1
|
Zhu J, Ding D, Sun T, Zhang Y, Miao H, Gu Y, Dai M, Zhu M. Oridonin Preserves Retinal Pigmented Epithelial Cell Tight Junctions and Ameliorates Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 39982392 PMCID: PMC11855140 DOI: 10.1167/iovs.66.2.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose To investigate the role and mechanism of oridonin (ORI), a bioactive diterpenoid extracted from the Chinese herbal medicine Rabdosia rubescens, on the integrity of outer blood-retinal barrier (oBRB) during choroidal neovascularization (CNV). Methods ARPE-19 cells were exposed to hypoxia and treated with ORI. The expression of ZO-1 and occludin in the axis of TGFβR/SUV39H1/KLF11 was detected by WB, chromatin immunoprecipitation, luciferin report activity assay, and immunofluorescence assay (IF), and the effect of ORI on the barrier properties of ARPE-19 cells was studied. A laser-induced mouse CNV model was constructed, and ORI was administrated by oral gavage. IF on mouse choroid flat mounts was done to confirm the effect of ORI on BRB integrity. Indocyanine green angiography and IF on mouse retina-RPE-choroid flat mounts were performed to determine the effect of ORI on CNV formation and retinal function. Hematoxylin and eosin staining and TUNEL staining were carried out to appraise ocular and systemic cytotoxicity caused by ORI. Results ORI protected ARPE-19 cells from hypoxia-induced destruction of barrier properties and promoted the expression of ZO-1 and occludin by the TGFβR/SUV39H1/KLF11 axis, maintaining barrier properties of ARPE-19 cells with hypoxia. ORI improved BRB integrity during laser-induced CNV in mice and mitigated laser-induced CNV formation in mice without any ocular or systemic cytotoxicity (n = 4-5 in each group). Conclusions ORI ameliorates BRB integrity and subsequent formation of CNV via regulating the TGFβR/SUV39H1/KLF11 pathway in RPE cells.
Collapse
Affiliation(s)
- Juming Zhu
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Dongmei Ding
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Tao Sun
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huizi Miao
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Yunjie Gu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming Dai
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Barnstable CJ. Epigenetics and Degenerative Retinal Diseases: Prospects for New Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2022; 11:328-334. [PMID: 36041147 DOI: 10.1097/apo.0000000000000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT There is growing evidence that retinal degenerative diseases are accompanied by epigenetic changes in both deoxyribonucleic acid methylation and histone modification. Even in the monogenic disease retinitis pigmentosa, there is a cascade of changes in gene expression that correlate with epigenetic changes, suggesting that many of the symptoms, and degenerative changes, may be a result of epigenetic changes downstream from the genetic mutation. This is supported by data from studies of diabetic retinopathy and macular degeneration, 2 diseases where it has been difficult to define a single causative change. Initial studies with modifiers of deoxyribonucleic acid methylation suggest that they can provide therapeutic benefit. A number of drugs are available to inhibit specific epigenetic histone modifier enzymes, and these offer the possibility of new therapeutic approaches to retinal disease. Systemic treatment with inhibitors of histone demethylases and histone deacetylases have arrested rod degeneration in rodent models of retinitis pigmentosa. Some evidence has suggested that similar treatments may provide benefits for patients with diabetic retinopathy. Because differentiation of retinal stem cells is regulated in part by epigenetic mechanisms, it may also be possible to direct stem cell differentiation pathways through the use of selective epigenetic modifiers. This is predicted to provide a valuable avenue to accelerate the introduction of regenerative approaches to retinal disease. Epigenetic modifiers are poised to become a powerful new approach to treat retinal degenerative diseases.
Collapse
Affiliation(s)
- Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, PA, US
| |
Collapse
|
4
|
Li Y, Tang C, Liu F, Zhu C, Liu F, Zhu P, Wang L. DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling. Development 2022; 149:275510. [PMID: 35502759 PMCID: PMC9188753 DOI: 10.1242/dev.200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
The earliest hematopoietic stem and progenitor cells (HSPCs) are generated from the ventral wall of the dorsal aorta, through endothelial-to-hematopoietic transition during vertebrate embryogenesis. Notch signaling is crucial for HSPC generation across vertebrates; however, the precise control of Notch during this process remains unclear. In the present study, we used multi-omics approaches together with functional assays to assess global DNA methylome dynamics during the endothelial cells to HSPCs transition in zebrafish, and determined that DNA methyltransferase 1 (Dnmt1) is essential for HSPC generation via repression of Notch signaling. Depletion of dnmt1 resulted in decreased DNA methylation levels and impaired HSPC production. Mechanistically, we found that loss of dnmt1 induced hypomethylation of Notch genes and consequently elevated Notch activity in hemogenic endothelial cells, thereby repressing the generation of HSPCs. This finding deepens our understanding of HSPC specification in vivo, which will provide helpful insights for designing new strategies for HSPC generation in vitro. Summary: Multi-omics approaches and functional assays reveal global DNA methylome dynamics and an indispensable role of DNA methyltransferase 1 in hematopoietic stem/progenitor cell generation through repression of Notch signaling.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| |
Collapse
|
5
|
Calvird AE, Broniec MN, Duval KL, Higgs AN, Arora V, Ha LN, Schouten EB, Crippen AR, McGrail M, Laue K, Goll MG. Uncovering Regulators of Heterochromatin Mediated Silencing Using a Zebrafish Transgenic Reporter. Front Cell Dev Biol 2022; 10:832461. [PMID: 35356281 PMCID: PMC8959096 DOI: 10.3389/fcell.2022.832461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022] Open
Abstract
Heterochromatin formation and maintenance is critical for the repression of transcription from repetitive sequences. However, in vivo tools for monitoring heterochromatin mediated repression of repeats in the context of vertebrate development have been lacking. Here we demonstrate that a large concatemeric transgene integration containing the dsRed fluorescent reporter under the control of a ubiquitous promoter recapitulates molecular hallmarks of heterochromatic silencing, and that expression from the transgene array can be reactivated by depletion of known regulators of heterochromatin. We then use this reporter to identify a previously unappreciated role for the zebrafish NSD1 orthologs, Nsd1a and Nsd1b, in promoting heterochromatin mediated repression. Our results provide proof-principle that this transgenic reporter line can be used to rapidly identify genes with potential roles in heterochromatic silencing in the context of a live, vertebrate organism.
Collapse
Affiliation(s)
- Audrey E. Calvird
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Morgan N. Broniec
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Katherine L. Duval
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Alysha N. Higgs
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Vani Arora
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lauren N. Ha
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Erik B. Schouten
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Annabel R. Crippen
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kathrin Laue
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary G. Goll
- Department of Genetics, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Almeida MV, Vernaz G, Putman AL, Miska EA. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet 2022; 38:529-553. [DOI: 10.1016/j.tig.2022.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
7
|
Zhou M, Zhao Z, Zhao J, Wu M, Chen X. Gene expression profiling of DNA methyltransferase genes in Siniperca chuatsi based on transcriptome sequencing. JOURNAL OF FISH BIOLOGY 2021; 99:1755-1760. [PMID: 34310718 DOI: 10.1111/jfb.14862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The mandarin fish (Siniperca chuatsi) DNA methyltransferase gene 1 (dnmt1) was highly expressed in the mesonephros, head kidney and gonad, whereas dnmt2 was expressed in most tissues. dnmt3a was highly expressed in the brain and spleen, but dnmt3b was mainly expressed in the brain and head kidney. The genes dnmt1 and dnmt2 were highly expressed in the early stages of embryonic development, and dnmt3a and dnmt3b were expressed later. These genes also showed certain changes after artificial diet acclimation, salinity adaptation and immune stress.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ziwei Zhao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Vernaz G, Malinsky M, Svardal H, Du M, Tyers AM, Santos ME, Durbin R, Genner MJ, Turner GF, Miska EA. Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes. Nat Commun 2021; 12:5870. [PMID: 34620871 PMCID: PMC8497601 DOI: 10.1038/s41467-021-26166-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Milan Malinsky
- Wellcome Sanger Institute, Cambridge, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Hannes Svardal
- Wellcome Sanger Institute, Cambridge, UK
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mingliu Du
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Alexandra M Tyers
- School of Natural Sciences, Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - George F Turner
- School of Natural Sciences, Sciences, Bangor University, Bangor, UK
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
9
|
Wu J, Liu LL, Cao M, Hu A, Hu D, Luo Y, Wang H, Zhong JN. DNA methylation plays important roles in retinal development and diseases. Exp Eye Res 2021; 211:108733. [PMID: 34418429 DOI: 10.1016/j.exer.2021.108733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
DNA methylation is important in developing and post-mitotic cells in various tissues. Recent studies have shown that DNA methylation is highly dynamic, and plays important roles during retinal development and aging. In addition, the dynamic regulation of DNA methylation is involved in the occurrence and development of age-related macular degeneration and diabetic retinopathy and shows potential in disease diagnoses and prognoses. This review introduces the epigenetic concepts of DNA methylation and demethylation with an emphasis on their regulatory roles in retinal development and related diseases. Moreover, we propose exciting ideas such as its crosstalk with other epigenetic modifications and retinal regeneration, to provide a potential direction for understanding retinal diseases from the epigenetic perspective.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, Lishui Municipal Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Lin-Lin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Miao Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Die Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China; Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Hui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Jia-Ning Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
10
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
12
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Gyimah E, Dong X, Xu H, Zhang Z, Mensah JK. Embryonic Exposure to Low Concentrations of Bisphenol A and S Altered Genes Related to Pancreatic β-Cell Development and DNA Methyltransferase in Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:450-460. [PMID: 33471154 DOI: 10.1007/s00244-021-00812-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are implicated in the development of metabolic disorders, such diabetes mellitus. However, the epigenetic mechanism underlying the pancreatic β-cell dysregulation for both BPA/BPS needs clarification. This exploratory study was designed to investigate whether embryonic exposure to low BPA/BPS concentrations impair early pancreatic β-cell differentiation as well as DNA methylation in its gene expression profile using an in vivo model, zebrafish. Zebrafish embryos were exposed to 0, 0.01, 0.03, 0.1, 0.3, and 1.0 µM BPA/BPS at 4-h post fertilization (hpf) until 120 hpf. BPA/BPS-induced effects on pancreatic-related genes, insulin gene, and DNA methylation-associated genes were assessed at developmental stages (24-120 hpf), while glucose level was measure at the 120 hpf. The insulin expression levels decreased at 72-120 hpf for 1.0 µM BPA, while 0.32 and 0.24-fold of insulin expression were elicited by 0.3 and 1 µM BPS respectively at 72 hpf. Significant elevation of glucose levels; 16.3% (for 1.0 µM BPA), 7.20% (for 0.3 µM BPS), and 74.09% (for 1.0 µM BPS) higher than the control groups were observed. In addition, pancreatic-related genes pdx-1, foxa2, ptfla, and isl1 were significantly interfered compared with the untreated group. Moreover, the maintenance methylation gene, dnmt1, was monotonically and significantly decreased at early stage of development following BPA exposure but remained constant for BPS treatment relative to the control group. DNMT3a and DNMT3b orthologs were distinctively altered following BPA/BPS embryonic exposure. Our data indicated that embryonic exposure to low concentration of BPA/BPS can impair the normal expressions of pancreatic-associated genes and DNA methylation pattern of selected genes in zebrafish early development.
Collapse
Affiliation(s)
- Eric Gyimah
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhen Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
14
|
Ventós-Alfonso A, Ylla G, Montañes JC, Belles X. DNMT1 Promotes Genome Methylation and Early Embryo Development in Cockroaches. iScience 2020; 23:101778. [PMID: 33294787 PMCID: PMC7691181 DOI: 10.1016/j.isci.2020.101778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
The influence of DNA methylation on gene behavior and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies. Here, we have studied DNA methylation in the hemimetabolan insect Blattella germanica. In this cockroach, a gene involved in DNA methylation, DNA methyltransferase 1 (DNMT1), is expressed in early embryogenesis. In our experiments, RNAi of DNMT1 reduces DNA methylation and impairs blastoderm formation. Using reduced representation bisulfite sequencing and transcriptome analyses, we observed that methylated genes are associated with metabolism and are highly expressed, whereas unmethylated genes are related to signaling and show low expression. Moreover, methylated genes show greater expression change and less expression variability than unmethylated genes.
Collapse
Affiliation(s)
- Alba Ventós-Alfonso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Jose-Carlos Montañes
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| |
Collapse
|
15
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, Li Y, Lin X. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:113876. [PMID: 32806432 DOI: 10.1016/j.envpol.2019.113876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiangming Lin
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Transgenerational inheritance of impaired larval T cell development in zebrafish. Nat Commun 2020; 11:4505. [PMID: 32908148 PMCID: PMC7481223 DOI: 10.1038/s41467-020-18289-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce. Aberrant patterns of DNA methylation in gametes may set the stage for transmission into future generations. Here, we describe a viable hypomorphic allele of dnmt1 in zebrafish that causes widespread demethylation of CpG dinucleotides in sperm and somatic tissues. We find that homozygous mutants are essentially normal, with the exception of drastically impaired lymphopoiesis, affecting both larval and adult phases of T cell development. The phenotype of impaired larval (but not adult) T cell development is transmitted to subsequent generations by genotypically wildtype fish. We further find that about 200 differentially methylated regions in sperm DNA of transmitting and non-transmitting males, including hypermethylated sites associated with runx3 and rptor genes, whose reduced activities are associated with impaired larval T cell development. Our results indicate a particular sensitivity of larval T cell development to transgenerationally inherited epimutations. Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce. Here the authors report that homozygous dnmt1 mutant zebrafish are essentially normal, with the exception of impaired lymphopoiesis, with impaired larval (but not adult) T cell development being transmitted to subsequent generations by genotypically wildtype fish.
Collapse
|
17
|
Tsai SM, Chu KC, Jiang YJ. Newly identified Gon4l/Udu-interacting proteins implicate novel functions. Sci Rep 2020; 10:14213. [PMID: 32848183 PMCID: PMC7449961 DOI: 10.1038/s41598-020-70855-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 12/04/2022] Open
Abstract
Mutations of the Gon4l/udu gene in different organisms give rise to diverse phenotypes. Although the effects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two-hybrid (Y2H) screening to identify interacting proteins in zebrafish and mouse systems, confirmed the interactions by co-immunoprecipitation assay, and found four novel Gon4l-interacting proteins: BRCA1 associated protein-1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu-interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identified include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these findings indicate novel mechanisms of Gon4l/Udu in regulating CpG methylation, histone expression/modification, DNA repair/genomic stability, and RNA binding/processing/export.
Collapse
Affiliation(s)
- Su-Mei Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. .,Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
18
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
19
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
20
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
21
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
23
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
24
|
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun 2019; 10:3053. [PMID: 31311924 PMCID: PMC6635516 DOI: 10.1038/s41467-019-10894-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined ‘preformed’ germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species. Germline cells transfer genetic information to offspring, and in zebrafish, drive sex determination. Here the authors report that, unlike mammals, the germline of zebrafish does not undergo genome-wide DNA methylation erasure, while amplifying and demethylating sex-linked rDNA during feminisation.
Collapse
Affiliation(s)
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
25
|
Nashine S, Nesburn AB, Kuppermann BD, Kenney MC. Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp Eye Res 2019; 189:107701. [PMID: 31226340 DOI: 10.1016/j.exer.2019.107701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial damage and epigenetic modifications have been implicated in the pathogenesis of Age-related Macular Degeneration (AMD). This study was designed to investigate the effects of AMD/normal mitochondria on epigenetic regulation in human transmitochondrial retinal pigment epithelial (RPE) cells in vitro. Human RPE cybrid cell lines were created by fusing mitochondria-deficient (Rho0) ARPE-19 cells with platelets obtained from either AMD patients (AMD cybrids) or normal subjects (normal cybrids). Therefore, all cybrids had identical nuclei (derived from ARPE-19 cells) but mitochondria derived from either AMD patients or age-matched normal subjects. AMD cybrids demonstrated increased RNA/protein levels for five methylation-related and four acetylation-related genes, along with lower levels of two methylation and three acetylation genes compared to normal cybrids. Demethylation using 5-Aza-2'-deoxycytidine (DAC) led to decreased expression of VEGF-A gene in AMD cells. Trichostatin A (TSA), an HDAC inhibitor, also influenced protein levels of VEGF-A, HIF1α, NFκB, and CFH in AMD cells. Our findings suggest that retrograde signaling leads to mitochondria-nucleus interactions that influence the epigenetic status of the RPE cells and this may help in the identification of future potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Anthony B Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Zhang B, Wu X, Zhang W, Shen W, Sun Q, Liu K, Zhang Y, Wang Q, Li Y, Meng A, Xie W. Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition. Mol Cell 2019; 72:673-686.e6. [PMID: 30444999 DOI: 10.1016/j.molcel.2018.10.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
The epigenome plays critical roles in controlling gene expression and development. However, how the parental epigenomes transit to the zygotic epigenome in early development remains elusive. Here we show that parental-to-zygotic transition in zebrafish involves extensive erasure of parental epigenetic memory, starting with methylating gametic enhancers. Surprisingly, this occurs even prior to fertilization for sperm. Both parental enhancers lose histone marks by the 4-cell stage, and zygotic enhancers are not activated until around zygotic genome activation (ZGA). By contrast, many promoters remain hypomethylated and, unexpectedly, acquire histone acetylation before ZGA at as early as the 4-cell stage. They then resolve into either activated or repressed promoters upon ZGA. Maternal depletion of histone acetyltransferases results in aberrant ZGA and early embryonic lethality. Finally, such reprogramming is largely driven by maternal factors, with zygotic products mainly contributing to embryonic enhancer activation. These data reveal widespread enhancer dememorization and promoter priming during parental-to-zygotic transition.
Collapse
Affiliation(s)
- Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingrui Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaili Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Zhang T, Guan Y, Wang S, Wang L, Cheng M, Yuan C, Liu Y, Wang Z. Bisphenol A induced abnormal DNA methylation of ovarian steroidogenic genes in rare minnow Gobiocypris rarus. Gen Comp Endocrinol 2018; 269:156-165. [PMID: 30244057 DOI: 10.1016/j.ygcen.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA), an ubiquitous environmental endocrine disruptor chemical, disturbs the mRNA expressions of steroidogenic genes and subsequently steroid hormone synthesis in mammals and aquatic species. However, the underlying regulation mechanisms are barely understood, especially in fish. To explore the regulation mechanism, we exposed female rare minnow Gobiocypris rarus (G. rarus) to BPA at a nominal concentration of 15 μg/L for 7 and 14 days in the present study. Results showed significant increase of gonad somatic index (GSI) and serum estradiol (E2) levels in response to BPA at day 14. The 7-day BPA exposure notably repressed the expression of two ovarian steroidogenic genes (star and hsd11b2) and suppressed their capacity of estrogen response elements (ERE) to recruit estrogen receptor (ER), while the 14-day BPA treatment remarkably induced transcript of hsd3b and enhanced the capacity of ERE to recruitment ER in ovaries. Furthermore, the 7-day BPA exposure caused DNA hypermethylation of star (CpGs: -742 bp and -719 bp) and hsd11b2 (CpG: -1788 bp). However, 14-day BPA exposure resulted in DNA hypomethylation of hsd3b (CpG: -181 bp). Correlation analysis revealed that the DNA methylation levels at specific CpGs in star, hsd3b and hsd11b2 were significantly correlated to their mRNA levels and ER-EREs interactions. These findings suggest that the disturbed steroidogenesis and the transcripts of ovarian steroidogenic genes might attribute to the altered DNA methylation status of these ovarian steroidogenic genes in response to BPA.
Collapse
Affiliation(s)
- Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Song Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol 2018; 10:479-493. [PMID: 30060229 DOI: 10.1093/jmcb/mjy044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oocytes, the irreplaceable gametes for generating a new organism, are matured in the ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immature oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immature oocytes within the ovary. Oocyte microinjection in situ (OMIS) stimulates tissue repair responses, but some of the microinjected immature oocytes are matured, ovulated and fertilizable. By OMIS-mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRNAs allows immediate manifestation of mutant phenotypes in F0 embryos and multiple transgenes can co-express the reporters in F0 embryos with patterns similar to germline transgenic embryos. Furthermore, maternal knockdown of dnmt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to repair genetically abnormal oocytes in situ.
Collapse
Affiliation(s)
- Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Rajshekar S, Yao J, Arnold PK, Payne SG, Zhang Y, Bowman TV, Schmitz RJ, Edwards JR, Goll M. Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. eLife 2018; 7:39658. [PMID: 30484769 PMCID: PMC6261255 DOI: 10.7554/elife.39658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/04/2018] [Indexed: 12/13/2022] Open
Abstract
Pericentromeric satellite repeats are enriched in 5-methylcytosine (5mC). Loss of 5mC at these sequences is common in cancer and is a hallmark of Immunodeficiency, Centromere and Facial abnormalities (ICF) syndrome. While the general importance of 5mC is well-established, the specific functions of 5mC at pericentromeres are less clear. To address this deficiency, we generated a viable animal model of pericentromeric hypomethylation through mutation of the ICF-gene ZBTB24. Deletion of zebrafish zbtb24 caused a progressive loss of 5mC at pericentromeres and ICF-like phenotypes. Hypomethylation of these repeats triggered derepression of pericentromeric transcripts and activation of an interferon-based innate immune response. Injection of pericentromeric RNA is sufficient to elicit this response in wild-type embryos, and mutation of the MDA5-MAVS dsRNA-sensing machinery blocks the response in mutants. These findings identify activation of the innate immune system as an early consequence of pericentromeric hypomethylation, implicating derepression of pericentromeric transcripts as a trigger of autoimmunity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Cells package DNA into structures called chromosomes. When cells divide, each chromosome duplicates, and a structure called a centromere initially holds the copies together. The sequences of DNA on either side of the centromeres are often highly repetitive. In backboned animals, this DNA normally also has extra chemical modifications called methyl groups attached to it. The role that these methyl groups play in this region is not known, although in other DNA regions they often stop the DNA being ‘transcribed’ into molecules of RNA. The cells of people who have a rare human genetic disorder called ICF syndrome, lack the methyl groups near the centromere. The methyl groups may also be lost in old and cancerous cells. Researchers often use ‘model’ animals to investigate the effects of DNA modifications. But, until now, there were no animal models that lose methyl groups from the DNA around centromeres in the same way as seen in ICF syndrome. Rajshekar et al. have developed a new zebrafish model for ICF syndrome that loses the methyl groups around its centromeres over time. Studying the cells of these zebrafish showed that when the methyl groups are missing, the cell starts to transcribe the DNA sequences around the centromeres. The resulting RNA molecules appear to be mistaken by the cell for viral RNA. They activate immune sensors that normally detect RNA viruses, which triggers an immune response. The new zebrafish model can now be used in further studies to help researchers to understand the key features of ICF syndrome. Future work could also investigate whether the loss of methyl groups around the centromeres plays a role in other diseases where the immune system attacks healthy tissues.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, United States.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Jun Yao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Paige K Arnold
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, United States
| | - John R Edwards
- Department of Medicine, Center for Pharmacogenomics, Washington University in St. Louis School of Medicine, Missouri, United States
| | - Mary Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Department of Genetics, University of Georgia, Georgia, United States
| |
Collapse
|
30
|
Hypermethylated in cancer 1 (HIC1) mediates high glucose induced ROS accumulation in renal tubular epithelial cells by epigenetically repressing SIRT1 transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:917-927. [DOI: 10.1016/j.bbagrm.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023]
|
31
|
Global and Complement Gene-Specific DNA Methylation in Grass Carp after Grass Carp Reovirus (GCRV) Infection. Int J Mol Sci 2018; 19:ijms19041110. [PMID: 29642440 PMCID: PMC5979442 DOI: 10.3390/ijms19041110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
Grass carp reovirus (GCRV) causes huge economic loss to the grass carp cultivation industry but the mechanism remains largely unknown. In this study, we investigated the global and complement gene-specific DNA methylation in grass carp after GCRV infection aimed to uncover the mechanism underlying GCRV infection. The global DNA methylation level was increased after GCRV infection. Expression levels of enzymes involved in DNA methylation including DNA methyltransferase (DNMT), ten-eleven translocation proteins (TETs), and glycine N-methyltransferase (GNMT) were significantly altered after GCRV infection. In order to investigate the relationship between the gene expression level and DNA methylation level, two representative complement genes, complement component 3 (C3) and kininogen-1 (KNG1), were selected for further analysis. mRNA expression levels of the two genes were significantly increased at 5 and 7 days after GCRV infection, whereas the DNA methylation level at the 5′ flanking regions of the two genes were down-regulated at the same time-points. Moreover, a negative correlation was detected between gene expression levels and DNA methylation levels of the two genes. Therefore, the current data revealed a global and complement gene-specific DNA methylation profile after GCRV infection. Our study would provide new insights into understanding the mechanism underlying GCRV infection.
Collapse
|
32
|
Jessop P, Ruzov A, Gering M. Developmental Functions of the Dynamic DNA Methylome and Hydroxymethylome in the Mouse and Zebrafish: Similarities and Differences. Front Cell Dev Biol 2018; 6:27. [PMID: 29616219 PMCID: PMC5869911 DOI: 10.3389/fcell.2018.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/05/2018] [Indexed: 12/25/2022] Open
Abstract
5-methylcytosine (5mC) is the best understood DNA modification and is generally believed to be associated with repression of gene expression. Over the last decade, sequentially oxidized forms of 5mC (oxi-mCs) have been discovered within the genomes of vertebrates. Their discovery was accompanied by that of the ten-eleven translocation (TET) methylcytosine dioxygenases, the enzymes that catalyze the formation of the oxi-mCs. Although a number of studies performed on different vertebrate models and embryonic stem cells demonstrated that both TET enzymes and oxi-mCs are likely to be important for several developmental processes it is currently unclear whether their developmental roles are conserved among vertebrates. Here, we summarize recent developments in this field suggesting that biological roles of TETs/oxi-mCs may significantly differ between mice and zebrafish. Thus, although the role of TET proteins in late organogenesis has been documented for both these systems; unlike in mice the enzymatic oxidation of 5mC does not seem to be involved in zygotic reprogramming or gastrulation in zebrafish. Our analysis may provide an insight into the general principles of epigenetic regulation of animal development and cellular differentiation.
Collapse
Affiliation(s)
- Peter Jessop
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Martin Gering
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
33
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
34
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
35
|
Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, Lin F, Zhang L, Sun X, Du Z, Song J. Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget 2018; 7:44129-44141. [PMID: 27286455 PMCID: PMC5190084 DOI: 10.18632/oncotarget.9866] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous study showed DNMT1 is up-regulated in esophageal squamous cell carcinoma (ESCC), which is associated with methylation of tumor suppressors. In the current study, we investigate the role of DNMT1 in ESCC. We found silencing DNMT1 inhibited proliferation, metastasis and invasion of three different ESCC cells, K150, K410 and K450. We also found silencing DNMT1 induced G1 arrest and cell apoptosis in K150, K410 and K450 cells. In vivo study showed silencing DNMT1 suppressed tumor growth in nude mice. In addition, silencing DNMT1 increased expression of tumor suppressor genes, RASSF1A and DAPK, in ESCC cells and ESCC xenograft in nude mice. Moreover, silencing DNMT1 decreased methylation in promoter of RASSF1A and DAPK. In conclusion, our data demonstrated that silencing DNMT1 inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK.
Collapse
Affiliation(s)
- Jian Bai
- Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xue Zhang
- Department of ICU, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Kai Hu
- Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bangqing Liu
- Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haiyong Wang
- Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Angui Li
- Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Feng Lin
- Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lifei Zhang
- Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaolin Sun
- Department of Thoracic & Cardiovascular Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhenzong Du
- Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Current address: Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui District, Guilin, China
| | - Jianfei Song
- Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Current address: Department of Thoracic & Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui District, Guilin, China
| |
Collapse
|
36
|
Wang L, Liu Z, Lin H, Ma D, Tao Q, Liu F. Epigenetic regulation of left-right asymmetry by DNA methylation. EMBO J 2017; 36:2987-2997. [PMID: 28882847 DOI: 10.15252/embj.201796580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is a major epigenetic modification; however, the precise role of DNA methylation in vertebrate development is still not fully understood. Here, we show that DNA methylation is essential for the establishment of the left-right (LR) asymmetric body plan during vertebrate embryogenesis. Perturbation of DNA methylation by depletion of DNA methyltransferase 1 (dnmt1) or dnmt3bb.1 in zebrafish embryos leads to defects in dorsal forerunner cell (DFC) specification or collective migration, laterality organ malformation, and disruption of LR patterning. Knockdown of dnmt1 in Xenopus embryos also causes similar defects. Mechanistically, loss of dnmt1 function induces hypomethylation of the lefty2 gene enhancer and promotes lefty2 expression, which consequently represses Nodal signaling in zebrafish embryos. We also show that Dnmt3bb.1 regulates collective DFC migration through cadherin 1 (Cdh1). Taken together, our data uncover dynamic DNA methylation as an epigenetic mechanism to control LR determination during early embryogenesis in vertebrates.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Zhibin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
37
|
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis. BMC DEVELOPMENTAL BIOLOGY 2017; 17:11. [PMID: 28716037 PMCID: PMC5513168 DOI: 10.1186/s12861-017-0154-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Background The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2′-deoxycytidine) and temperature was evaluated. Results Five paralog genes of dnmt3, namely dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1 and dnmt3bb.2 and one gene for dnmt1 were identified. Phylogenetic analysis revealed that the dnmt gene family was highly conserved in teleosts and three fish-specific genes, dnmt3aa, dnmt3ba and dnmt3bb.2 have evolved. The spatio-temporal expression patterns of four dnmts (dnmt1, dnmt3aa, dnmt3ab and dnmt3bb.1) were different in early larval stages although all of them reduced expression with the age and were detected in neural organs and dnmt3aa appeared specific to somites. In juveniles, the four dnmt genes were expressed in brain and hematopoietic tissues such as kidney, spleen and gills. Treatment of sole embryos with 5-aza-2′-deoxycytidine down-regulated dntm1 and up-regulated dntm3aa. Moreover, in lecithotrophic larval stages, dnmt3aa and dnmt3ab were temperature sensitive and their expression was higher in larvae incubated at 16 °C relative to 20 °C. Conclusion Five dnmt3 and one dnmt1 paralog were identified in sole and their distinct developmental and tissue-specific expression patterns indicate that they may have different roles during development. The inhibitor 5-aza-2′-deoxycytidine modified the transcript abundance of dntm1 and dntm3aa in embryos, which suggests that a regulatory feedback mechanism exists for these genes. The impact of thermal regime on expression levels of dnmt3aa and dnmt3ab in lecithotrophic larval stages suggests that these paralogs might be involved in thermal programing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Firmino
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.,Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Paula Armesto
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Marco A Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
38
|
Hore TA. Modulating epigenetic memory through vitamins and TET: implications for regenerative medicine and cancer treatment. Epigenomics 2017; 9:863-871. [DOI: 10.2217/epi-2017-0021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vitamins A and C represent unrelated sets of small molecules that are essential to the human diet and have recently been shown to intensify erasure of epigenetic memory in naive embryonic stem cells. These effects are driven by complementary enhancement of the ten-eleven translocation (TET) demethylases – vitamin A stimulates TET expression, whereas vitamin C potentiates TET catalytic activity. Vitamin A and C cosupplementation synergistically enhances reprogramming of differentiated cells to the naive state, but overuse may exaggerate instability of imprinted genes. As such, optimizing their use in culture media will be important for regenerative medicine and mammalian transgenics. In addition, mechanistic perception of how these vitamins interact with the epigenome may be relevant for understanding cancer and improving patient treatment.
Collapse
Affiliation(s)
- Timothy A Hore
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
39
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
40
|
Kamstra JH, Sales LB, Aleström P, Legler J. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish. Epigenetics Chromatin 2017; 10:20. [PMID: 28413451 PMCID: PMC5389146 DOI: 10.1186/s13072-017-0126-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. RESULTS Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. CONCLUSIONS Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.
Collapse
Affiliation(s)
- Jorke H. Kamstra
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Liana Bastos Sales
- Institute for Environmental Studies, VU University Amsterdam, Amsterdam, The Netherlands
| | - Peter Aleström
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, Amsterdam, The Netherlands
- Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
41
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Epigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa. G3-GENES GENOMES GENETICS 2016; 6:4009-4022. [PMID: 27694114 PMCID: PMC5144970 DOI: 10.1534/g3.116.033860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes, we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. In general, effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. Specifically, we found that, in Neurospora, histone methylation at H3K36 affected plastic response to high temperatures, H3K4 methylation affected plastic response to pH, but H3K27 methylation had no effect. Similarly, DNA methylation had only a small effect in response to sucrose. Histone deacetylation mainly decreased reaction norm elevation, as did genes involved in histone demethylation and acetylation. In contrast, the RNA interference pathway was involved in plastic responses to multiple environments.
Collapse
|
43
|
Liu Y, Zhang Y, Tao S, Guan Y, Zhang T, Wang Z. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:124-32. [PMID: 27101439 DOI: 10.1016/j.ecoenv.2016.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 05/18/2023]
Abstract
Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets).
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Abstract
Genomic DNA methylation functions to repress gene expression by interfering with transcription factor binding and/or recruiting repressive chromatin machinery. Recent data support contribution of regulated DNA methylation to embryonic pluripotency, development, and tissue differentiation; this important epigenetic mark is chemically stable yet enzymatically reversible-and heritable through the germline. Importantly, all the major components involved in dynamic DNA methylation are conserved in zebrafish, including the factors that "write, read, and erase" this mark. Therefore, the zebrafish has become an excellent model for studying most biological processes associated with DNA methylation in mammals. Here we briefly review the zebrafish model for studying DNA methylation and describe a series of methods for performing genome-wide DNA methylation analysis. We address and provide methods for methylated DNA immunoprecipitation followed by sequencing (MeDIP-Seq), bisulfite sequencing (BS-Seq), and reduced representation bisulfite sequencing (RRBS-Seq).
Collapse
Affiliation(s)
- P J Murphy
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - B R Cairns
- University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
45
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
46
|
Yang KY, Chen Y, Zhang Z, Ng PKS, Zhou WJ, Zhang Y, Liu M, Chen J, Mao B, Tsui SKW. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci Rep 2016; 6:23195. [PMID: 26979494 PMCID: PMC4793263 DOI: 10.1038/srep23195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.
Collapse
Affiliation(s)
- Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Chen
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zuming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Patrick Kwok-Shing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Kent B, Magnani E, Walsh MJ, Sadler KC. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development. Dev Biol 2016; 412:99-113. [PMID: 26851214 DOI: 10.1016/j.ydbio.2016.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Landmark epigenetic events underlie early embryonic development, yet how epigenetic modifiers are regulated to achieve rapid epigenome re-patterning is not known. Uhrf1 and DNA methyltransferase 1 (Dnmt1) are known to largely mediate maintenance DNA methylation and Uhrf1 is also required for both Dnmt1 localization and stability. Here, we investigate how these two key epigenetic modifiers regulate early zebrafish development and characterize the developmental consequences of disrupting their homeostatic relationship. Unlike Uhrf1 knockdown, which causes developmental arrest and death prior to gastrulation, overexpression of human UHRF1 (WT-UHRF1) caused asymmetric epiboly, inefficient gastrulation and multi-systemic defects. UHRF1 phosphorylation was previously demonstrated as essential for zebrafish embryogenesis, and we found that penetrance of the asymmetric epiboly phenotype was significantly increased in embryos injected with mRNA encoding non-phosphorylatable UHRF1 (UHRF1(S661A)). Surprisingly, both WT-UHRF1 and UHRF1(S661A) overexpression caused DNA hypomethylation. However, since other approaches that caused an equivalent degree of DNA hypomethylation did not cause the asymmetric epiboly phenotype, we conclude that bulk DNA methylation is not the primary mechanism. Instead, UHRF1(S661A) overexpression resulted in accumulation of Dnmt1 protein and the overexpression of both WT and a catalytically inactive Dnmt1 phenocopied the assymetric epiboly phenotype. Dnmt1 knockdown suppressed the phenotype caused by UHRF1(S661A) overexpression, and Uhrf1 knockdown suppressed the effect of Dnmt1 overexpression. Therefore, we conclude that the interaction between these two proteins is the mechanism underlying the gastrulation defects. This indicates that Dnmt1 stability requires UHRF1 phosphorylation and that crosstalk between the proteins is essential for the function of these two important epigenetic regulators during gastrulation.
Collapse
Affiliation(s)
- Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Elena Magnani
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Martin J Walsh
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
48
|
Wood RK, Crowley E, Martyniuk CJ. Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephales promelas) following exposure to di-2-ethylhexyl phthalate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:7-18. [PMID: 26251286 DOI: 10.1007/s10695-015-0112-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
DNA methylation is an epigenetic regulator of gene expression, and this process has been shown to be disrupted by environmental contaminants. Di-2-(ethylhexyl) phthalate (DEHP) and related phthalate esters have been shown to affect development in early life stages of fish and can alter genomic methylation patterns in vertebrates. The objectives of this study were the following: (1) Describe the expression patterns of the DNA methyltransferase (dnmt) genes during early fathead minnow (FHM) development. These genes are critical for methylation and imprinting during development. (2) Determine the effects of DEHP on the development of FHM larvae [1 and 14 days post-hatch (dph)]. (3) Determine the effect of DEHP on dnmt expression and global methylation status in larval FHM. FHMs were first collected over a developmental time course [1, 3, 5, 6, and 14 days post-fertilization (dpf)] to investigate the expression patterns of five dnmt isoforms. The expression of dnmt1 and dnmt7 was relatively high in embryos at 1 dpf but was variable in expression, and these transcripts were later expressed at a lower level (>3 dpf); dnmt3 was significantly higher in embryos at 1 dpf compared to those at 3 dpf. Dnmt6 showed more of a constitutive pattern of expression during the first 2 weeks of development, and the mRNA levels of dnmt8 were higher in embryos at 5 and 6 dpf compared to those at 1 and 3 dpf, corresponding to the hatching period of the embryos. A waterborne exposure to three concentrations of DEHP (1, 10 and 100 µg/L) was conducted on 1-day FHM embryos for 24 h and on larval fish for 2 weeks, ending at 14 dpf. DEHP did not negatively affect survival, hatch rate, or the expression of dnmt isoforms in FHMs. There were no differences in global cytosine methylation following DEHP treatments in 14 dpf larvae, suggesting that environmentally relevant levels of DEHP may not affect global methylation at this stage of FHM development. However, additional targeted methylome studies are required to determine whether specific gene promoters are differently methylated following exposure to DEHP. This study offers new insight into the roles of the dnmt enzymes during FHM development.
Collapse
Affiliation(s)
- Richard K Wood
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
| | - Emma Crowley
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
| | - Christopher J Martyniuk
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada.
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
49
|
Chernyavskaya Y, Kent B, Sadler KC. Zebrafish Discoveries in Cancer Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:169-97. [PMID: 27165354 DOI: 10.1007/978-3-319-30654-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Biology Program, New York University Abu Dhabi, Saadiyat Campus, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
50
|
Abstract
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|