1
|
Sharma R, Maity SK, Chakrabarti P, Katika MR, Kapettu S, Parsa KVL, Misra P. PIMT Controls Insulin Synthesis and Secretion through PDX1. Int J Mol Sci 2023; 24:ijms24098084. [PMID: 37175791 PMCID: PMC10179560 DOI: 10.3390/ijms24098084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic beta cell function is an important component of glucose homeostasis. Here, we investigated the function of PIMT (PRIP-interacting protein with methyl transferase domain), a transcriptional co-activator binding protein, in the pancreatic beta cells. We observed that the protein levels of PIMT, along with key beta cell markers such as PDX1 (pancreatic and duodenal homeobox 1) and MafA (MAF bZIP transcription factor A), were reduced in the beta cells exposed to hyperglycemic and hyperlipidemic conditions. Consistently, PIMT levels were reduced in the pancreatic islets isolated from high fat diet (HFD)-fed mice. The RNA sequencing analysis of PIMT knockdown beta cells identified that the expression of key genes involved in insulin secretory pathway, Ins1 (insulin 1), Ins2 (insulin 2), Kcnj11 (potassium inwardly-rectifying channel, subfamily J, member 11), Kcnn1 (potassium calcium-activated channel subfamily N member 1), Rab3a (member RAS oncogene family), Gnas (GNAS complex locus), Syt13 (synaptotagmin 13), Pax6 (paired box 6), Klf11 (Kruppel-Like Factor 11), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1) was attenuated due to PIMT depletion. PIMT ablation in the pancreatic beta cells and in the rat pancreatic islets led to decreased protein levels of PDX1 and MafA, resulting in the reduction in glucose-stimulated insulin secretion (GSIS). The results from the immunoprecipitation and ChIP experiments revealed the interaction of PIMT with PDX1 and MafA, and its recruitment to the insulin promoter, respectively. Importantly, PIMT ablation in beta cells resulted in the nuclear translocation of insulin. Surprisingly, forced expression of PIMT in beta cells abrogated GSIS, while Ins1 and Ins2 transcript levels were subtly enhanced. On the other hand, the expression of genes, PRIP/Asc2/Ncoa6 (nuclear receptor coactivator 6), Pax6, Kcnj11, Syt13, Stxbp1 (syntaxin binding protein 1), and Snap25 (synaptosome associated protein 25) associated with insulin secretion, was significantly reduced, providing an explanation for the decreased GSIS upon PIMT overexpression. Our findings highlight the importance of PIMT in the regulation of insulin synthesis and secretion in beta cells.
Collapse
Affiliation(s)
- Rahul Sharma
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Sujay K Maity
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhumohan R Katika
- Central Research Lab Mobile Virology Research & Diagnostics BSL3 Lab, ESIC Medical College and Hospital, Hyderabad 500038, India
| | - Satyamoorthy Kapettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| |
Collapse
|
2
|
Chen M, Li S, Zhu Z, Dai C, Hao X. Investigating the shared genetic architecture and causal relationship between pain and neuropsychiatric disorders. Hum Genet 2023; 142:431-443. [PMID: 36445456 DOI: 10.1007/s00439-022-02507-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Pain often occurs in parallel with neuropsychiatric disorders. However, the underlying mechanisms and potential causality have not been well studied. We collected the genome-wide association study (GWAS) summary statistics of 26 common pain and neuropsychiatric disorders with sample size ranging from 17,310 to 482,730 in European population. The genetic correlation between pair of pain and neuropsychiatric disorders, as well as the relevant cell types were investigated by linkage disequilibrium (LD) score regression analyses. Then, transcriptome-wide association study (TWAS) was applied to identify the potential shared genes by integrating the gene expression information and GWAS. In addition, Mendelian randomization (MR) analyses were conducted to infer the potential causality between pain and neuropsychiatric disorders. Among the 169 pairwise pain and neuropsychiatric disorders, 55 pairs showed positive correlations (median rg = 0.43) and 9 pairs showed negative correlations (median rg = -0.31). Using MR analyses, 26 likely causal associations were identified, including that neuroticism and insomnia were risk factors for most of short-term pain, and multisite chronic pain was risk factor for neuroticism, insomnia, major depressive disorder and attention deficit/hyperactivity disorder, and vice versa. The signals of pain and neuropsychiatric disorders tended to be enriched in the functional regions of cell types from central nervous system (CNS). A total of 19 genes shared in at least one pain and neuropsychiatric disorder pair were identified by TWAS, including AMT, NCOA6, and UNC45A, which involved in glycine degradation, insulin secretion, and cell proliferation, respectively. Our findings provided the evidence of shared genetic structure, causality and potential shared pathogenic mechanisms between pain and neuropsychiatric disorders, and enhanced our understanding of the comorbidities of pain and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mengya Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ziwei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengguqiu Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Oh GS, Kim SR, Lee ES, Yoon J, Shin MK, Ryu HK, Kim DS, Kim SW. Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6. Mol Cells 2022; 45:180-192. [PMID: 35258009 PMCID: PMC9001147 DOI: 10.14348/molcells.2022.2222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.
Collapse
Affiliation(s)
- Gyun-Sik Oh
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
| | - Si-Ryong Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
| | - Jin Yoon
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Kyung Shin
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyeon Kyoung Ryu
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong Seop Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
4
|
Yoon J, Lee KJ, Oh GS, Kim GH, Kim SW. Regulation of Nampt expression by transcriptional coactivator NCOA6 in pancreatic β-cells. Biochem Biophys Res Commun 2017; 487:600-606. [PMID: 28435063 DOI: 10.1016/j.bbrc.2017.04.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator and crucial for insulin secretion and glucose metabolism in pancreatic β-cells. However, the regulatory mechanism of β-cell function by NCOA6 is largely unknown. In this study, we found that the transcript levels of nicotinamide phosphoribosyltransferase (Nampt) were decreased in islets of NCOA6+/- mice compared with NCOA6+/+ mice. Moreover, NCOA6 overexpression increased the levels of Nampt transcripts in the mouse pancreatic β-cell line NIT-1. Promoter analyses showed that transcriptional activity of the Nampt promoter was stimulated by cooperation of sterol regulatory element binding protein-1c (SREBP-1c) and NCOA6. Additional studies using mutant promoters demonstrated that SREBP-1c activates Nampt promoter through the sterol regulatory element (SRE), but not through the E-box. Using chromatin immunoprecipitation assay, NCOA6 was also shown to be directly recruited to the SRE region of the Nampt promoter. Furthermore, treatment with nicotinamide mononucleotide (NMN), a product of the Nampt reaction and a key NAD+ intermediate, ameliorates glucose-stimulated insulin secretion from NCOA6+/- islets. These results suggest that NCOA6 stimulates insulin secretion, at least partially, by modulating Nampt expression in pancreatic β-cells.
Collapse
Affiliation(s)
- Jin Yoon
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyung Jin Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gyun-Sik Oh
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Geun Hyang Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
5
|
Scoville DW, Cyphert HA, Liao L, Xu J, Reynolds A, Guo S, Stein R. MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function. Diabetes 2015; 64:3772-83. [PMID: 26180087 PMCID: PMC4613979 DOI: 10.2337/db15-0281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
Insulin produced by islet β-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate β-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was used to isolate MafA transcription factor-binding proteins. Among the many coregulators identified were all of the subunits of the mixed-lineage leukemia 3 (Mll3) and 4 (Mll4) complexes, with histone 3 lysine 4 methyltransferases strongly associated with gene activation. MafA was bound to the ∼1.5 MDa Mll3 and Mll4 complexes in size-fractionated β-cell extracts. Likewise, closely related human MAFB, which is important to β-cell formation and coproduced with MAFA in adult human islet β-cells, bound MLL3 and MLL4 complexes. Knockdown of NCOA6, a core subunit of these methyltransferases, reduced expression of a subset of MAFA and MAFB target genes in mouse and human β-cell lines. In contrast, a broader effect on MafA/MafB gene activation was observed in mice lacking NCoA6 in islet β-cells. We propose that MLL3 and MLL4 are broadly required for controlling MAFA and MAFB transactivation during development and postnatally.
Collapse
Affiliation(s)
- David W Scoville
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Al Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland Stein
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
6
|
Zhu Y, You W, Wang H, Li Y, Qiao N, Shi Y, Zhang C, Bleich D, Han X. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes 2013; 62:3194-206. [PMID: 23761103 PMCID: PMC3749364 DOI: 10.2337/db13-0151] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overnutrition and genetics both contribute separately to pancreatic β-cell dysfunction, but how these factors interact is unclear. This study was aimed at determining whether microRNAs (miRNAs) provide a link between these factors. In this study, miRNA-24 (miR-24) was highly expressed in pancreatic β-cells and further upregulated in islets from genetic fatty (db/db) or mice fed a high-fat diet, and islets subject to oxidative stress. Overexpression of miR-24 inhibited insulin secretion and β-cell proliferation, potentially involving 351 downregulated genes. By using bioinformatic analysis combined with luciferase-based promoter activity assays and quantitative real-time PCR assays, we identified two maturity-onset diabetes of the young (MODY) genes as direct targets of miR-24. Silencing either of these MODY genes (Hnf1a and Neurod1) mimicked the cellular phenotype caused by miR-24 overexpression, whereas restoring their expression rescued β-cell function. Our findings functionally link the miR-24/MODY gene regulatory pathway to the onset of type 2 diabetes and create a novel network between nutrient overload and genetic diabetes via miR-24.
Collapse
Affiliation(s)
- Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weiyan You
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongdong Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Nan Qiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuguang Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - David Bleich
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Corresponding author: Xiao Han,
| |
Collapse
|
7
|
Abstract
ASC-2 (activating signal co-integrator-2, also known as AIB3 and NCoA6) is a transcriptional co-activator and regulates insulin secretion and β-cell survival. The present study was performed to elucidate the role of ASC-2 in the regulation of insulin sensitivity. Although islet cells from 10-week-old ASC-2+/- mice secreted less insulin than wild-type islets, there was no significant difference in glucose tolerance between ASC-2+/- and wild-type mice. However, ASC-2+/- mice did show increased insulin sensitivity compared with wild-type mice in insulin tolerance tests. Consistently, the levels of phosphorylated Akt were higher in ASC-2+/- hepatocytes than in wild-type hepatocytes after insulin treatment. Moreover, decreases in phosphoenol pyruvate carboxykinase mRNA in refed mice were more prominent in ASC-2+/- livers than in wild-type livers. Interestingly, the expression levels of SOCS1 (suppressor of cytokine signalling 1) and SOCS3, well-known insulin signalling inhibitors, were decreased in ASC-2+/- hepatocytes and increased in ASC-2-overexpressing hepatocytes. Furthermore, ASC-2 was recruited to the promoter region of SOCS1 and potentiated the transcription by SREBP-1c (sterol-regulatory-element-binding protein-1c). This transcription-activating function of ASC-2 was diminished by mutations of SREBP-1c-binding sites in the SOCS1 promoter. Taken together, these results suggest that ASC-2 negatively affects hepatic insulin sensitivity, at least in part, through induction of the insulin signalling inhibitors SOCS1 and SOCS3.
Collapse
|
8
|
Li Q, Xu J. Identification and characterization of the alternatively spliced nuclear receptor coactivator-6 isoforms. Int J Biol Sci 2011; 7:505-16. [PMID: 21552418 PMCID: PMC3088874 DOI: 10.7150/ijbs.7.505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022] Open
Abstract
The nuclear receptor coactivator-6 (NCOA6, AIB3, PRIP, ASC-2, TRBP, RAP250 or NRC) is a co-activator for nuclear hormone receptors and certain other transcription factors. NCOA6 plays an important role in embryonic development, adipocyte differentiation, metabolism and breast carcinogenesis. The human and mouse NCOA6 genes had 15 and 14 previously identified exons, respectively. This study further identified an alternatively spliced exon 11b (E11b) in human or E10b in mouse, which codes a short polypeptide and a Stop codon, resulting in splicing variants lacking the last four exon-coded polypeptide. Analyses of mouse testis NCOA6 mRNAs identified four alternatively spliced variants, NCOA6-α (without E10b), -β (without E10a and E10b), -γ (with E10a and E10b) and -δ (without E10a but with E10b). These isoforms were detected in multiple mouse tissues and in MDA-MB-435 human cells. NCOA6-α and -β are mainly located in the nucleus; NCOA6-γ is located in both cytoplasm and nucleus; and NCOA6-δ is mainly located in mitochondria. The C-terminus coded by the last four exons was responsible for locating NCOA6-α and -β into the nucleus. The human E11a or mouse E10a-coded region is responsible for distributing NCOA6-γ in both cytoplasm and nucleus, while the region coded by E8-E9 in human or E7-E8 in mouse is responsible for directing NCOA6-δ to mitochondria. Our assays also demonstrated that NCOA6-α and -β could significantly enhance estrogen receptor α-mediated transcription, but NCOA6-γ and -δ were unable to do so. These results suggest that the diverse physiological function of NCOA6 may be mediated by multiple isoforms expressed in different tissues and localized in different subcellular compartments.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
9
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
10
|
Wang WL, Li Q, Xu J, Cvekl A. Lens fiber cell differentiation and denucleation are disrupted through expression of the N-terminal nuclear receptor box of NCOA6 and result in p53-dependent and p53-independent apoptosis. Mol Biol Cell 2010; 21:2453-68. [PMID: 20484573 PMCID: PMC2903674 DOI: 10.1091/mbc.e09-12-1031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6) is a multifunctional protein implicated in embryonic development, cell survival, and homeostasis. An 81-amino acid fragment, dnNCOA6, containing the N-terminal nuclear receptor box (LXXLL motif) of NCOA6, acts as a dominant-negative (dn) inhibitor of NCOA6. Here, we expressed dnNCOA6 in postmitotic transgenic mouse lens fiber cells. The transgenic lenses showed reduced growth; a wide spectrum of lens fiber cell differentiation defects, including reduced expression of gamma-crystallins; and cataract formation. Those lens fiber cells entered an alternate proapoptotic pathway, and the denucleation (karyolysis) process was stalled. Activation of caspase-3 at embryonic day (E)13.5 was followed by double-strand breaks (DSBs) formation monitored via a biomarker, gamma-H2AX. Intense terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) signals were found at E16.5. Thus, a window of approximately 72 h between these events suggested prolonged though incomplete apoptosis in the lens fiber cell compartment that preserved nuclei in its cells. Genetic experiments showed that the apoptotic-like processes in the transgenic lens were both p53-dependent and p53-independent. Lens-specific deletion of Ncoa6 also resulted in disrupted lens fiber cell differentiation. Our data demonstrate a cell-autonomous role of Ncoa6 in lens fiber cell differentiation and suggest novel insights into the process of lens fiber cell denucleation and apoptosis.
Collapse
Affiliation(s)
- Wei-Lin Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
11
|
Ogihara T, Chuang JC, Vestermark GL, Garmey JC, Ketchum RJ, Huang X, Brayman KL, Thorner MO, Repa JJ, Mirmira RG, Evans-Molina C. Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling. J Biol Chem 2010; 285:5392-5404. [PMID: 20007976 PMCID: PMC2820768 DOI: 10.1074/jbc.m109.064659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/01/2009] [Indexed: 02/05/2023] Open
Abstract
Recent studies in rodent models suggest that liver X receptors (LXRs) may play an important role in the maintenance of glucose homeostasis and islet function. To date, however, no studies have comprehensively examined the role of LXRs in human islet biology. Human islets were isolated from non-diabetic donors and incubated in the presence or absence of two synthetic LXR agonists, TO-901317 and GW3965, under conditions of low and high glucose. LXR agonist treatment enhanced both basal and stimulated insulin secretion, which corresponded to an increase in the expression of genes involved in anaplerosis and reverse cholesterol transport. Furthermore, enzyme activity of pyruvate carboxylase, a key regulator of pyruvate cycling and anaplerotic flux, was also increased. Whereas LXR agonist treatment up-regulated known downstream targets involved in lipogenesis, we observed no increase in the accumulation of intra-islet triglyceride at the dose of agonist used in our study. Moreover, LXR activation increased expression of the genes encoding hormone-sensitive lipase and adipose triglyceride lipase, two enzymes involved in lipolysis and glycerolipid/free fatty acid cycling. Chronically, insulin gene expression was increased after treatment with TO-901317, and this was accompanied by increased Pdx-1 nuclear protein levels and enhanced Pdx-1 binding to the insulin promoter. In conclusion, our data suggest that LXR agonists have a direct effect on the islet to augment insulin secretion and expression, actions that should be considered either as therapeutic or unintended side effects, as these agents are developed for clinical use.
Collapse
Affiliation(s)
- Takeshi Ogihara
- From the Herman B Wells Center for Pediatric Research and
- the Departments of Pediatrics and
| | | | | | | | - Robert J. Ketchum
- the Department of Structural Medicine, Rocky Vista University, Parker, Colorado 80134
| | - Xiaolun Huang
- Surgery, University of Virginia, Charlottesville, Virginia 22904, and
| | | | | | - Joyce J. Repa
- the Departments of Physiology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Raghavendra G. Mirmira
- From the Herman B Wells Center for Pediatric Research and
- the Departments of Pediatrics and
- Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carmella Evans-Molina
- From the Herman B Wells Center for Pediatric Research and
- Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
12
|
Roles of histone H3-lysine 4 methyltransferase complexes in NR-mediated gene transcription. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:343-82. [PMID: 20374709 DOI: 10.1016/s1877-1173(09)87010-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation by nuclear hormone receptors (NRs) requires multiple coregulators that modulate chromatin structures by catalyzing a diverse array of posttranslational modifications of histones. Different combinations of these modifications yield dynamic functional outcomes, constituting an epigenetic histone code. This code is inscribed by histone-modifying enzymes and decoded by effector proteins that recognize specific covalent marks. One important modification associated with active chromatin structures is methylation of histone H3-lysine 4 (H3K4). Crucial roles for this modification in NR transactivation have been recently highlighted through our purification and subsequent characterization of a steady-state complex associated with ASC-2, a coactivator of NRs and other transcription factors. This complex, designated ASCOM for ASC-2 complex, contains H3K4-methyltransferase MLL3/HALR or its paralogue MLL4/ALR and represents the first Set1-like H3K4-methyltransferase complex to be reported in vertebrates. This review focuses on recent progress in our understanding of how ASCOM-MLL3 and ASCOM-MLL4 influence NR-mediated gene transcription and of their physiological function.
Collapse
|
13
|
Kim GH, Park K, Yeom SY, Lee KJ, Kim G, Ko J, Rhee DK, Kim YH, Lee HK, Kim HW, Oh GT, Lee KU, Lee JW, Kim SW. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Mol Endocrinol 2009; 23:966-74. [PMID: 19342446 DOI: 10.1210/me.2008-0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2) functions as a transcriptional coactivator of many nuclear receptors and also plays important roles in the physiology of the liver and pancreas by interacting with liver X receptors (LXRs), which antagonize the development of atherosclerosis. This study was undertaken to establish the specific function of ASC-2 in macrophages and atherogenesis. Intriguingly, ASC-2 was more highly expressed in macrophages than in the liver and pancreas. To inhibit LXR-specific activity of ASC-2, we used DN2, which contains the C-terminal LXXLL motif of ASC-2 and thereby acts as an LXR-specific, dominant-negative mutant of ASC-2. In DN2-overexpressing transgenic macrophages, cellular cholesterol content was higher and cholesterol efflux lower than in control macrophages. DN2 reduced LXR ligand-dependent increases in the levels of ABCA1, ABCG1, and apolipoprotein E (apoE) transcripts as well as the activity of luciferase reporters driven by the LXR response elements (LXREs) of ABCA1, ABCG1, and apoE genes. These inhibitory effects of DN2 were reversed by overexpression of ASC-2. Chromatin immunoprecipitation analysis demonstrated that ASC-2 was recruited to the LXREs of the ABCA1, ABCG1, and apoE genes in a ligand-dependent manner and that DN2 interfered with the recruitment of ASC-2 to these LXREs. Furthermore, low-density lipoprotein receptor (LDLR)-null mice receiving bone marrow transplantation from DN2-transgenic mice showed accelerated atherogenesis when administered a high-fat diet. Taken together, these results indicate that suppression of the LXR-specific activity of ASC-2 results in both defective cholesterol metabolism in macrophages and accelerated atherogenesis, suggesting that ASC-2 is an antiatherogenic coactivator of LXRs in macrophages.
Collapse
Affiliation(s)
- Geun Hyang Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Garapaty S, Xu CF, Trojer P, Mahajan MA, Neubert TA, Samuels HH. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J Biol Chem 2009; 284:7542-52. [PMID: 19131338 DOI: 10.1074/jbc.m805872200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1-associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5, suggesting that the complex might methylate histone H3-Lys-4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys-4. The identified components form at least two distinctly sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of an NIF-1 complex of approximately 1.5 MDa and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-alpha was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes, although the separate NIF-1 and NRC complexes appear to functionally interact in the cell.
Collapse
Affiliation(s)
- Shivani Garapaty
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
15
|
Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 2008; 294:1-9. [PMID: 18687378 DOI: 10.1016/j.mce.2008.07.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/15/2008] [Accepted: 07/04/2008] [Indexed: 12/26/2022]
Abstract
In recent years major progress has been made in understanding the role of transcription factors in the development of the endocrine pancreas in the mouse. Here we describe how a number of these transcription factors play a role in maintaining the differentiated phenotype of the beta cell, and in the mechanisms that allow the beta cell to adapt to changing metabolic demands that occur throughout life. Amongst these factors, Pdx1 plays a critical role in defining the region of the primitive gut that will form the pancreas, Ngn3 expression drives cells towards an endocrine lineage, and a number of additional proteins including Pdx1, in a second wave of expression, Pax4, NeuroD1/beta2, and MafA act as beta cell differentiation factors. In the mature beta cell Pdx1, MafA, beta2, and Nkx2.2 play important roles in regulating expression of insulin and to some extent other genes responsible for maintaining beta cell function. We emphasise here that data from gene expression studies in rodents seldom map on to the known structure of the corresponding human promoters. In the adult the beta cell is particularly susceptible to autoimmune-mediated attack and to the toxic metabolic milieu associated with over-eating, and utilises a number of these transcription factors in its defence. Pdx1 has anti-apoptotic and proliferative activities that help facilitate the maintenance of beta cell mass, while Ngn3 may be involved in the recruitment of progenitor cells, and Pax4 (and possibly HNF1alpha and Hnf4alpha) in the proliferation of beta cells in the adult pancreas. Other transcription factors with a more widespread pattern of expression that play a role in beta cell survival or proliferation include Foxo1, CREB family members, NFAT, FoxM1, Snail and Asc-2.
Collapse
Affiliation(s)
- Andreia S Bernardo
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
16
|
Burghardt H, López-Bermejo A, Baumgartner B, Ibáñez L, Vendrell J, Ricart W, Palacín M, Fernández-Real JM, Zorzano A. The nuclear receptor coactivator AIB3 is a modulator of HOMA beta-cell function in nondiabetic children. Clin Endocrinol (Oxf) 2008; 69:730-6. [PMID: 18462265 DOI: 10.1111/j.1365-2265.2008.03232.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The amplified in breast cancer-3 protein (AIB3) is a nuclear coactivator involved in proliferation, apoptosis and development. AIB3 loss of function causes deficient insulin secretion in mice, indicating that AIB3 participates in beta-cell regulation. Our objective was to evaluate genetic variants located on AIB3 associated with beta-cell function in children and to analyse the effect of AIB3 overexpression on gene expression in insulin 1 (INS-1) beta-pancreatic cells. DESIGN Polymorphisms from AIB3 were genotyped in 148 children with normal or low birthweights for gestational age. The effect of AIB3 overexpression on gene expression was analysed by real-time polymerase chain reaction (PCR) in INS-1 cells. RESULTS AIB3 variants were associated with homeostasis model assessment of beta-cell function (HOMA-beta-cell) in children with normal or low birthweights for gestational age, but not with HOMA of insulin resistance (HOMA-IR), or with birthweight. AIB3 overexpression increased the expression of genes involved in signalling, such as IRS-1, IRS-2, IGF-II receptor or Foxo1, or of genes that control insulin secretion, such as Cplx2, Glut2 or Kv3.1 in INS-1 cells. CONCLUSIONS Our results suggest that AIB3 contributes to the maintenance of beta-cell function in nondiabetic children and regulates gene expression in INS-1 cells.
Collapse
Affiliation(s)
- Hans Burghardt
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mahajan MA, Samuels HH. Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development. NUCLEAR RECEPTOR SIGNALING 2008; 6:e002. [PMID: 18301782 PMCID: PMC2254332 DOI: 10.1621/nrs.06002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 12/11/2007] [Indexed: 11/20/2022]
Abstract
NCoA6 (also referred to as NRC, ASC-2, TRBP, PRIP and RAP250) was originally isolated as a ligand-dependent nuclear receptor interacting protein. However, NCoA6 is a multifunctional coregulator or coactivator necessary for transcriptional activation of a wide spectrum of target genes. The NCoA6 gene is amplified and overexpressed in breast, colon and lung cancers. NCoA6 is a 250 kDa protein which harbors a potent N-terminal activation domain, AD1; and a second, centrally-located activation domain, AD2, which is necessary for nuclear receptor signaling. The intrinsic activation potential of NCoA6 is regulated by its C-terminal STL regulatory domain. Near AD2 is an LxxLL-1 motif which interacts with a wide spectrum of ligand-bound NRs with high-affinity. A second LxxLL motif (LxxLL-2) located towards the C-terminal region is more restricted in its NR specificity. The potential role of NCoA6 as a co-integrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known cofactors including CBP/p300. NCoA6 has been shown to associate with at least three distinct coactivator complexes containing Set methyltransferases as core polypeptides. The composition of these complexes suggests that NCoA6 may play a fundamental role in transcriptional activation by modulating chromatin structure through histone methylation. Knockout studies in mice suggest that NCoA6 is an essential coactivator. NCoA6-/- embryos die between 8.5-12.5 dpc from general growth retardation coupled with developmental defects in the heart, liver, brain and placenta. NCoA6-/- MEFs grow at a reduced rate compared to WT MEFs and spontaneously undergo apoptosis, indicating the importance of NCoA6 as a prosurvival and anti-apoptotic gene. Studies with NCoA6+/- and conditional knockout mice suggest that NCoA6 is a pleiotropic coregulator involved in growth, development, wound healing and maintenance of energy homeostasis.
Collapse
Affiliation(s)
- Muktar A Mahajan
- Department of Pharmacology, NYU School of Medicine, New York, New York, USA.
| | | |
Collapse
|
18
|
Li Q, Chu MJ, Xu J. Tissue- and nuclear receptor-specific function of the C-terminal LXXLL motif of coactivator NCoA6/AIB3 in mice. Mol Cell Biol 2007; 27:8073-86. [PMID: 17908797 PMCID: PMC2169164 DOI: 10.1128/mcb.00451-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/11/2007] [Accepted: 09/17/2007] [Indexed: 02/04/2023] Open
Abstract
Although the LXXLL motif of nuclear receptor (NR) coactivators is essential for interaction with NRs, its role has not been assessed in unbiased animal models. The nuclear receptor coactivator 6 (NCoA6; also AIB3, PRIP, ASC-2, TRBP, RAP250, or NRC) is a coactivator containing an N-terminal LXXLL-1 (L1) and a C-terminal L2. L1 interacts with many NRs, while L2 interacts with the liver X receptor alpha (LXRalpha) and the estrogen receptor alpha (ERalpha). We generated mice in which L2 was mutated into AXXAL (L2m) to disrupt its interaction with LXRalpha and ERalpha. NCoA6(L2m/L2m) mice exhibited normal reproduction, mammary gland morphogenesis, and ERalpha target gene expression. In contrast, when treated with an LXRalpha agonist, lipogenesis and the LXRalpha target gene expression were significantly reduced in NCoA6(L2m/L2m) mice. The induction of Cyp7A1 expression by a high-cholesterol diet was impaired in NCoA6(L2m/L2m) mice, which reduced bile acid synthesis in the liver and excretion in the feces and resulted in cholesterol accumulation in the liver and blood. These results demonstrate that L2 plays a tissue- and NR-specific role: it is required for NCoA6 to mediate LXRalpha-regulated lipogenesis and cholesterol/bile acid homeostasis in the liver but not required for ERalpha function in the mammary gland.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|