 29:647-659. [PMID: 31176528 DOI: 10.1016/j.tcb.2019.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The nucleolus is the largest and most studied nuclear body, but its role in nuclear function is far from being comprehensively understood. Much work on the nucleolus has focused on its role in regulating RNA polymerase I (RNA Pol I) transcription and ribosome biogenesis; however, emerging evidence points to the nucleolus as an organizing hub for many nuclear functions, accomplished via the shuttling of proteins and nucleic acids between the nucleolus and nucleoplasm. Here, we discuss the cellular mechanisms affected by shuttling of nucleolar components, including the 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance, and other essential cellular functions.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Elizaveta P Minina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria Onichtchouk
- Developmental Biology Unit, Department of Biology I, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Svetlana Dokudovskaya
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
28
|
Ranade D, Pradhan R, Jayakrishnan M, Hegde S, Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol Cell Biol 2019; 20:11. [PMID: 31117946 PMCID: PMC6532135 DOI: 10.1186/s12860-019-0192-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). Results Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. Conclusions Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus. Electronic supplementary material The online version of this article (10.1186/s12860-019-0192-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devika Ranade
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Roopali Pradhan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Muhunden Jayakrishnan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
29
|
Latonen L. Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and Novel Roles of RNA. Front Cell Neurosci 2019; 13:151. [PMID: 31080406 PMCID: PMC6497782 DOI: 10.3389/fncel.2019.00151] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Protein- and RNA-containing foci and aggregates are a hallmark of many age- and mutation-related neurodegenerative diseases. This article focuses on the role the nucleolus has as a hub in macromolecule regulation in the mammalian nucleus. The nucleolus has a well-established role in ribosome biogenesis and functions in several types of cellular stress responses. In addition to known reactions to DNA damaging and transcription inhibiting stresses, there is an emerging role of the nucleolus especially in responses to proteotoxic stress such as heat shock and inhibition of proteasome function. The nucleolus serves as an active regulatory site for detention of extranucleolar proteins. This takes place in nucleolar cavities and manifests in protein and RNA collections referred to as intranucleolar bodies (INBs), nucleolar aggresomes or amyloid bodies (A-bodies), depending on stress type, severity of accumulation, and material propensities of the macromolecular collections. These indicate a relevance of nucleolar function and regulation in neurodegeneration-related cellular events, but also provide surprising connections with cancer-related pathways. Yet, the molecular mechanisms governing these processes remain largely undefined. In this article, the nucleolus as the site of protein and RNA accumulation and as a possible protective organelle for nuclear proteins during stress is viewed. In addition, recent evidence of liquid-liquid phase separation (LLPS) and liquid-solid phase transition in the formation of nucleoli and its stress responses, respectively, are discussed, along with the increasingly indicated role and open questions for noncoding RNA species in these events.
Collapse
Affiliation(s)
- Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Nyhus C, Pihl M, Hyttel P, Hall VJ. Evidence for nucleolar dysfunction in Alzheimer's disease. Rev Neurosci 2019; 30:685-700. [PMID: 30849050 DOI: 10.1515/revneuro-2018-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Caitlin Nyhus
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| |
Collapse
|
31
|
Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez-Bey G, Powell JS, Ma H, Sullivan M, Tu Y, Chen NY, Young SG, Stolz DB, Dahl KN, Liu Y, Padiath QS. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci U S A 2019; 116:4307-4315. [PMID: 30765529 PMCID: PMC6410836 DOI: 10.1073/pnas.1810070116] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.
Collapse
Affiliation(s)
- Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jianquan Xu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rao Fu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- College of Chemical Engineering, Northeast Electric Power University, Jilin Province, China 132012
| | - Travis J Armiger
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Juliana S Powell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hongqiang Ma
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Natalie Y Chen
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213;
| | - Yang Liu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Quasar S Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
32
|
Azuara-Medina PM, Sandoval-Duarte AM, Morales-Lázaro SL, Modragón-González R, Vélez-Aguilera G, Gómez-López JDD, Jiménez-Gutiérrez GE, Tiburcio-Félix R, Martínez-Vieyra I, Suárez-Sánchez R, Längst G, Magaña JJ, Winder SJ, Ortega A, Ramos Perlingeiro RDC, Jacobs LA, Cisneros B. The intracellular domain of β-dystroglycan mediates the nucleolar stress response by suppressing UBF transcriptional activity. Cell Death Dis 2019; 10:196. [PMID: 30814495 PMCID: PMC6393529 DOI: 10.1038/s41419-019-1454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
β-dystroglycan (β-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, β-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that β-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, β-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of β-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that β-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.
Collapse
Affiliation(s)
- Paulina Margarita Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ariana María Sandoval-Duarte
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Ricardo Modragón-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Guadalupe Elizabeth Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Reynaldo Tiburcio-Félix
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320, Ciudad de México, Mexico
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053, Regensburg, Germany
| | - Jonathan Javier Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07000, Ciudad de México, Mexico
| | | | - Laura A Jacobs
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
34
|
Sen Gupta A, Joshi G, Pawar S, Sengupta K. Nucleolin modulates compartmentalization and dynamics of histone 2B-ECFP in the nucleolus. Nucleus 2018; 9:350-367. [PMID: 29943658 PMCID: PMC6165600 DOI: 10.1080/19491034.2018.1471936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Eukaryotic cells have 2 to 3 discrete nucleoli required for ribosome synthesis. Nucleoli are phase separated nuclear sub-organelles. Here we examined the role of nuclear Lamins and nucleolar factors in modulating the compartmentalization and dynamics of histone 2B (H2B-ECFP) in the nucleolus. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) of labelled H2B, showed that the depletion of Lamin B1, Fibrillarin (FBL) or Nucleostemin (GNL3), enhances H2B-ECFP mobility in the nucleolus. Furthermore, Nucleolin knockdown significantly decreases H2B-ECFP compartmentalization in the nucleolus, while H2B-ECFP residence and mobility in the nucleolus was prolonged upon Nucleolin overexpression. Co-expression of N-terminal and RNA binding domain (RBD) deletion mutants of Nucleolin or inhibiting 45S rRNA synthesis reduces the sequestration of H2B-ECFP in the nucleolus. Taken together, these studies reveal a crucial role of Nucleolin-rRNA complex in modulating the compartmentalization, stability and dynamics of H2B within the nucleolus.
Collapse
Affiliation(s)
- Ayantika Sen Gupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Gaurav Joshi
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Sumit Pawar
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
35
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
36
|
Sengupta K. Genome 3D-architecture: Its plasticity in relation to function. J Biosci 2018; 43:417-419. [PMID: 29872028 PMCID: PMC6076436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The genome of higher eukaryotes is non-randomly organized in the interphase nucleus. However, notwithstanding the absence of membrane bound sub-compartments, the nucleus coordinates a number of functions largely by organizing chromatin in a non-random but dynamic manner. The plasticity of chromatin structure and function relies on epigenetic modifications as well as its association with nuclear landmarks such as the nuclear envelope, nuclear lamina, nuclear pore complex and nuclear bodies such as the nucleolus among others. In the absence of membrane-bound compartments, cells and the nucleus, in particular, employ phase-separation, which unmixes phases that constrain biochemical reactions in complex non-membranous sub-compartments such as the nucleolus or even the heterochromatin. This review attempts to provide a glimpse into the microcosm of phase-separated nuclear sub-compartments, that regulate nuclear structure- function relationships.
Collapse
Affiliation(s)
- Kundan Sengupta
- Indian Institute of Science Education and Research, Pune, India,
| |
Collapse
|
37
|
|