1
|
Sumser K, Mestrom R, Tuysuz YE, Paulides MM. Exploiting Polynomial Chaos Expansion for Rapid Assessment of the Impact of Tissue Property Uncertainties in Low-Intensity Focused Ultrasound Stimulation. Bioelectromagnetics 2025; 46:e70004. [PMID: 40071569 PMCID: PMC11898163 DOI: 10.1002/bem.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Neuromodulation with low-intensity focused ultrasound (LIFUS) holds significant promise for noninvasive treatment of neurological disorders, but its success relies heavily on accurately targeting specific brain regions. Computational model predictions can be used to optimize LIFUS, but uncertain acoustic tissue properties can affect prediction accuracy. The Monte Carlo method is often used to quantify the impact of uncertainties, but many iterations are generally needed for accurate estimates. We studied a surrogate model based on polynomial chaos expansion (PCE) to quantify the uncertainty in the LIFUS acoustic intensity field caused by tissue acoustic property uncertainties. The PCE approach was benchmarked against Monte Carlo method for LIFUS in three different head models. We also investigated the effect of the number of PCE samples on the accuracy of the surrogate model. Our results show that the PCE surrogate model requires only 20 simulation samples to estimate the mean and standard deviation of the acoustic intensity field with high accuracy compared to 100 samples needed for Monte Carlo method. The root mean squared percentage error (RMSPE) in the mean acoustic intensity field was less than 1.5%, with a maximum error of less than 0.5 W/cm2 (< 1% of the focus peak intensity in water), while the RMSPE in the standard deviation was less than 9%, with a maximum error of less than 0.3 W/cm2. The accuracy of the PCE surrogate model, and the limited number of iterations it requires makes it a promising tool for quantifying the uncertainty in the acoustic intensity field in LIFUS applications.
Collapse
Affiliation(s)
- Kemal Sumser
- Care & Cure Lab of the Electromagnetics Group (EM4Care+Cure), Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Rob Mestrom
- Care & Cure Lab of the Electromagnetics Group (EM4Care+Cure), Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Yunus Emre Tuysuz
- Department of Electrical and Electronics EngineeringMiddle East Technical UniversityAnkaraTurkey
| | - Margarethus Marius Paulides
- Care & Cure Lab of the Electromagnetics Group (EM4Care+Cure), Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Department of RadiotherapyErasmus University Medical Center Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
2
|
Wang S, Xu Q, Liu W, Zhang N, Qi Y, Tang F, Ge R. Regulation of PHD2 by HIF-1α in Erythroid Cells: Insights into Erythropoiesis Under Hypoxia. Int J Mol Sci 2025; 26:762. [PMID: 39859474 PMCID: PMC11765976 DOI: 10.3390/ijms26020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated. A hemin-induced K562 erythroid differentiation model was used to explore the effects of PHD2 knockdown under hypoxia. Erythroid differentiation was assessed by flow cytometry and immunofluorescence. HIF-1α's regulation of PHD2 was examined using luciferase assays and ChIP-seq. CRISPR/Cas9 was applied to knock out EGLN1 and HIF1A, and a fluorescent reporter system was developed to track PHD2 expression. PHD2 knockdown enhanced erythroid differentiation, evident by increased CD71 and CD235a expression. Reporter assays and ChIP-seq identified an HIF-1α binding site in the EGLN1 5' UTR, confirming HIF-1α as a regulator of PHD2 expression. The fluorescent reporter system provided real-time monitoring of endogenous PHD2 expression, showing that HIF-1α significantly modulates PHD2 levels under hypoxic conditions. PHD2 influences erythropoiesis under hypoxia, with HIF-1α regulating its expression. This feedback loop between HIF-1α and PHD2 sheds light on mechanisms driving erythroid differentiation under low-oxygen conditions.
Collapse
Affiliation(s)
- Shunjuan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Wenjing Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Na Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yuelin Qi
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Dowling AL, Walbridge S, Ertekin C, Namagiri S, Camacho K, Chowdhury A, Bryant JP, Kohut E, Heiss JD, Brown DA, Kumbar SG, Banasavadi-Siddegowda YK. FKBP38 Regulates Self-Renewal and Survival of GBM Neurospheres. Cells 2023; 12:2562. [PMID: 37947640 PMCID: PMC10647221 DOI: 10.3390/cells12212562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun-PTEN-AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy.
Collapse
Affiliation(s)
- Aimee L. Dowling
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Stuart Walbridge
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Celine Ertekin
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Sriya Namagiri
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Krystal Camacho
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Ashis Chowdhury
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Jean-Paul Bryant
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - Eric Kohut
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| | - John D. Heiss
- Clinical Neurology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Desmond A. Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Molecular & Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA (A.C.); (J.-P.B.); (E.K.)
| |
Collapse
|
4
|
Delamare M, Le Roy A, Pacault M, Schmitt L, Garrec C, Maaziz N, Myllykoski M, Rimbert A, Karaghiannis V, Aral B, Catherwood M, Airaud F, Mansour-Hendili L, Hoogewijs D, Peroni E, Idriss S, Lesieur V, Caillaud A, Si-Tayeb K, Chariau C, Gaignerie A, Rab M, Haferlach T, Meggendorfer M, Bézieau S, Benetti A, Casadevall N, Hirsch P, Rose C, Wemeau M, Galacteros F, Cassinat B, Bellosillo B, Bento C, Van Wijk R, Petrides PE, Randi ML, McMullin MF, Koivunen P, Girodon F, Gardie B. Characterization of genetic variants in the EGLN1/PHD2 gene identified in a European collection of patients with erythrocytosis. Haematologica 2023; 108:3068-3085. [PMID: 37317877 PMCID: PMC10620589 DOI: 10.3324/haematol.2023.282913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.
Collapse
Affiliation(s)
- Marine Delamare
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Amandine Le Roy
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Mathilde Pacault
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Loïc Schmitt
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Céline Garrec
- Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Nada Maaziz
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon
| | - Matti Myllykoski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland. 90014 Oulu
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Valéna Karaghiannis
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Bernard Aral
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon
| | | | | | - Lamisse Mansour-Hendili
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France; Université Paris-Est Créteil, IMRB Equipe Pirenne, Laboratoire d'excellence LABEX GRex, Créteil
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, CH-1700 Fribourg, Switzerland; National Center of Competence in Research "Kidney.CH"
| | - Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro
| | - Salam Idriss
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Valentine Lesieur
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes
| | - Caroline Chariau
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, FR-44000, Nantes
| | - Anne Gaignerie
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, FR-44000, Nantes
| | - Minke Rab
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht
| | | | | | - Stéphane Bézieau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Service de Génétique Médicale, CHU de Nantes, Nantes
| | - Andrea Benetti
- Department of Medicine-DIMED, University of Padua, Via Giustiniani 2, 35128, Padua
| | - Nicole Casadevall
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris
| | - Christian Rose
- Service d'onco-hématologie, Saint-Vincent de Paul Hospital, Boulevard de Belfort, Université Catholique de Lille, Univ. Nord de France, F-59000 Lille
| | - Mathieu Wemeau
- Hematology Department, Claude Huriez Hospital, Lille Hospital, 59000 Lille
| | - Frédéric Galacteros
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France; Red Cell Disease Referral Center-UMGGR, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil
| | - Bruno Cassinat
- Université Paris Cité, APHP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris
| | | | - Celeste Bento
- Hematology Department, Centro Hospitalar e Universitário de Coimbra; CIAS, University of Coimbra
| | - Richard Van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Petro E Petrides
- Hematology Oncology Center and Ludwig-Maximilians-University Munich Medical School, Munich
| | - Maria Luigia Randi
- Department of Medicine-DIMED, University of Padua, Via Giustiniani 2, 35128, Padua
| | - Mary Frances McMullin
- Belfast Health and Social Care Trust, Belfast N.Ireland; Queen's University, Belfast, N. Ireland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, 90014 Oulu, Finland. 90014 Oulu
| | - François Girodon
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon, France; Inserm U1231, Université de Bourgogne, Dijon, France; Laboratoire d'Excellence GR-Ex
| | - Betty Gardie
- Ecole Pratique des Hautes Etudes, EPHE, Université PSL, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Laboratoire d'Excellence GR-Ex
| |
Collapse
|
5
|
Guo H, Huang J, Liang Y, Wang D, Zhang H. Focusing on the hypoxia-inducible factor pathway: role, regulation, and therapy for osteoarthritis. Eur J Med Res 2022; 27:288. [PMID: 36503684 PMCID: PMC9743529 DOI: 10.1186/s40001-022-00926-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic disabling disease that affects hundreds of millions of people around the world. The most important pathological feature is the rupture and loss of articular cartilage, and the characteristics of avascular joint tissues lead to limited repair ability. Currently, there is no effective treatment to prevent cartilage degeneration. Studies on the mechanism of cartilage metabolism revealed that hypoxia-inducible factors (HIFs) are key regulatory genes that maintain the balance of cartilage catabolism-matrix anabolism and are considered to be the major OA regulator and promising OA treatment target. Although the exact mechanism of HIFs in OA needs to be further clarified, many drugs that directly or indirectly act on HIF signaling pathways have been confirmed by animal experiments and regarded as promising treatments for OA. Targeting HIFs will provide a promising strategy for the development of new OA drugs. This article reviews the regulation of HIFs on intra-articular cartilage homeostasis and its influence on the progression of osteoarthritis and summarizes the recent advances in OA therapies targeting the HIF system.
Collapse
Affiliation(s)
- Hanhan Guo
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jianghong Huang
- grid.452847.80000 0004 6068 028XDepartment of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, 518035 China ,grid.12527.330000 0001 0662 3178Innovation Leading Engineering Doctor, Tsinghua University Shenzhen International Graduate School, Class 9 of 2020, Shenzhen, 518055 China
| | - Yujie Liang
- grid.452897.50000 0004 6091 8446Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 China
| | - Daping Wang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.452847.80000 0004 6068 028XDepartment of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 China
| | - Huawei Zhang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
6
|
Wolf D, Muralidharan A, Mohan S. Role of prolyl hydroxylase domain proteins in bone metabolism. Osteoporos Sarcopenia 2022; 8:1-10. [PMID: 35415275 PMCID: PMC8987327 DOI: 10.1016/j.afos.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022] Open
Abstract
Cellular metabolism requires dissolved oxygen gas. Because evolutionary refinements have constrained mammalian dissolved oxygen levels, intracellular oxygen sensors are vital for optimizing the bioenergetic and biosynthetic use of dissolved oxygen. Prolyl hydroxylase domain (PHD) homologs 1-3 (PHD1/2/3) are molecular oxygen dependent non-heme dioxygenases whose enzymatic activity is regulated by the concentration of dissolved oxygen. PHD oxygen dependency has evolved into an important intracellular oxygen sensor. The most well studied mechanism of PHD oxygen-sensing is its regulation of the hypoxia-inducible factor (HIF) hypoxia signaling pathway. Heterodimeric HIF transcription factor activity is regulated post-translationally by selective PHD proline hydroxylation of its HIF1α subunit, accelerating HIF1α ubiquitination and proteasomal degradation, preventing HIF heterodimer assembly, nuclear accumulation, and activation of its target oxygen homeostasis genes. Phd2 has been shown to be the key isoform responsible for HIF1α subunit regulation in many cell types and accordingly disruption of the Phd2 gene results in embryonic lethality. In bone cells Phd2 is expressed in high abundance and tightly regulated. Conditional disruption of the Phd1, Phd2 and/or Phd3 gene in various bone cell types using different Cre drivers reveals a major role for PHD2 in skeletal growth and development. In this review, we will summarize the state of current knowledge on the role and mechanism of action of PHD2 as oxygen sensor in regulating bone metabolism.
Collapse
Affiliation(s)
- David Wolf
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department Biochemistry and Orthopedic Surgery, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
7
|
Vara-Pérez M, Agostinis P. BNIP3 in melanoma: isn't it IRONic? Mol Cell Oncol 2021; 8:1947169. [PMID: 34616873 DOI: 10.1080/23723556.2021.1947169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Melanoma cells exploit mitophagy and hypoxia signaling to promote their growth. In a recent study, we found that loss of B-cell lymphoma 2 (BCL-2)/adenovirus E1B 19kDa protein-interacting protein 3 (BNIP3) curbed Hypoxia Inducible Factor 1 alpha (HIF-1α) levels and melanoma growth in vivo. Insufficient levels of BNIP3 boost iron-driven prolyl hydroxylase 2 (Phd2)-mediated degradation of HIF-1α by exacerbating nuclear receptor activator 4 (Ncoa4)-mediated ferritinophagy. Thus, BNIP3 promotes melanoma growth by controlling iron metabolism.
Collapse
Affiliation(s)
- Mónica Vara-Pérez
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology,KULeuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology,KULeuven, Leuven, Belgium
| |
Collapse
|
8
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Tomc J, Debeljak N. Molecular Insights into the Oxygen-Sensing Pathway and Erythropoietin Expression Regulation in Erythropoiesis. Int J Mol Sci 2021; 22:ijms22137074. [PMID: 34209205 PMCID: PMC8269393 DOI: 10.3390/ijms22137074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoiesis is regulated by several factors, including the oxygen-sensing pathway as the main regulator of erythropoietin (EPO) synthesis in the kidney. The release of EPO from the kidney and its binding to the EPO receptor (EPOR) on erythrocyte progenitor cells in the bone marrow results in increased erythropoiesis. Any imbalance in these homeostatic mechanisms can lead to dysregulated erythropoiesis and hematological disorders. For example, mutations in genes encoding key players of oxygen-sensing pathway and regulation of EPO production (HIF-EPO pathway), namely VHL, EGLN, EPAS1 and EPO, are well known causative factors that contribute to the development of erythrocytosis. We aimed to investigate additional molecular mechanisms involved in the HIF-EPO pathway that correlate with erythropoiesis. To this end, we conducted an extensive literature search and used several in silico tools. We identified genes encoding transcription factors and proteins that control transcriptional activation or repression; genes encoding kinases, deacetylases, methyltransferases, conjugating enzymes, protein ligases, and proteases involved in post-translational modifications; and genes encoding nuclear transport receptors that regulate nuclear transport. All these genes may modulate the stability or activity of HIF2α and its partners in the HIF-EPO pathway, thus affecting EPO synthesis. The theoretical information we provide in this work can be a valuable tool for a better understanding of one of the most important regulatory pathways in the process of erythropoiesis. This knowledge is necessary to discover the causative factors that may contribute to the development of hematological diseases and improve current diagnostic and treatment solutions in this regard.
Collapse
Affiliation(s)
- Jana Tomc
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-1-543-7645
| |
Collapse
|
10
|
de la Riva-Carrasco R, Perez-Pandolfo S, Suárez Freire S, Romero NM, Bhujabal Z, Johansen T, Wappner P, Melani M. The immunophilin Zonda controls regulated exocytosis in endocrine and exocrine tissues. Traffic 2021; 22:111-122. [PMID: 33336828 DOI: 10.1111/tra.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
Exocytosis is a fundamental process in physiology, that ensures communication between cells, organs and even organisms. Hormones, neuropeptides and antibodies, among other cargoes are packed in exocytic vesicles that need to reach and fuse with the plasma membrane to release their content to the extracellular milieu. Hundreds of proteins participate in this process and several others in its regulation. We report here a novel component of the exocytic machinery, the Drosophila transmembrane immunophilin Zonda (Zda), previously found to participate in autophagy. Zda is highly expressed in secretory tissues, and regulates exocytosis in at least three of them: the ring gland, insulin-producing cells and the salivary gland. Using the salivary gland as a model system, we found that Zda is required at final steps of the exocytic process for fusion of secretory granules to the plasma membrane. In a genetic screen we identified the small GTPase RalA as a crucial regulator of secretory granule exocytosis that is required, similarly to Zda, for fusion between the secretory granule and the plasma membrane.
Collapse
Affiliation(s)
| | - Sebastián Perez-Pandolfo
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sofía Suárez Freire
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Nuria M Romero
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Pablo Wappner
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Melani
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Zhang J, Yin Y, Wang J, Zhang J, Liu H, Feng W, Yang W, Zetter B, Xu Y. Prohibitin regulates mTOR pathway via interaction with FKBP8. Front Med 2020; 15:448-459. [PMID: 33259040 DOI: 10.1007/s11684-020-0805-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
The ability of tumor cells to sustain continuous proliferation is one of the major characteristics of cancer. The activation of oncogenes and the mutation or inactivation of tumor suppressor genes ensure the rapid proliferation of tumor cells. The PI3K-Akt-mTOR axis is one of the most frequently modified signaling pathways whose activation sustains cancer growth. Unsurprisingly, it is also one of the most commonly attempted targets for cancer therapy. FK506 binding protein 8 (FKBP8) is an intrinsic inhibitor of mTOR kinase that also exerts an anti-apoptotic function. We aimed to explain these contradictory aspects of FKBP8 in cancer by identifying a "switch" type regulator. We identified through immunoprecipitation-mass spectrometry-based proteomic analysis that the mitochondrial protein prohibitin 1 (PHB1) specifically interacts with FKBP8. Furthermore, the downregulation of PHB1 inhibited the proliferation of ovarian cancer cells and the mTOR signaling pathway, whereas the FKBP8 level in the mitochondria was substantially reduced. Moreover, concomitant with these changes, the interaction between FKBP8 and mTOR substantially increased in the absence of PHB1. Collectively, our finding highlights PHB1 as a potential regulator of FKBP8 because of its subcellular localization and mTOR regulating role.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Yin
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahui Wang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Yang
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bruce Zetter
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yingjie Xu
- Department of Biochemistry and Molecular and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Abstract
Anaplerosis and the associated mitochondrial metabolite transporters generate unique cytosolic metabolic signaling molecules that can regulate insulin release from pancreatic β-cells. It has been shown that mitochondrial metabolites, transported by the citrate carrier (CIC), dicarboxylate carrier (DIC), oxoglutarate carrier (OGC), and mitochondrial pyruvate carrier (MPC) play a vital role in the regulation of glucose-stimulated insulin secretion (GSIS). Metabolomic studies on static and biphasic insulin secretion, suggests that several anaplerotic derived metabolites, including α-ketoglutarate (αKG), are strongly associated with nutrient regulated insulin secretion. Support for a role of αKG in the regulation of insulin secretion comes from studies looking at αKG dependent enzymes, including hypoxia-inducible factor-prolyl hydroxylases (PHDs) in clonal β-cells, and rodent and human islets. This review will focus on the possible link between defective anaplerotic-derived αKG, PHDs, and the development of type 2 diabetes (T2D).
Collapse
Affiliation(s)
- M. Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
- CONTACT J. W. Joseph School of Pharmacy, University of Waterloo, Kitchener, ONN2G1C5, Canada
| |
Collapse
|
13
|
Luo A, Chen Y. Label-Free Interactome Analysis Revealed an Essential Role of CUL3-KEAP1 Complex in Mediating the Ubiquitination and Degradation of PHD2. J Proteome Res 2020; 19:260-268. [PMID: 31763849 DOI: 10.1021/acs.jproteome.9b00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2/EGLN1) is a key regulatory enzyme that plays a fundamental role in the cellular hypoxic response pathway, mediating proline hydroxylation-dependent protein degradation of selected target proteins. However, the regulation of PHD2 homeostasis at the protein level is not well understood. Here, we perform label-free quantitative interactome analysis through immunoprecipitation coupled with mass spectrometry analysis. To minimize the side effects caused by ectopic overexpression, in HeLa cells, we stably overexpressed Flag-tagged PHD2 while suppressing the endogenous PHD2 by using an shRNA targeting its 3' UTR region. We identified and validated Cullin 3 as a novel PHD2 interactor in vivo. Through candidate screening, we further identified CUL3-KEAP1 E3 ubiquitin ligase complex as the major enzyme that regulates PHD2 degradation. Overexpression of either CUL3, KEAP1, or both significantly increases PHD2 ubiquitination and reduces PHD2 protein abundance. The knockdown of CUL3 or KEAP1 decreased PHD2 ubiquitination and inhibited PHD2 degradation. Accordingly, loss of the CUL3-KEAP1 complex under hypoxia promoted PHD2 stabilization and led to significantly reduced abundance of the PHD2 target, hypoxia-inducible factor 1A (HIF1A). Thus, CUL3-KEAP1 is an essential pathway that regulates PHD2 ubiquitination and degradation in cells.
Collapse
Affiliation(s)
- Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics , The University of Minnesota at Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics , The University of Minnesota at Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
14
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
15
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
16
|
Loss-of-function zinc finger mutation in the EGLN1 gene associated with erythrocytosis. Blood 2018; 132:1455-1458. [PMID: 30111608 DOI: 10.1182/blood-2018-06-854711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
|
17
|
Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7:34389. [PMID: 29916806 PMCID: PMC6044906 DOI: 10.7554/elife.34389] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seiya Mizuno
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Atsuko Shimada
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Satoru Takahashi
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alex von Kreigsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Orłowski M, Popławska K, Pieprzyk J, Szczygieł-Sommer A, Więch A, Zarębski M, Tarczewska A, Dobrucki J, Ożyhar A. Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization. Biol Chem 2018; 399:467-484. [PMID: 29337690 DOI: 10.1515/hsz-2017-0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
FK506-binding proteins (FKBPs) belong to a distinct class of immunophilins that interact with immunosuppressants. They use their peptidyl-prolyl isomerase (PPIase) activity to catalyze the cis-trans conversion of prolyl bonds in proteins during protein-folding events. FKBPs also act as a unique group of chaperones. The Drosophila melanogaster peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39) is thought to act as a transcriptional modulator of gene expression in 20-hydroxyecdysone and juvenile hormone signal transduction. The aim of this study was to analyze the molecular determinants responsible for the subcellular distribution of an FKBP39-yellow fluorescent protein (YFP) fusion construct (YFP-FKBP39). We found that YFP-FKBP39 was predominantly nucleolar. To identify the nuclear localization signal (NLS), a series of YFP-tagged FKBP39 deletion mutants were prepared and examined in vivo. The identified NLS signal is located in a basic domain. Detailed mutagenesis studies revealed that residues K188 and K191 are crucial for the nuclear targeting of FKBP39 and its nucleoplasmin-like (NPL) domain contains the sequence that controls the nucleolar-specific translocation of the protein. These results show that FKBP39 possesses a specific NLS in close proximity to a putative helix-turn-helix (HTH) motif and FKBP39 may bind DNA in vivo and in vitro.
Collapse
Affiliation(s)
- Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Popławska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Pieprzyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Więch
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road. Exp Cell Res 2017; 356:152-159. [PMID: 28315321 DOI: 10.1016/j.yexcr.2017.03.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level.
Collapse
|
21
|
Blundell KLIM, Pal M, Roe SM, Pearl LH, Prodromou C. The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90. PLoS One 2017; 12:e0173543. [PMID: 28278223 PMCID: PMC5344419 DOI: 10.1371/journal.pone.0173543] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The PPIase domain was not essential for the interaction with Hsp90 and binding was completely encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides, containing the conserved MEEVD motif, in the crystal structure were similar to that seen for the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to Hsp90 did not substantially influence its ATPase activity.
Collapse
Affiliation(s)
- Katie L. I. M. Blundell
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
| | - S. Mark Roe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
- * E-mail:
| |
Collapse
|
22
|
Youssef S, Ren W, Ai HW. A Genetically Encoded FRET Sensor for Hypoxia and Prolyl Hydroxylases. ACS Chem Biol 2016; 11:2492-8. [PMID: 27385075 DOI: 10.1021/acschembio.6b00330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxygen is vital for all aerobic life forms. Oxygen-dependent hydroxylation of hypoxia-inducible factor (HIF)-1α by prolyl hydroxylase domain enzymes (PHDs) is an important step for controlling the expression of oxygen-regulated genes in metazoan species, thereby constituting a molecular mechanism for oxygen sensing and response. Herein, we report a genetically encoded dual-emission ratiometric fluorescent sensor, ProCY, which responds to PHD activities in vitro and in live cells. We demonstrated that ProCY could monitor hypoxia in mammalian cells. By targeting this novel genetically encoded biosensor to the cell nucleus and cytosol, we determined that, under normoxic conditions, the HIF-prolyl hydroxylase activity was mainly confined to the cytosol of HEK 293T cells. The results collectively suggest broad applications of ProCY on the evaluation of hypoxia and PHD activities and understanding of pathways for the control of hypoxic responses.
Collapse
Affiliation(s)
- Suzan Youssef
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Wei Ren
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Hui-wang Ai
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
23
|
Choi JE, Kim JH, Song NY, Suh J, Kim DH, Kim SJ, Na HK, Nadas J, Dong Z, Cha YN, Surh YJ. 15-Deoxy-Δ12,14-prostaglandin J2 stabilizes hypoxia inducible factor-1α through induction of heme oxygenase-1 and direct modification ofprolyl-4-hydroxylase 2. Free Radic Res 2016; 50:1140-1152. [PMID: 27598034 DOI: 10.1080/10715762.2016.1219352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jee-Eun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | - Jung-Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | - Na-Young Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | - Jinyoung Suh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences and Technology, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women’s University, Seoul, South Korea
| | - Janos Nadas
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences and Technology, Seoul, South Korea
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Young-Nam Cha
- College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences and Technology, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α. Mol Cell Biol 2016; 36:2328-43. [PMID: 27325674 DOI: 10.1128/mcb.00090-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude.
Collapse
|
25
|
Ortmann B, Bensaddek D, Carvalhal S, Moser SC, Mudie S, Griffis ER, Swedlow JR, Lamond AI, Rocha S. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci 2015; 129:191-205. [PMID: 26644182 PMCID: PMC4732302 DOI: 10.1242/jcs.179911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/18/2015] [Indexed: 12/28/2022] Open
Abstract
PHD1 (also known as EGLN2) belongs to a family of prolyl hydroxylases (PHDs) that are involved in the control of the cellular response to hypoxia. PHD1 is also able to regulate mitotic progression through the regulation of the crucial centrosomal protein Cep192, establishing a link between the oxygen-sensing and the cell cycle machinery. Here, we demonstrate that PHD1 is phosphorylated by CDK2, CDK4 and CDK6 at S130. This phosphorylation fluctuates with the cell cycle and can be induced through oncogenic activation. Functionally, PHD1 phosphorylation leads to increased induction of hypoxia-inducible factor (HIF) protein levels and activity during hypoxia. PHD1 phosphorylation does not alter its intrinsic enzymatic activity, but instead decreases the interaction between PHD1 and HIF1α. Interestingly, although phosphorylation of PHD1 at S130 lowers its activity towards HIF1α, this modification increases the activity of PHD1 towards Cep192. These results establish a mechanism by which cell cycle mediators, such as CDKs, temporally control the activity of PHD1, directly altering the regulation of HIF1α and Cep192. Summary: CDK-mediated phosphorylation of PHD1 at serine 130 controls target specificity and confers cell cycle regulation of PHD1.
Collapse
Affiliation(s)
- Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Carvalhal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra C Moser
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
26
|
Lelli A, Nolan KA, Santambrogio S, Gonçalves AF, Schönenberger MJ, Guinot A, Frew IJ, Marti HH, Hoogewijs D, Wenger RH. Induction of long noncoding RNA MALAT1 in hypoxic mice. HYPOXIA 2015; 3:45-52. [PMID: 27774481 PMCID: PMC5045088 DOI: 10.2147/hp.s90555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA). Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF)-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary kidney epithelial cells. In summary, high expression levels and acute, profound hypoxic induction of MALAT1 suggest a hitherto unrecognized role of this lncRNA in renal proximal tubular function.
Collapse
Affiliation(s)
- Aurelia Lelli
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sara Santambrogio
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Ana Filipa Gonçalves
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Miriam J Schönenberger
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Anna Guinot
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Ian J Frew
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - David Hoogewijs
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
27
|
Harnoss JM, Strowitzki MJ, Radhakrishnan P, Platzer LK, Harnoss JC, Hank T, Cai J, Ulrich A, Schneider M. Therapeutic inhibition of prolyl hydroxylase domain-containing enzymes in surgery: putative applications and challenges. HYPOXIA 2015; 3:1-14. [PMID: 27774478 PMCID: PMC5045068 DOI: 10.2147/hp.s60872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen is essential for metazoans to generate energy. Upon oxygen deprivation adaptive and protective pathways are induced, mediated by hypoxia-inducible factors (HIFs) and prolyl hydroxylase domain-containing enzymes (PHDs). Both play a pivotal role in various conditions associated with prolonged ischemia and inflammation, and are promising targets for therapeutic intervention. This review focuses on aspects of therapeutic PHD modulation in surgically relevant disease conditions such as hepatic and intestinal disorders, wound healing, innate immune responses, and tumorigenesis, and discusses the therapeutic potential and challenges of PHD inhibition in surgical patients.
Collapse
Affiliation(s)
- Jonathan Michael Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Moritz Johannes Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lisa Katharina Platzer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Camill Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jun Cai
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Abstract
Humans have adapted to the chronic hypoxia of high altitude in several locations, and recent genome-wide studies have indicated a genetic basis. In some populations, genetic signatures have been identified in the hypoxia-inducible factor (HIF) pathway, which orchestrates the transcriptional response to hypoxia. In Tibetans, they have been found in the HIF2A (EPAS1) gene, which encodes for HIF-2α, and the prolyl hydroxylase domain protein 2 (PHD2, also known as EGLN1) gene, which encodes for one of its key regulators, PHD2. High-altitude adaptation may be due to multiple genes that act in concert with one another. Unraveling their mechanism of action can offer new therapeutic approaches toward treating common human diseases characterized by chronic hypoxia.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Gardie B, Percy MJ, Hoogewijs D, Chowdhury R, Bento C, Arsenault PR, Richard S, Almeida H, Ewing J, Lambert F, McMullin MF, Schofield CJ, Lee FS. The role of PHD2 mutations in the pathogenesis of erythrocytosis. HYPOXIA 2014; 2:71-90. [PMID: 27774468 PMCID: PMC5045058 DOI: 10.2147/hp.s54455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription of the erythropoietin (EPO) gene is tightly regulated by the hypoxia response pathway to maintain oxygen homeostasis. Elevations in serum EPO level may be reflected in an augmentation in the red cell mass, thereby causing erythrocytosis. Studies on erythrocytosis have provided insights into the function of the oxygen-sensing pathway and the critical proteins involved in the regulation of EPO transcription. The α subunits of the hypoxia-inducible transcription factor are hydroxylated by three prolyl hydroxylase domain (PHD) enzymes, which belong to the iron and 2-oxoglutarate-dependent oxygenase superfamily. Sequence analysis of the genes encoding the PHDs in patients with erythrocytosis has revealed heterozygous germline mutations only occurring in Egl nine homolog 1 (EGLN1, also known as PHD2), the gene that encodes PHD2. To date, 24 different EGLN1 mutations comprising missense, frameshift, and nonsense mutations have been described. The phenotypes associated with the patients carrying these mutations are fairly homogeneous and typically limited to erythrocytosis with normal to elevated EPO. However, exceptions exist; for example, there is one case with development of concurrent paraganglioma (PHD2-H374R). Analysis of the erythrocytosis-associated PHD2 missense mutations has shown heterogeneous results. Structural studies reveal that mutations can affect different domains of PHD2. Some are close to the hypoxia-inducible transcription factor α/2-oxoglutarate or the iron binding sites for PHD2. In silico studies demonstrate that the mutations do not always affect fully conserved residues. In vitro and in cellulo studies showed varying effects of the mutations, ranging from mild effects to severe loss of function. The exact mechanism of a potential tumor-suppressor role for PHD2 still needs to be elucidated. A knockin mouse model expressing the first reported PHD2-P317R mutation recapitulates the phenotype observed in humans (erythrocytosis with inappropriately normal serum EPO levels) and demonstrates that haploinsufficiency and partial deregulation of PHD2 is sufficient to cause erythrocytosis.
Collapse
Affiliation(s)
- Betty Gardie
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes, Villejuif; Unité Mixte de Recherche, Institut national de la santé et de la recherche médicale U892, Centre national de la recherche scientifique 6299, Centre de Recherche en Cancérologie Nantes/Angers, Université de Nantes, Nantes, France
| | - Melanie J Percy
- Department of Haematology, Belfast City Hospital, Belfast, UK
| | - David Hoogewijs
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Rasheduzzaman Chowdhury
- Department of Chemistry and Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Celeste Bento
- Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Patrick R Arsenault
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stéphane Richard
- Laboratoire de Génétique Oncologique de l'Ecole Pratique des Hautes Etudes, Villejuif; Institut national de la santé et de la recherche médicale U753, Institut de cancérologie Gustave Roussy (IGR), Villejuif, France; Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Helena Almeida
- Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Frédéric Lambert
- Center for Human Genetics, Pathology Institute, UniLab-Lg, Molecular Haemato-Oncology Unit, CHU of Liege, Liege, Belgium
| | | | - Christopher J Schofield
- Department of Chemistry and Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Rajan S, Baek K, Yoon HS. C-H…O hydrogen bonds in FK506-binding protein-ligand interactions. J Mol Recognit 2014; 26:550-5. [PMID: 24089362 DOI: 10.1002/jmr.2299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/11/2022]
Abstract
Hydrogen bonds are important interaction forces observed in protein structures. They can be classified as stronger or weaker depending on their energy, thereby reflecting on the type of donor. The contribution of weak hydrogen bonds is deemed as an important factor toward structure stability along with the stronger bonds. One such bond, the C-H…O type hydrogen bond, is shown to make a contribution in maintaining three dimensional structures of proteins. Apart from their presence within protein structures, the role of these bonds in protein-ligand interactions is also noteworthy. In this study, we present a statistical analysis on the presence of C-H…O hydrogen bonds observed between FKBPs and their cognate ligands. The FK506-binding proteins (FKBPs) carry peptidyl cis-trans isomerase activity apart from the immunosuppressive property by binding to the immunosuppressive drugs FK506 or rapamycin. Because the active site of FKBPs is lined up by many hydrophobic residues, we speculated that the prevalence of C-H…O hydrogen bonds will be considerable. In a total of 25 structures analyzed, a higher frequency of C-H…O hydrogen bonds is observed in comparison with the stronger hydrogen bonds. These C-H…O hydrogen bonds are dominated by a highly conserved donor, the C(α/β) of Val55 and an acceptor, the backbone oxygen of Glu54. Both these residues are positioned in the β4-α1 loop, whereas the other residues Tyr26, Phe36 and Phe99 with higher frequencies are lined up at the opposite face of the active site. These preferences could be implicated in FKBP pharmacophore models toward enhancing the ligand affinity. This study could be a prelude to studying other proteins with hydrophobic pockets to gain better insights into ligand recognition.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | | | | |
Collapse
|
31
|
The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239356. [PMID: 24895555 PMCID: PMC4034436 DOI: 10.1155/2014/239356] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.
Collapse
|
32
|
Fuady JH, Bordoli MR, Abreu-Rodríguez I, Kristiansen G, Hoogewijs D, Stiehl DP, Wenger RH. Hypoxia-inducible factor-mediated induction of WISP-2 contributes to attenuated progression of breast cancer. HYPOXIA 2014; 2:23-33. [PMID: 27774464 PMCID: PMC5045054 DOI: 10.2147/hp.s54404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxia and the hypoxia-inducible factor (HIF) signaling pathway trigger the expression of several genes involved in cancer progression and resistance to therapy. Transcriptionally active HIF-1 and HIF-2 regulate overlapping sets of target genes, and only few HIF-2 specific target genes are known so far. Here we investigated oxygen-regulated expression of Wnt-1 induced signaling protein 2 (WISP-2), which has been reported to attenuate the progression of breast cancer. WISP-2 was hypoxically induced in low-invasive luminal-like breast cancer cell lines at both the messenger RNA and protein levels, mainly in a HIF-2α-dependent manner. HIF-2-driven regulation of the WISP2 promoter in breast cancer cells is almost entirely mediated by two phylogenetically and only partially conserved functional hypoxia response elements located in a microsatellite region upstream of the transcriptional start site. High WISP-2 tumor levels were associated with increased HIF-2α, decreased tumor macrophage density, and a better prognosis. Silencing WISP-2 increased anchorage-independent colony formation and recovery from scratches in confluent cell layers of normally low-invasive MCF-7 cancer cells. Interestingly, these changes in cancer cell aggressiveness could be phenocopied by HIF-2α silencing, suggesting that direct HIF-2-mediated transcriptional induction of WISP-2 gene expression might at least partially explain the association of high HIF-2α tumor levels with prolonged overall survival of patients with breast cancer.
Collapse
Affiliation(s)
- Jerry H Fuady
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mattia R Bordoli
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Irene Abreu-Rodríguez
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - David Hoogewijs
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Daniel P Stiehl
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation. Int J Biochem Cell Biol 2014; 51:19-22. [PMID: 24657651 DOI: 10.1016/j.biocel.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/30/2022]
Abstract
FK506-binding protein 38 (FKBP38) is a membrane chaperone that is localized predominantly to mitochondria and contains a COOH-terminal tail anchor. FKBP38 also harbors an FKBP domain that confers peptidyl-prolyl cis-trans isomerase activity, but it differs from other FKBP family members in that this activity is dependent on the binding of Ca(2+)-calmodulin. FKBP38 inhibits apoptosis by recruiting the anti-apoptotic proteins Bcl-2 and Bcl-xL to mitochondria. Mice deficient in FKBP38 die soon after birth manifesting a defect in neural tube closure that results in part from unrestrained apoptosis. We recently found that FKBP38 and Bcl-2 translocate from mitochondria to the endoplasmic reticulum during mitophagy, a form of autophagy responsible for the elimination of damaged mitochondria. FKBP38 and Bcl-2 thus escape the degradative fate of most mitochondrial proteins during mitophagy. This escape of FKBP38 is dependent on the low basicity of its COOH-terminal sequence and is essential for the suppression of apoptosis during mitophagy. FKBP38 thus plays a key role in the regulation of apoptosis under normal and pathological conditions.
Collapse
Affiliation(s)
- Michiko Shirane-Kitsuji
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Small molecule Plasmodium FKBP35 inhibitor as a potential antimalaria agent. Sci Rep 2014; 3:2501. [PMID: 23974147 PMCID: PMC3752609 DOI: 10.1038/srep02501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
Malaria parasite strains have emerged to tolerate the therapeutic effects of the prophylactics and drugs presently available. This resistance now poses a serious challenge to researchers in the bid to overcome malaria parasitic infection. Recent studies have shown that FK520 and its analogs inhibit malaria parasites growth by binding to FK506 binding proteins (FKBPs) of the parasites. Structure based drug screening efforts based on three-dimensional structural information of FKBPs from Plasmodium falciparum led us to identify new chemical entities that bind to the parasite FKBP35 and inhibit its growth. Our experimental results verify that this novel compound (D44) modulate the PPIase activity of Plasmodium FKBP35 and demonstrate the stage-specific growth inhibition of Plasmodium falciparum strains. Here, we present the X-ray crystallographic structures of FK506 binding domains (FKBDs) of PfFKBP35 and PvFKBP35 in complex with the newly identified inhibitor providing molecular insights into its mode of action.
Collapse
|
35
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
36
|
Rajan S, Austin D, Harikishore A, Nguyen QT, Baek K, Yoon HS. Crystal structure of Plasmodium vivax
FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity. Proteins 2013; 82:1235-44. [DOI: 10.1002/prot.24487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sreekanth Rajan
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - David Austin
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Amaravadhi Harikishore
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Quoc Toan Nguyen
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| |
Collapse
|
37
|
An X, Xu G, Yang L, Wang Y, Li Y, McHepange UO, Shen G, Tu Y, Tao J. Expression of hypoxia-inducible factor-1α, vascular endothelial growth factor and prolyl hydroxylase domain protein 2 in cutaneous squamous cell carcinoma and precursor lesions and their relationship with histological stages and clinical features. J Dermatol 2013; 41:76-83. [PMID: 24354513 DOI: 10.1111/1346-8138.12314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/29/2013] [Indexed: 01/19/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1α) pathway is associated with tumor growth, angiogenesis and metastasis in various carcinomas. Little is known regarding the role of the HIF-1α signaling pathway in cutaneous squamous cell carcinoma (SCC). We investigated the expression of HIF-1α, vascular endothelial growth factor (VEGF) and the HIF negative regulator, prolyl hydroxylase domain protein 2 (PHD2), in cutaneous SCC, Bowen's disease, seborrheic keratosis (SK) and normal skin by immunohistochemistry and in situ hybridization. Additionally, we explored the relationships between these factors and the clinical and histological characteristics of each disease. Our study indicated that the expression of HIF-1α and VEGF was significantly higher (P < 0.05) in cutaneous SCC than in Bowen's disease, SK or normal skin. In contrast, PHD2 showed significantly higher expression in normal skin compared with SK, Bowen's disease and cutaneous SCC (P < 0.05). Grade II-IV cutaneous SCC had higher expression levels of nuclear HIF-1α and cytoplasm VEGF protein but less nuclear PHD2 protein than grade Ι cutaneous SCC (P < 0.05). Overexpression of HIF-1α and VEGF, as well as the decreased expression of PHD2, may play important roles in the development of cutaneous SCC.
Collapse
Affiliation(s)
- Xiangjie An
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Harikishore A, Leow ML, Niang M, Rajan S, Pasunooti KK, Preiser PR, Liu X, Yoon HS. Adamantyl derivative as a potent inhibitor of Plasmodium FK506 binding protein 35. ACS Med Chem Lett 2013; 4:1097-101. [PMID: 24900611 DOI: 10.1021/ml400306r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
FKBP35, FK506 binding protein family member, in Plasmodium species displays a canonical peptidyl-prolyl isomerase (PPIase) activity and is intricately involved in the protein folding process. Inhibition of PfFKBP35 by FK506 or its analogues were shown to interfere with the in vitro growth of Plasmodium falciparum. In this study, we have synthesized adamantyl derivatives, Supradamal (SRA/4a) and its analogues SRA1/4b and SRA2/4c, which demonstrate submicromolar inhibition of Plasmodium falciparum FK506 binding domain 35 (FKBD35) PPIase activity. SRA and its analogues not only inhibit the in vitro growth of Plasmodium falciparum 3D7 strain but also show stage specific activity by inhibiting the trophozoite stage of the parasite. SRA/4a also inhibits the Plasmodium vivax FKBD35 PPIase activity and our crystal structure of PvFKBD35 in complex with the SRA provides structural insights in achieving selective inhibition against Plasmodium FKBPs.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Min Li Leow
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Makhtar Niang
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Sreekanth Rajan
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Kalyan Kumar Pasunooti
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Peter Rainer Preiser
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| | - Xuewei Liu
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731 Singapore
| | - Ho Sup Yoon
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637665 Singapore
| |
Collapse
|
39
|
Germain MA, Chatel-Chaix L, Gagné B, Bonneil É, Thibault P, Pradezynski F, de Chassey B, Meyniel-Schicklin L, Lotteau V, Baril M, Lamarre D. Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol Cell Proteomics 2013; 13:184-203. [PMID: 24169621 DOI: 10.1074/mcp.m113.030155] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
More than 170 million people worldwide are infected with the hepatitis C virus (HCV), for which future therapies are expected to rely upon a combination of oral antivirals. For a rapidly evolving virus like HCV, host-targeting antivirals are an attractive option. To decipher the role of novel HCV-host interactions, we used a proteomics approach combining immunoprecipitation of viral-host protein complexes coupled to mass spectrometry identification and functional genomics RNA interference screening of HCV partners. Here, we report the proteomics analyses of protein complexes associated with Core, NS2, NS3/4A, NS4B, NS5A, and NS5B proteins. We identified a stringent set of 98 human proteins interacting specifically with one of the viral proteins. The overlap with previous virus-host interaction studies demonstrates 24.5% shared HCV interactors overall (24/98), illustrating the reliability of the approach. The identified human proteins show enriched Gene Ontology terms associated with the endoplasmic reticulum, transport proteins with a major contribution of NS3/4A interactors, and transmembrane proteins for Core interactors. The interaction network emphasizes a high degree distribution, a high betweenness distribution, and high interconnectivity of targeted human proteins, in agreement with previous virus-host interactome studies. The set of HCV interactors also shows extensive enrichment for known targets of other viruses. The combined proteomic and gene silencing study revealed strong enrichment in modulators of HCV RNA replication, with the identification of 11 novel cofactors among our set of specific HCV partners. Finally, we report a novel immune evasion mechanism of NS3/4A protein based on its ability to affect nucleocytoplasmic transport of type I interferon-mediated signal transducer and activator of transcription 1 nuclear translocation. The study revealed highly stringent association between HCV interactors and their functional contribution to the viral replication cycle and pathogenesis.
Collapse
Affiliation(s)
- Marie-Anne Germain
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf) 2013; 208:148-65. [PMID: 23489300 DOI: 10.1111/apha.12096] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Abstract
A decrease in oxygenation is a life-threatening situation for most organisms. An evolutionarily conserved efficient and rapid hypoxia response mechanism activated by a hypoxia-inducible transcription factor (HIF) is present in animals ranging from the simplest multicellular phylum Placozoa to humans. In humans, HIF induces the expression of more than 100 genes that are required to increase oxygen delivery and to reduce oxygen consumption. As its name indicates HIF is found at protein level only in hypoxic cells, whereas in normoxia, it is degraded by the proteasome pathway. Prolyl 4-hydroxylases, enzymes that require oxygen in their reaction, are the cellular oxygen sensors regulating the stability of HIF. In normoxia, 4-hydroxyproline residues formed in the α-subunit of HIF by these enzymes lead to its ubiquitination by the von Hippel-Lindau E3 ubiquitin ligase and immediate destruction in proteasomes thus preventing the formation of a functional HIF αβ dimer. Prolyl 4-hydroxylation is inhibited in hypoxia, facilitating the formation of the HIF dimer and activation of its target genes, such as those for erythropoietin and vascular endothelial growth factor. This review starts with a summary of the molecular and catalytic properties and individual functions of the four HIF prolyl 4-hydroxylase isoenzymes. Induction of the hypoxia response via inhibition of the HIF prolyl 4-hydroxylases may provide a novel therapeutic target in the treatment of hypoxia-associated diseases. The current status of studies aiming at such therapeutic approaches is introduced in the final part of this review.
Collapse
Affiliation(s)
- J. Myllyharju
- Oulu Center for Cell-Matrix Research; Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology; University of Oulu; Oulu; Finland
| |
Collapse
|
41
|
Dysregulation of hypoxia-inducible factor by presenilin/γ-secretase loss-of-function mutations. J Neurosci 2013; 33:1915-26. [PMID: 23365231 DOI: 10.1523/jneurosci.3402-12.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presenilin (PSEN) 1 and 2 are the catalytic components of the γ-secretase complex, which cleaves a variety of proteins, including the amyloid precursor protein (APP). Proteolysis of APP leads to the formation of the APP intracellular domain (AICD) and amyloid β that is crucially involved in the pathogenesis of Alzheimer's disease. Prolyl-4-hydroxylase-domain (PHD) proteins regulate the hypoxia-inducible factors (HIFs), the master regulators of the hypoxic response. We previously identified the FK506 binding protein 38 (FKBP38) as a negative regulator of PHD2. Genetic ablation of PSEN1/2 has been shown to increase FKBP38 protein levels. Therefore, we investigated the role of PSEN1/2 in the oxygen sensing pathway using a variety of genetically modified cell and mouse lines. Increased FKBP38 protein levels and decreased PHD2 protein levels were found in PSEN1/2-deficient mouse embryonic fibroblasts and in the cortex of forebrain-specific PSEN1/2 conditional double knock-out mice. Hypoxic HIF-1α protein accumulation and transcriptional activity were decreased, despite reduced PHD2 protein levels. Proteolytic γ-secretase function of PSEN1/2 was needed for proper HIF activation. Intriguingly, PSEN1/2 mutations identified in Alzheimer patients differentially affected the hypoxic response, involving the generation of AICD. Together, our results suggest a direct role for PSEN in the regulation of the oxygen sensing pathway via the APP/AICD cleavage cascade.
Collapse
|
42
|
Song D, Li LS, Heaton-Johnson KJ, Arsenault PR, Master SR, Lee FS. Prolyl hydroxylase domain protein 2 (PHD2) binds a Pro-Xaa-Leu-Glu motif, linking it to the heat shock protein 90 pathway. J Biol Chem 2013; 288:9662-9674. [PMID: 23413029 DOI: 10.1074/jbc.m112.440552] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2, also known as Egg Laying Defective Nine homolog 1) is a key oxygen-sensing protein in metazoans. In an oxygen-dependent manner, PHD2 site-specifically prolyl hydroxylates the master transcription factor of the hypoxic response, hypoxia-inducible factor-α (HIF-α), thereby targeting HIF-α for degradation. In this report we show that the heat shock protein 90 (HSP90) co-chaperones p23 and FKBP38 interact via a conserved Pro-Xaa-Leu-Glu motif (where Xaa = any amino acid) in these proteins with the N-terminal Myeloid Nervy and DEAF-1 (MYND)-type zinc finger of PHD2. Knockdown of p23 augments hypoxia-induced HIF-1α protein levels and HIF target genes. We propose that p23 recruits PHD2 to the HSP90 machinery to facilitate HIF-1α hydroxylation. These findings identify a link between two ancient pathways, the PHD:HIF and the HSP90 pathways, and suggest that this link was established concurrent with the emergence of the PHD:HIF pathway in evolution.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lin-Sheng Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Katherine J Heaton-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Patrick R Arsenault
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
43
|
Sen Banerjee S, Thirunavukkarasu M, Tipu Rishi M, Sanchez JA, Maulik N, Maulik G. HIF-prolyl hydroxylases and cardiovascular diseases. Toxicol Mech Methods 2012; 22:347-58. [PMID: 22424133 DOI: 10.3109/15376516.2012.673088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolyl hydroxylases belong to the family of iron- and 2-oxoglutamate-dependent dioxygenase enzyme. Several distinct prolyl hydroxylases have been identified. The hypoxia-inducible factor (HIF) prolyl hydroxylase termed prolyl hydroxylase domain (PHD) enzymes play an important role in oxygen regulation in the physiological network. There are three isoforms that have been identified: PHD1, PHD2 and PHD3. Deletion of PHD enzymes result in stabilization of HIFs and offers potential treatment options for many ischemic disorders such as peripheral arterial occlusive disease, myocardial infarction, and stroke. All three isoforms are oxygen sensors that regulate the stability of HIFs. The degradation of HIF-1α is regulated by hydroxylation of the 402/504 proline residue by PHDs. Under hypoxic conditions, lack of oxygen causes hydroxylation to cease HIF-1α stabilization and subsequent translocation to the nucleus where it heterodimerizes with the constitutively expressed β subunit. Binding of the HIF-heterodimer to specific DNA sequences, named hypoxia-responsive elements, triggers the transactivation of target genes. PHD regulation of HIF-1α-mediated cardioprotection has resulted in considerable interest in these molecules as potential therapeutic targets in cardiovascular and ischemic diseases. In recent years, attention has been directed towards identifying small molecule inhibitors of PHD. It is postulated that such inhibition might lead to a clinically useful strategy for protecting the myocardium against ischemia and reperfusion injury. Recently, it has been reported that the orally absorbed PHD inhibitor GSK360A can modulate HIF-1α signaling and protect the failing heart following myocardial infarction. Furthermore, PHD1 deletion has been found to have beneficial effects through an increase in tolerance to hypoxia of skeletal muscle by reprogramming basal metabolism. In the mouse liver, such deletion has resulted in protection against ischemia and reperfusion. As a result of these preliminary findings, PHDs is attracting increasing interest as potential therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Sucharita Sen Banerjee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Kunze R, Zhou W, Veltkamp R, Wielockx B, Breier G, Marti HH. Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke 2012; 43:2748-56. [PMID: 22933585 DOI: 10.1161/strokeaha.112.669598] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Numerous factors involved in the adaptive response to hypoxia, including erythropoietin and vascular endothelial growth factor are transcriptionally regulated by hypoxia-inducible factors (HIFs). During normoxia, prolyl-4-hydroxylase domain (PHD) proteins hydroxylate HIF-α subunits, resulting in their degradation. We investigated the effect of neuronal deletion of PHD2, the most abundant isoform in brain, for stroke outcome. METHODS We generated neuron-specific Phd2 knockout mice and subjected animals to systemic hypoxia or transient middle cerebral artery occlusion. Infarct volume and cell death were determined by histology. HIF-1α, HIF-2α, and HIF target genes were analyzed by immunoblotting and real-time polymerase chain reaction, respectively. RESULTS Neuron-specific ablation of Phd2 significantly increased protein stability of HIF-1α and HIF-2α in the forebrain and enhanced expression of the neuroprotective HIF target genes erythropoietin and vascular endothelial growth factor as well as glucose transporter and glycolysis-related enzymes under hypoxic and ischemic conditions. Mice with Phd2-deficient neurons subjected to transient cerebral ischemia exhibited a strong reduction in infarct size, and cell death of hippocampal CA1 neurons located in the peri-infarct region was dramatically reduced in these mice. Vessel density in forebrain subregions, except for caudate-putamen, was not altered in Phd2-deficient animals. CONCLUSIONS Our findings denote that the endogenous adaptive response on hypoxic-ischemic insults in the brain is at least partly dependent on the activity of HIFs and identify PHD2 as the key regulator for the protective hypoxia response. The results suggest that specific inhibition of PHD2 may provide a useful therapeutic strategy to protect brain tissue from ischemic injury.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Haupt K, Jahreis G, Linnert M, Maestre-Martínez M, Malesevic M, Pechstein A, Edlich F, Lücke C. The FKBP38 catalytic domain binds to Bcl-2 via a charge-sensitive loop. J Biol Chem 2012; 287:19665-73. [PMID: 22523079 DOI: 10.1074/jbc.m111.317214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FKBP38 is a regulator of the prosurvival protein Bcl-2, but in the absence of detailed structural insights, the molecular mechanism of the underlying interaction has remained unknown. Here, we report the contact regions between Bcl-2 and the catalytic domain of FKBP38 derived by heteronuclear NMR spectroscopy. The data reveal that a previously identified charge-sensitive loop near the putative active site of FKBP38 is mainly responsible for Bcl-2 binding. The corresponding binding epitope of Bcl-2 could be identified via a peptide library-based membrane assay. Site-directed mutagenesis of the key residues verified the contact sites of this electrostatic protein/protein interaction. The derived structure model of the complex between Bcl-2 and the FKBP38 catalytic domain features both electrostatic and hydrophobic intermolecular contacts and provides a rationale for the regulation of the FKBP38/Bcl-2 interaction by Ca(2+).
Collapse
Affiliation(s)
- Katja Haupt
- Max Planck Research Unit for Enzymology of Protein Folding, 06120 Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Niecknig H, Tug S, Reyes BD, Kirsch M, Fandrey J, Berchner-Pfannschmidt U. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic Res 2012; 46:705-17. [PMID: 22360728 DOI: 10.3109/10715762.2012.669041] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function and survival of eukaryotic cells depends on a constant and sufficient oxygen supply. Cells recognize and respond to hypoxia by accumulation of the transcription factor hypoxia-inducible factor 1 (HIF-1), composed of an oxygen-sensitive HIF-1α and a constitutive HIF-1β subunit. Besides physiology, HIF-1 induction is involved in major pathological processes such as cardiovascular disease, inflammation and cancer, which are associated with the formation of reactive oxygen species (ROS). ROS have been reported to affect HIF-1 activity but the role for ROS in regulating HIF-1 has not been definitely settled. In order to shed light on the redox-regulation of HIF-1 by ROS, we studied the impact of exogenous ROS treatment (H(2)O(2)) on HIF-1α and HIF-1 regulatory protein prolyl hydroxylase 2 (PHD2) in the human osteosarcoma cell line U2OS. At early reaction periods, H(2)O(2) induced HIF-1α but at prolonged observation phases the opposite occurred. Herein, modulation of PHD activity appeared to be the key element, because knockdown and inhibition of the PHD2 prevented reduction of HIF-1α. However, H(2)O(2) treatment constantly suppressed HIF-1 transactivation at all time-points. Our data indicate a dual redox regulation of HIF-1α protein amount with a constant suppression of HIF-1 target gene expression by ROS.
Collapse
Affiliation(s)
- Helene Niecknig
- Institut für Physiologie, Universität Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Foxler DE, Bridge KS, James V, Webb TM, Mee M, Wong SCK, Feng Y, Constantin-Teodosiu D, Petursdottir TE, Bjornsson J, Ingvarsson S, Ratcliffe PJ, Longmore GD, Sharp TV. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol 2012; 14:201-8. [PMID: 22286099 DOI: 10.1038/ncb2424] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 12/16/2011] [Indexed: 12/15/2022]
Abstract
There are three prolyl hydroxylases (PHD1, 2 and 3) that regulate the hypoxia-inducible factors (HIFs), the master transcriptional regulators that respond to changes in intracellular O(2) tension. In high O(2) tension (normoxia) the PHDs hydroxylate two conserved proline residues on HIF-1α, which leads to binding of the von Hippel-Lindau (VHL) tumour suppressor, the recognition component of a ubiquitin-ligase complex, initiating HIF-1α ubiquitylation and degradation. However, it is not known whether PHDs and VHL act separately to exert their enzymatic activities on HIF-1α or as a multiprotein complex. Here we show that the tumour suppressor protein LIMD1 (LIM domain-containing protein) acts as a molecular scaffold, simultaneously binding the PHDs and VHL, thereby assembling a PHD-LIMD1-VHL protein complex and creating an enzymatic niche that enables efficient degradation of HIF-1α. Depletion of endogenous LIMD1 increases HIF-1α levels and transcriptional activity in both normoxia and hypoxia. Conversely, LIMD1 expression downregulates HIF-1 transcriptional activity in a manner depending on PHD and 26S proteasome activities. LIMD1 family member proteins Ajuba and WTIP also bind to VHL and PHDs 1 and 3, indicating that these LIM domain-containing proteins represent a previously unrecognized group of hypoxic regulators.
Collapse
Affiliation(s)
- Daniel E Foxler
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Altun M, Zhao B, Velasco K, Liu H, Hassink G, Paschke J, Pereira T, Lindsten K. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J Biol Chem 2011; 287:1962-9. [PMID: 22128162 DOI: 10.1074/jbc.m111.305615] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A proper cellular adaptation to low oxygen levels is essential for processes such as development, growth, metabolism, and angiogenesis. The response to decrease in oxygen supply, referred to as hypoxia, is also involved in numerous human diseases including cancer, inflammatory conditions, and vascular disease. The hypoxia-inducible factor 1-α (HIF-1α), a key player in the hypoxic response, is kept under stringent regulation. At normoxia, the levels are kept low as a consequence of the efficient degradation by the ubiquitin-proteasome system, and in response to hypoxia, the degradation is blocked and the accumulating HIF-1α promotes a transcriptional response essential for proper adaptation and survival. Here we show that the ubiquitin-specific protease-19 (USP19) interacts with components of the hypoxia pathway including HIF-1α and rescues it from degradation independent of its catalytic activity. In the absence of USP19, cells fail to mount an appropriate response to hypoxia, indicating an important role for this enzyme in normal or pathological conditions.
Collapse
Affiliation(s)
- Mikael Altun
- Departments of Cell and Molecular Biology, Karolinska Institutet, Box 285,171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U, Fandrey J, Wenger RH, Stiehl DP. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res 2011; 40:1928-43. [PMID: 22075993 PMCID: PMC3300025 DOI: 10.1093/nar/gkr978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human prolyl-4-hydroxylase domain (PHD) proteins 1–3 are known as cellular oxygen sensors, acting via the degradation of hypoxia-inducible factor (HIF) α-subunits. PHD2 and PHD3 genes are inducible by HIFs themselves, suggesting a negative feedback loop that involves PHD abundance. To identify novel regulators of the PHD2 gene, an expression array of 704 transcription factors was screened by a method that allows distinguishing between HIF-dependent and HIF-independent promoter regulation. Among others, the E-twenty six transcription factor ETS translocation variant 4 (ETV4) was found to contribute to PHD2 gene expression particularly under hypoxic conditions. Mechanistically, complex formation between ETV4 and HIF-1/2α was observed by mammalian two-hybrid and fluorescence resonance energy transfer analysis. HIF-1α domain mapping, CITED2 overexpression and factor inhibiting HIF depletion experiments provided evidence for cooperation between HIF-1α and p300/CBP in ETV4 binding. Chromatin immunoprecipitation confirmed ETV4 and HIF-1α corecruitment to the PHD2 promoter. Of 608 hypoxically induced transcripts found by genome-wide expression profiling, 7.7% required ETV4 for efficient hypoxic induction, suggesting a broad role of ETV4 in hypoxic gene regulation. Endogenous ETV4 highly correlated with PHD2, HIF-1/2α and several established markers of tissue hypoxia in 282 human breast cancer tissue samples, corroborating a functional interplay between the ETV4 and HIF pathways.
Collapse
Affiliation(s)
- Kristin Wollenick
- Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang X. FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J Biol Chem 2011; 286:43071-80. [PMID: 22030396 DOI: 10.1074/jbc.m111.269993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
FK506-binding protein 38 (FKBP38), a membrane-anchored, tetratricopeptide repeat (TPR)-containing immunophilin, associates with nascent plasma membrane ion channels in the endoplasmic reticulum (ER). It promotes the maturation of the human ether-à-go-go-related gene (HERG) potassium channel and maintains the steady state level of the cystic fibrosis transmembrane conductance regulator (CFTR), but the underlying mechanisms remain unclear. Using a combination of steady state and pulse-chase analyses, we show that FKBP38 knockdown increases protein synthesis but inhibits the post-translational folding of CFTR, leading to reduced steady state levels of CFTR in the ER, decreased processing, and impaired cell surface functional expression in Calu-3 human airway epithelial cells. The membrane anchorage of FKBP38 is necessary for the inhibition of protein synthesis but not for CFTR post-translational folding. In contrast, the peptidylprolyl cis/trans isomerase active site is utilized to promote CFTR post-translational folding but is not important for regulation of protein synthesis. Uncoupling FKBP38 from Hsp90 by substituting a conserved lysine in the TPR domain modestly enhances CFTR maturation and further reduces its synthesis. Removing the N-terminal glutamate-rich domain (ERD) slightly enhances CFTR synthesis but reduces its maturation, suggesting that the ERD contributes to FKBP38 biological activities. Our data support a dual role for FKBP38 in regulating CFTR synthesis and post-translational folding. In contrast to earlier prediction but consistent with in vitro enzymological studies, FKBP38 peptidylprolyl cis/trans isomerase plays an important role in membrane protein biogenesis on the cytoplasmic side of the ER membrane, whose activity is negatively regulated by Hsp90 through the TPR domain.
Collapse
|