1
|
Hao Z, Li J, Gao F, Ren W, Lu X, Feng J, Zhang C, Bian S, Xie J, Luo M, Chang J, Yang W, Hou R, Muyey DM, Xu J, Cui J, Chen X, Wang H. A germline JAK2 exon12 mutation and a late somatic CALR mutation in a patient with essential thrombocythemia. Front Oncol 2024; 13:1265022. [PMID: 38239637 PMCID: PMC10794477 DOI: 10.3389/fonc.2023.1265022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Background It has been discovered that Janus kinase 2 (JAK2) exon12 mutations lead to the polycythemia vera (PV) phenotype, while somatic mutations of calreticulin (CALR) are associated with essential thrombocythemia (ET) or primary myelofibrosis. In this article, we report a case of ET with coexistence of JAK2 exon12 and CALR mutations. The objective of this study was to elucidate the pathogenicity mechanism of a JAK2 exon12 mutation (JAK2N533S) and the role of the coexistence of mutations on the hematological phenotype. Methods We designed a colony analysis of tumor cells obtained from this patient, and attempted to identify mutant genes using DNA from hair follicles. Mutation impairment prediction and conservative analysis were conducted to predict the mutation impairment and structure of JAK2N533S. In addition, we conducted a functional analysis of JAK2N533S by constructing Ba/F3 cell models. Results Three distinct tumor subclones, namely JAK2N533Shet+/CALRtype1het +, JAK2N533Shet+/CALR wt, and JAK2N533Shet+/CALRtype1hom +, were identified from the 17 selected erythroid and 21 selected granulocyte colonies. The analysis of hair follicles yielded positive results for JAK2N533S. According to the bioinformatics analysis, JAK2N533S may exert only a minor effect on protein function. Functional studies showed that JAK2N533S did not have a significant effect on the proliferation of Ba/F3 cells in the absence of interleukin-3 (IL-3), similar to wild-type JAK2. Notably, there were no increased phosphorylation levels of JAK2-downstream signaling proteins, including signal transducer and activator of transcription 3 (STAT3) and STAT5, in Ba/F3 cells harboring the JAK2N533S. Conclusion Our study revealed that the JAK2N533Shet+/CALRtype1het+ subclone was linked to a significant expansion advantage in this patient, indicating that it may contribute to the development of the ET phenotype. We further demonstrated that JAK2N533S, as a noncanonical JAK2 exon12 mutation, is a germline mutation that may not exert an effect on cell proliferation and protein function. These results and the present body of available data imply that certain noncanonical JAK2 mutations are not gain-of-function mutations leading to the development of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Institute of Genetics, Changzhi Maternal and Child Health Hospital, Changzhi, China
| | - Feng Gao
- Clinical Laboratory, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Weixiao Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Lu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chen Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sicheng Bian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Xie
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Luo
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wanfang Yang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiangxia Cui
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Takeda K, Tago K, Funakoshi-Tago M. The indispensable role of the RNA helicase DDX5 in tumorigenesis induced by the myeloproliferative neoplasm-associated JAK2V617F mutant. Cell Signal 2023; 102:110537. [PMID: 36442590 DOI: 10.1016/j.cellsig.2022.110537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A point mutation (V617F) in the Janus kinase 2 (JAK2) gene results in the production of disorderly activated tyrosine kinase, which causes myeloproliferative neoplasms (MPN). We herein demonstrated that the RNA helicase DDX5 was highly expressed at the mRNA and protein levels through the activation of signal transducer and activator of transcription 5 (STAT5) in Ba/F3 cells expressing a JAK2V617F mutant and erythropoietin receptor (V617F/EpoR cells) and MPN patient-derived HEL cells. A treatment with the JAK1/2 inhibitor, ruxolitinib and STAT5 inhibitor, pimozide significantly inhibited DDX5 mRNA expression and enhanced the degradation of DDX5 in these cells, suggesting that the JAK2V617F mutant positively regulates DDX5 mRNA expression and DDX5 protein stability by activating STAT5. The knockdown of DDX5 specifically inhibited the activation of mechanistic target of rapamycin (mTOR) in V617F/EpoR cells and HEL cells and significantly suppressed the proliferation of these cells. Furthermore, the knockdown of DDX5 markedly suppressed tumorigenesis, splenomegaly, and liver hypertrophy caused by an inoculation of V617F/EpoR cells in nude mice. Collectively, these results revealed that JAK2V617F exhibits transforming activity by inducing the expression of DDX5 in a STAT5-dependent manner, indicating the potential of the JAK2V617F/STAT5/DDX5 axis as a therapeutic target in the treatment of MPN.
Collapse
Affiliation(s)
- Kengo Takeda
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan.
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
3
|
Li XQ, Liu JJ, Liu CC. Case report: Double L611S/V617L JAK2 mutation in a patient with polycythemia vera originally diagnosed with essential thrombocythemia. Front Oncol 2022; 12:937362. [DOI: 10.3389/fonc.2022.937362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Double JAK2 mutations have rarely been described in myeloproliferative neoplasms (MPNs) and are demonstrated to be associated with the polycythemia vera (PV) phenotype. Here, we first report a case of a PV patient with a de novo double L611S/V617L in cis mutation of JAK2. A 40-year-old woman was admitted to the hospital with massive splenomegaly, multiple splenic infarcts, and abdominal pain. She had a 4-year history of erythrocytosis with an antecedent 10-year history of thrombocytosis before coming to our hospital. She was diagnosed with JAK2 L611S/V617L double-mutant PV after a detailed medical examination in 2017. According to the literature, IFNα therapy can induce clinical, hematological, histopathological, and occasionally molecular remission in individuals with MPNs. Our report demonstrates that combination therapy with ruxolitinib and IFNα can lead to a substantial reduction in JAK2 L611S/V617L double-mutant allele burden.
Collapse
|
4
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Lebecque B, Grèze V, Tassin T, Mareynat G, Dannus LT, Boiret-Dupré N, Veyrat-Masson R, Tribalat N, Berger MG, Bourgne C. Double L611S/V617F JAK2 mutation in a child with erythrocytosis. Pediatr Blood Cancer 2021; 68:e28816. [PMID: 33314749 DOI: 10.1002/pbc.28816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin Lebecque
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Victoria Grèze
- Pediatric Hematology and Oncology, Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Thomas Tassin
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Gabrielle Mareynat
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Louis-Thomas Dannus
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Nathalie Boiret-Dupré
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Richard Veyrat-Masson
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Nathalie Tribalat
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Marc Gabriel Berger
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Céline Bourgne
- Hématologie (Biologie), Centre Hospitalier Universitaire de Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| |
Collapse
|
6
|
Motegi T, Kochi Y, Matsuda K, Kubo M, Yamamoto K, Momozawa Y. Identification of rare coding variants in TYK2 protective for rheumatoid arthritis in the Japanese population and their effects on cytokine signalling. Ann Rheum Dis 2019; 78:1062-1069. [PMID: 31118190 DOI: 10.1136/annrheumdis-2019-215062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although genome-wide association studies (GWAS) have identified approximately 100 loci for rheumatoid arthritis (RA), the disease mechanisms are not completely understood. We evaluated the pathogenesis of RA by focusing on rare coding variants. METHODS The coding regions of 98 candidate genes identified by GWAS were sequenced in 2294 patients with RA and 4461 controls in Japan. An association analysis was performed using cases and controls for variants, genes and domains of TYK2. Cytokine responses for two associated variants (R231W, rs201917359; and R703W, rs55882956) in TYK2 as well as a previously reported risk variant (P1004A, rs34536443) for multiple autoimmune diseases were evaluated by reporter assays. RESULTS A variant in TYK2 (R703W) showed a suggestive association (p=5.47×10-8, OR=0.48). We observed more accumulation of rare coding variants in controls in TYK2 (p=3.94×10-12, OR=0.56). The four-point-one, ezrin, radixin, moesin (FERM; 2.14×10-3, OR=0.66) and pseudokinase domains (1.63×10-8, OR=0.52) of TYK2 also showed enrichment of variants in controls. R231W in FERM domain especially reduced interleukin (IL)-6 and interferon (IFN)-γ signalling, whereas P1104A in kinase domain reduced IL-12, IL-23 and IFN-α signalling. R703W in pseudokinase domain reduced cytokine signals similarly to P1104A, but the effects were weaker than those of P1104A. CONCLUSIONS The FERM and pseudokinase domains in TYK2 were associated with the risk of RA in the Japanese population. Variants in TYK2 had different effects on cytokine signalling, suggesting that the regulation of selective cytokine signalling is a target for RA treatment.
Collapse
Affiliation(s)
- Tomoki Motegi
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Funakoshi-Tago M, Tsuruya R, Ueda F, Ishihara A, Kasahara T, Tamura H, Tago K. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant. Cytokine 2019; 123:154753. [PMID: 31255914 DOI: 10.1016/j.cyto.2019.154753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 01/30/2023]
Abstract
In the majority of myeloproliferative neoplasms (MPNs) patients, a point mutation, V617F has been found in Janus kinase 2 (JAK2) gene, and this JAK2 mutant provoked aberrant signaling pathway. In the current study, we found that suppressor of cytokine signaling proteins 3 (SOCS3) possessed the tumor suppressive activity against the JAK2 V617F mutant-provoked cellular transformation. The knockdown of SOCS3 increased the expression level of the JAK2 V617F mutant, which enhanced the activation of signaling mediators, including signal transducer and activator of transcription 3 and 5 (STAT3, STAT5) and extracellular signal-regulated kinase (ERK), and also increased of the proliferation rate and tumorigenesis activity of Ba/F3 cells expressing the JAK2 V617F mutant and erythropoietin receptor (EpoR). In contrast, the enforced expression of SOCS3 significantly inhibited the JAK2 V617F mutant-induced activation of downstream signaling molecules, cell proliferation, and tumorigenesis by down-regulating the expression level of the JAK2 V617F mutant. SOCS3 interacted with the JAK2V617F mutant through its SH2 domain and was phosphorylated at Tyr-204 and Tyr-221 in its SOCS box by the JAK2V617F mutant. SOCS3 mutants carrying a mutation in the SH2 domain (R71E) and a substitution at Tyr-221 (Y221F) failed to exert inhibitory effects on JAK2V617F mutant-induced cellular transformation and tumorigenesis. Collectively, these results imply that SOCS3 plays a negative role in the JAK2 V617F mutant-induced oncogenic signaling pathway through its SH2 domain and the phosphorylation of Tyr-221 in its SOCS box.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Rina Tsuruya
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Fumihito Ueda
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Aki Ishihara
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tadashi Kasahara
- International University of Health and Welfare, Graduate School, 1-3-3 Minamiaoyama, Minato-ku, Tokyo 107-0062, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan.
| |
Collapse
|
8
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
9
|
Hammarén HM, Virtanen AT, Abraham BG, Peussa H, Hubbard SR, Silvennoinen O. Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations. J Allergy Clin Immunol 2018; 143:1549-1559.e6. [PMID: 30092288 DOI: 10.1016/j.jaci.2018.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/30/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Janus kinases (JAKs; JAK1 to JAK3 and tyrosine kinase 2) mediate cytokine signals in the regulation of hematopoiesis and immunity. JAK2 clinical mutations cause myeloproliferative neoplasms and leukemia, and the mutations strongly concentrate in the regulatory pseudokinase domain Janus kinase homology (JH) 2. Current clinical JAK inhibitors target the tyrosine kinase domain and lack mutation and pathway selectivity. OBJECTIVE We sought to characterize mechanisms and differences for pathogenic and cytokine-induced JAK2 activation to enable design of novel selective JAK inhibitors. METHODS We performed a systematic analysis of JAK2 activation requirements using structure-guided mutagenesis, cell-signaling assays, microscopy, and biochemical analysis. RESULTS Distinct structural requirements were identified for activation of different pathogenic mutations. Specifically, the predominant JAK2 mutation, V617F, is the most sensitive to structural perturbations in multiple JH2 elements (C helix [αC], Src homology 2-JH2 linker, and ATP binding site). In contrast, activation of K539L is resistant to most perturbations. Normal cytokine signaling shows distinct differences in activation requirements: JH2 ATP binding site mutations have only a minor effect on signaling, whereas JH2 αC mutations reduce homomeric (JAK2-JAK2) erythropoietin signaling and almost completely abrogate heteromeric (JAK2-JAK1) IFN-γ signaling, potentially by disrupting a dimerization interface on JH2. CONCLUSIONS These results suggest that therapeutic approaches targeting the JH2 ATP binding site and αC could be effective in inhibiting most pathogenic mutations. JH2 ATP site targeting has the potential for reduced side effects by retaining erythropoietin and IFN-γ functions. Simultaneously, however, we identified the JH2 αC interface as a potential target for pathway-selective JAK inhibitors in patients with diseases with unmutated JAK2, thus providing new insights into the development of novel pharmacologic interventions.
Collapse
Affiliation(s)
- Henrik M Hammarén
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anniina T Virtanen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Heidi Peussa
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York, NY; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Olli Silvennoinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Fimlab Laboratories, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Funakoshi-Tago M, Moriwaki T, Ueda F, Tamura H, Kasahara T, Tago K. Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR. Cell Signal 2017; 31:41-57. [DOI: 10.1016/j.cellsig.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/01/2022]
|
12
|
Yao H, Ma Y, Hong Z, Zhao L, Monaghan SA, Hu MC, Huang LJ. Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Leukemia 2017; 31:2122-2131. [PMID: 28057939 PMCID: PMC5589508 DOI: 10.1038/leu.2017.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, yet constitutively active JAK2 mutants are able to drive selective expansion of particular lineage(s) in myeloproliferative neoplasm (MPN). The molecular basis of lineage specificity is unclear. Here, we show that three activating JAK2 mutants with similar kinase activities in vitro elicit distinctive MPN phenotypes in mice by differentially expanding erythroid vs granulocytic precursors. Molecularly, this reflects the differential binding of JAK2 mutants to cytokine receptors EpoR and GCSFR in the erythroid vs granulocytic lineage and the creation of unique receptor/JAK2 complexes that generate qualitatively distinct downstream signals. Our results demonstrate that activating JAK2 mutants can differentially couple to selective cytokine receptors and change the signaling repertoire, revealing the molecular basis for phenotypic differences elicited by JAK2 (V617F) or mutations in exon 12. On the basis of these findings, receptor-JAK2 interactions could represent new targets of lineage-specific therapeutic approaches against MPN, which may be applicable to other cancers with aberrant JAK-STAT signaling.
Collapse
Affiliation(s)
- H Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Ma
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Z Hong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S A Monaghan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M-C Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
|
14
|
Ueda F, Tago K, Tamura H, Funakoshi-Tago M. Three Tyrosine Residues in the Erythropoietin Receptor Are Essential for Janus Kinase 2 V617F Mutant-induced Tumorigenesis. J Biol Chem 2016; 292:1826-1846. [PMID: 27998978 DOI: 10.1074/jbc.m116.749465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin receptor (EpoR) regulates development of blood cells, and its full activation normally requires the cytokine erythropoietin (Epo). In the case of myeloproliferative neoplasms (MPN), Epo-independent signaling through EpoR can be caused by a point mutation, V617F, in the EpoR-interacting tyrosine kinase Janus kinase 2 (JAK2). In cells expressing the JAK2 V617F mutant, eight tyrosine residues in the intracellular domain of EpoR are phosphorylated, but the functional role of these phosphorylations in oncogenic signaling is incompletely understood. Here, to evaluate the functional consequences of the phosphorylation of these tyrosine residues, we constructed an EpoR-8YF mutant in which we substituted all eight tyrosine residues with phenylalanine. Co-expression of EpoR-8YF with the JAK2 V617F mutant failed to induce cytokine-independent cell proliferation and tumorigenesis, indicating that JAK2-mediated EpoR phosphorylation is the reason for JAK2 V617F mutant-induced oncogenic signaling. An exhaustive mutational analysis of the eight EpoR tyrosine residues indicated that three of these residues, Tyr-343, Tyr-460, and Tyr-464, are required for the JAK2 V617F mutant to exhibit its oncogenic activity. We also showed that phosphorylation at these three residues was necessary for full activation of the transcription factor STAT5, which is a critical downstream factor of JAK2 V617F-induced oncogenic signaling. In contrast, Epo stimulation could moderately stimulate the proliferation of cells expressing wild type JAK2 and EpoR-8YF, suggesting that the requirement of the phosphorylation of these three tyrosine residues seems to be specific for the oncogenic proliferation provoked by V617F mutation. Collectively, these results have revealed that phosphorylation of Tyr-343, Tyr-460, and Tyr-464 in EpoR underlies JAK2 V617F mutant-induced tumorigenesis. We propose that the targeted disruption of this pathway has therapeutic utility for managing MPN.
Collapse
Affiliation(s)
- Fumihito Ueda
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512
| | - Kenji Tago
- the Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | - Hiroomi Tamura
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512
| | - Megumi Funakoshi-Tago
- From the Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512.
| |
Collapse
|
15
|
Liu R, Wang Y, Pu M, Gao J. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model. Mol Vis 2016; 22:1122-1136. [PMID: 27703307 PMCID: PMC5040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study was conducted to determine whether alpha lipoic acid (ALA) promotes the survival of retinal ganglion cells (RGCs) in a rat model of optic nerve crush (ONC) injury and to investigate the neuroprotective mechanisms of ALA in the retina in this ONC injury model. METHODS Adult male Sprague-Dawley rats (180-220 g) were subjected to ONC injury surgery. ALA (63 mg/kg) was injected intravenously 1 day before or after the ONC injury. Animals were euthanized after 10 days, and the number of ganglion cells positive for RNA-binding protein with multiple splicing (Rbpms), which is an RGC marker, were counted on the whole mount retinas. In addition, immunofluorescence and immunoblotting were performed to examine the localization and levels of erythropoietin receptor (EPOR) and neurotrophin-4/5 (NT4/5) in the retinas in all experimental groups. To determine whether the EPO/EPOR signaling pathway was involved in the ALA antioxidant pathway, the rats were subjected to ruxolitinib (INCB018424, 0.25 mg/kg, bid, intraperitoneal, i.p.) treatment after the animals were injected intravenously with ALA 1 day before ONC injury. RESULTS The average number of Rbpms-positive cells/mm2 in the control group (sham-operated group), the ONC group, the ALA-ONC group, and the ONC-ALA group retinas was 2219±28, 418±8, 848±22, and 613±18/mm2, respectively. The ALA-ONC and ONC-ALA groups showed a statistically significantly increased RGC survival rate compared to the ONC group. There were statistical differences in the RGC survival rates between the ALA-ONC (39%) and ONC-ALA groups (28%; p<0.05). Immunofluorescent labeling showed that EPOR and NT4/5 expression was significant in the retinal ganglion cell layer (GCL). At the same time, western blot analysis revealed that ALA induced upregulation of EPOR protein and NT4/5 protein expression in the retina after ONC injury. However, INCB018424 reversed the protective effects of ALA on the ONC retinas. CONCLUSIONS ALA has neuroprotective effects on RGCs after ONC injury. Moreover, prophylactic administration of ALA may have a stronger neuroprotective effect against ONC-induced damage. Based on these data, we also conclude that the endogenous EPO/EPOR signaling pathway may contribute to the protective effects of ALA in the retina after ONC injury.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Yanling Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China,Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
16
|
Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood 2016; 128:2266-2270. [PMID: 27647865 DOI: 10.1182/blood-2016-04-711283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Leitner NR, Witalisz-Siepracka A, Strobl B, Müller M. Tyrosine kinase 2 - Surveillant of tumours and bona fide oncogene. Cytokine 2015; 89:209-218. [PMID: 26631911 DOI: 10.1016/j.cyto.2015.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which transduces cytokine and growth factor signalling. Analysis of TYK2 loss-of-function revealed its important role in immunity to infection, (auto-) immunity and (auto-) inflammation. TYK2-deficient patients unravelled high similarity between mice and men with respect to cellular signalling functions and basic immunology. Genome-wide association studies link TYK2 to several autoimmune and inflammatory diseases as well as carcinogenesis. Due to its cytokine signalling functions TYK2 was found to be essential in tumour surveillance. Lately TYK2 activating mutants and fusion proteins were detected in patients diagnosed with leukaemic diseases suggesting that TYK2 is a potent oncogene. Here we review the cell intrinsic and extrinsic functions of TYK2 in the characteristics preventing and enabling carcinogenesis. In addition we describe an unexpected function of kinase-inactive TYK2 in tumour rejection.
Collapse
Affiliation(s)
- Nicole R Leitner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
18
|
Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep 2015; 5:14538. [PMID: 26419724 PMCID: PMC4588578 DOI: 10.1038/srep14538] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Erika Huber
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Zachary Kincaid
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Chris R Evelyn
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Jacek Biesiada
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Mahendra B Thapa
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Neil P Shah
- Division of Hematology-Oncology UCSF School of Medicine, San Francisco, California, 94143 USA
| | - Jarek Meller
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mohammad Azam
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA.,Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| |
Collapse
|
19
|
Hu Y, Hong Y, Xu Y, Liu P, Guo DH, Chen Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis 2015; 19:1627-36. [PMID: 25213670 DOI: 10.1007/s10495-014-1030-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study was aimed to elucidate the roles of inhibition of related JAK/STAT pathways in regulating cytotoxicity induced by cisplatin in non-small-cell lung cancer (NSCLC) cell. We treated five non-small-cell lung cancer cell lines with cisplatin alone or with cisplatin and Jak2 inhibitor (ruxolitinib) and assessed cell viability, expression of Jak2 and STAT3 and cell apoptosis. We also investigated the effect of combination treatment inhibited tumor xenograft growth in two human NSCLC xenograft models bearing the cisplatin resistant (H1299) and sensitive (A549) cells. Different cell lines with different genetic background showed half-maximal inhibitory concentrations (IC50) of cisplatin from 4.66 to 68.28 µmol/L. They could be divided into cisplatin intrinsic resistant and cisplatin sensitive cell lines. In cisplatin-resistant cells with higher Jak2 and STAT3 expression, cisplatin and ruxolitinib combination dramatically suppressed the cell growth, down-regulated the expression of phosphorylated STAT3 and induced cleaved caspase-3 expression. Moreover combination with cisplatin and ruxolitinib also significantly inhibited the growth of resistant cell H1299, A549/DDP and H2347 in soft agar model. Finally, combination group significant inhibited the tumor growth and induced the caspase-3 expression compared with either single agent alone (P < 0.05) on the resistant cell xenografts model. The present study indicates that further study is warranted to determine the effectiveness of combination treatment with cisplatin and Jak2/stat3 pathway inhibitor for platinum-resistant NSCLC.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, No.28 FuXing Road, Beijing, 100853, China,
| | | | | | | | | | | |
Collapse
|
20
|
Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds. J DAIRY RES 2015; 82:287-92. [PMID: 26119533 DOI: 10.1017/s0022029915000291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to the main components of the somatotrophic axis (GH/GHR/IGF-I/IGF-IR), great importance in the control of growth and development is also attached to the Janus kinase 2 (JAK2) pathway. Induced by the GH/GHR complex, JAK2 activates signal transducer and activator of transcription 5 (STAT5), and in consequence, may be involved in the regulation of expression of insulin-like growth factor I (IGF-I) in the mammary gland. Silent mutation (rs110298451) has been identified within exon 20 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 904 individuals of four dairy or dual-purpose breeds (Polish Holstein-Friesian, Montbeliarde, Simmental and Jersey) were genotyped. A genotypic imbalance in the populations was observed. In the case of dual-purpose breeds (Montbeliarde and Simmental), the frequencies of both alleles were almost equal. In contrary, the JAK2G allele was predominant in the Polish Holstein-Friesian breed while JAK2A allele in Jersey. A pronounced relationship between JAK2/RsaI polymorphism and milk production traits was found where, irrespective of breed and lactation order, the GG genotype was significantly associated with higher milk, protein and fat yields, as compared to the AA genotype. Heterozygous individuals were generally characterised by intermediate values of the analysed milk traits. It can be argued that the JAK2 gene polymorphism is a potential marker for milk production traits. However, due to the fact that rs110298451 SNP does not directly affect amino acid sequence, other association studies involving missense mutation should also be performed.
Collapse
|
21
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
22
|
Agarwal A, MacKenzie RJ, Eide CA, Davare MA, Watanabe-Smith K, Tognon CE, Mongoue-Tchokote S, Park B, Braziel RM, Tyner JW, Druker BJ. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia. Oncogene 2014; 34:2991-9. [PMID: 25109334 PMCID: PMC4324389 DOI: 10.1038/onc.2014.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/23/2014] [Accepted: 06/15/2014] [Indexed: 01/25/2023]
Abstract
To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.
Collapse
Affiliation(s)
- A Agarwal
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - R J MacKenzie
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - C A Eide
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [3] Howard Hughes Medical Institute, Portland, OR, USA
| | - M A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - K Watanabe-Smith
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - C E Tognon
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Howard Hughes Medical Institute, Portland, OR, USA
| | - S Mongoue-Tchokote
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - B Park
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - R M Braziel
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - J W Tyner
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR, USA
| | - B J Druker
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [3] Howard Hughes Medical Institute, Portland, OR, USA
| |
Collapse
|
23
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014; 344:1249783. [PMID: 24833397 DOI: 10.1126/science.1249783] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.
Collapse
Affiliation(s)
- Andrew J Brooks
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| | - Wei Dai
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Megan L O'Mara
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Daniel Abankwa
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yash Chhabra
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Rebecca A Pelekanos
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Olivier Gardon
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kathryn A Tunny
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kristopher M Blucher
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Craig J Morton
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Emma Sierecki
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yann Gambin
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Guillermo A Gomez
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Ian A Wilson
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Alan E Mark
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| |
Collapse
|
25
|
Affiliation(s)
- James A Wells
- Pharmaceutical Chemistry; Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Effect of chemical modification on the ability of pyrrolidinium fullerene to induce apoptosis of cells transformed by JAK2 V617F mutant. Int Immunopharmacol 2014; 20:258-63. [PMID: 24631513 DOI: 10.1016/j.intimp.2014.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
Abstract
JAK2 V617F mutant, a gene responsible for human myeloproliferative neoplasms (MPNs), causes not only cellular transformation but also resistance to various anti-cancer drugs. We previously reported that pyrrolidinium fullerene markedly induced the apoptosis of JAK2 V617F mutant-induced transformed cells through the reduction of apoptosis signal-regulating kinase 1 (ASK1), following inhibition of the c-Jun N-terminal kinase (JNK) pathway. In the current study, we found that the replacement of the 2-hydrogen atom (H) or N-methyl group (CH3) by the butyl group (C4C9) caused the more than 3-fold potent cytotoxic effects on cells transformed by the JAK2 V617F mutant. Strikingly, these chemical modification of pyrrolidinium fullerene resulted in more marked reduction of ASK1 protein and a more potent inhibitory effect on the JNK signaling cascade. On the other hand, when modified with a longer alkyl group, the derivatives lacked their cytotoxicity. These observations clearly indicate that the modification of pyrrolidinium fullerene with a suitable length of alkyl group such as butyl group enhances its apoptotic effect through inhibition of the ASK1-MKK4/7-JNK pathway.
Collapse
|
27
|
Varricchio L, Mancini A, Migliaccio AR. Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev Hematol 2014; 2:315-334. [PMID: 20352017 DOI: 10.1586/ehm.09.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary myelofibrosis (PMF) belongs to the Philadelphia-negative myeloproliferative neoplasms and is a hematological disorder caused by abnormal function of the hematopoietic stem cells. The disease manifests itself with a plethora of alterations, including anemia, splenomegaly and extramedullary hematopoiesis. Its hallmarks are progressive marrow fibrosis and atypical megakaryocytic hyperplasia, two distinctive features used to clinically monitor disease progression. In an attempt to investigate the role of abnormal megakaryocytopoiesis in the pathogenesis of PMF, several transgenic mouse models have been generated. These models are based either on mutations that interfere with the extrinsic (thrombopoietin and its receptor, MPL) and intrinsic (the GATA1 transcription factor) control of normal megakaryocytopoiesis, or on known genetic lesions associated with the human disease. Here we provide an up-to-date review on the insights into the pathobiology of human PMF achieved by studying these animal models, with particular emphasis on results obtained with Gata1(low) mice.
Collapse
Affiliation(s)
- Lilian Varricchio
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA Tel.: +1 212 241 6974
| | | | | |
Collapse
|
28
|
Ueda F, Sumi K, Tago K, Kasahara T, Funakoshi-Tago M. Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs. Cell Signal 2013; 25:2115-24. [DOI: 10.1016/j.cellsig.2013.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
29
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
30
|
Ma L, Clayton JR, Walgren RA, Zhao B, Evans RJ, Smith MC, Heinz-Taheny KM, Kreklau EL, Bloem L, Pitou C, Shen W, Strelow JM, Halstead C, Rempala ME, Parthasarathy S, Gillig JR, Heinz LJ, Pei H, Wang Y, Stancato LF, Dowless MS, Iversen PW, Burkholder TP. Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F. Blood Cancer J 2013; 3:e109. [PMID: 23584399 PMCID: PMC3641321 DOI: 10.1038/bcj.2013.6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Owing to the prevalence of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs), its constitutive activity, and ability to recapitulate the MPN phenotype in mouse models, JAK2V617F kinase is an attractive therapeutic target. We report the discovery and initial characterization of the orally bioavailable imidazopyridazine, LY2784544, a potent, selective and ATP-competitive inhibitor of janus kinase 2 (JAK2) tyrosine kinase. LY2784544 was discovered and characterized using a JAK2-inhibition screening assay in tandem with biochemical and cell-based assays. LY2784544 in vitro selectivity for JAK2 was found to be equal or superior to known JAK2 inhibitors. Further studies showed that LY2784544 effectively inhibited JAK2V617F-driven signaling and cell proliferation in Ba/F3 cells (IC50=20 and 55 nM, respectively). In comparison, LY2784544 was much less potent at inhibiting interleukin-3-stimulated wild-type JAK2-mediated signaling and cell proliferation (IC50=1183 and 1309 nM, respectively). In vivo, LY2784544 effectively inhibited STAT5 phosphorylation in Ba/F3-JAK2V617F-GFP (green fluorescent protein) ascitic tumor cells (TED50=12.7 mg/kg) and significantly reduced (P<0.05) Ba/F3-JAK2V617F-GFP tumor burden in the JAK2V617F-induced MPN model (TED50=13.7 mg/kg, twice daily). In contrast, LY2784544 showed no effect on erythroid progenitors, reticulocytes or platelets. These data suggest that LY2784544 has potential for development as a targeted agent against JAK2V617F and may have properties that allow suppression of JAK2V617F-induced MPN pathogenesis while minimizing effects on hematopoietic progenitor cells.
Collapse
Affiliation(s)
- L Ma
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ma L, Clayton JR, Walgren RA, Zhao B, Evans RJ, Smith MC, Heinz-Taheny KM, Kreklau EL, Bloem L, Pitou C, Shen W, Strelow JM, Halstead C, Rempala ME, Parthasarathy S, Gillig JR, Heinz LJ, Pei H, Wang Y, Stancato LF, Dowless MS, Iversen PW, Burkholder TP. Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F. Blood Cancer J 2013. [PMID: 23584399 DOI: 10.1038/bcj] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the prevalence of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs), its constitutive activity, and ability to recapitulate the MPN phenotype in mouse models, JAK2V617F kinase is an attractive therapeutic target. We report the discovery and initial characterization of the orally bioavailable imidazopyridazine, LY2784544, a potent, selective and ATP-competitive inhibitor of janus kinase 2 (JAK2) tyrosine kinase. LY2784544 was discovered and characterized using a JAK2-inhibition screening assay in tandem with biochemical and cell-based assays. LY2784544 in vitro selectivity for JAK2 was found to be equal or superior to known JAK2 inhibitors. Further studies showed that LY2784544 effectively inhibited JAK2V617F-driven signaling and cell proliferation in Ba/F3 cells (IC50=20 and 55 nM, respectively). In comparison, LY2784544 was much less potent at inhibiting interleukin-3-stimulated wild-type JAK2-mediated signaling and cell proliferation (IC50=1183 and 1309 nM, respectively). In vivo, LY2784544 effectively inhibited STAT5 phosphorylation in Ba/F3-JAK2V617F-GFP (green fluorescent protein) ascitic tumor cells (TED50=12.7 mg/kg) and significantly reduced (P<0.05) Ba/F3-JAK2V617F-GFP tumor burden in the JAK2V617F-induced MPN model (TED50=13.7 mg/kg, twice daily). In contrast, LY2784544 showed no effect on erythroid progenitors, reticulocytes or platelets. These data suggest that LY2784544 has potential for development as a targeted agent against JAK2V617F and may have properties that allow suppression of JAK2V617F-induced MPN pathogenesis while minimizing effects on hematopoietic progenitor cells.
Collapse
Affiliation(s)
- L Ma
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Funakoshi-Tago M, Sumi K, Kasahara T, Tago K. Critical roles of Myc-ODC axis in the cellular transformation induced by myeloproliferative neoplasm-associated JAK2 V617F mutant. PLoS One 2013; 8:e52844. [PMID: 23300995 PMCID: PMC3536786 DOI: 10.1371/journal.pone.0052844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022] Open
Abstract
The acquired mutation (V617F) of Janus kinase 2 (JAK2) is observed in the majority of patients with myeloproliferative neoplasms (MPNs). In the screening of genes whose expression was induced by JAK2 (V617F), we found the significant induction of c-Myc mRNA expression mediated by STAT5 activation. Interestingly, GSK-3β was inactivated in transformed Ba/F3 cells by JAK2 (V617F), and this enhanced the protein expression of c-Myc. The enforced expression of c-Myc accelerated cell proliferation but failed to inhibit apoptotic cell death caused by growth factor deprivation; however, the inhibition of GSK-3β completely inhibited the apoptosis of cells expressing c-Myc. Strikingly, c-Myc T58A mutant exhibited higher proliferative activity in a growth-factor-independent manner; however, this mutant failed to induce apoptosis. In addition, knockdown of c-Myc significantly inhibited the proliferation of transformed cells by JAK2 (V617F), suggesting that c-Myc plays an important role in oncogenic activity of JAK2 (V617F). Furthermore, JAK2 (V617F) induced the expression of a target gene of c-Myc, ornithine decarboxylase (ODC), known as the rate-limiting enzyme in polyamine biosynthesis. An ODC inhibitor, difluoromethylornithine (DFMO), prevented the proliferation of transformed cells by JAK2 (V617F). Importantly, administration of DFMO effectively delayed tumor formation in nude mice inoculated with transformed cells by JAK2 (V617F), resulting in prolonged survival; therefore, ODC expression through c-Myc is a critical step for JAK2 (V617F)-induced transformation and DFMO could be used as effective therapy for MPNs.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacology, Keio University, Tokyo, Japan
- * E-mail: (MF-T); (KT)
| | - Kazuya Sumi
- Department of Biochemistry, Faculty of Pharmacology, Keio University, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Faculty of Pharmacology, Keio University, Tokyo, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Japan
- * E-mail: (MF-T); (KT)
| |
Collapse
|
33
|
Funakoshi-Tago M. [Analysis of oncogenic signaling pathway induced by a myeloproliferative neoplasm-associated Janus kinase 2 (JAK2) V617F mutant]. YAKUGAKU ZASSHI 2012; 132:1267-72. [PMID: 23123718 DOI: 10.1248/yakushi.12-00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Janus kinase 2 (JAK2) is an essential non-receptor type tyrosine kinase for various cytokine signals. In 2005, a somatic JAK2 mutation (V617F) was found in the majority of myeloproliferative neoplasm (MPN) patients. It has been shown that the V617F mutation caused the constitutive activation of JAK2, exhibiting the cytokine-independent survival and proliferation of Ba/F3 cells. In addition, tumorigenesis was induced after a transplantation of Ba/F3 cells expressing JAK2 V617F mutant in nude mice, suggesting that JAK2 V617F mutant behaves as a potent oncogene product. We found that JAK2 V617F mutant causes aberrant activation of a transcription factor c-Myc, which is critical for the JAK2 V617F mutant-caused oncogenic activities. In the screening of genes which expression was induced by JAK2 V617F mutant, we detected the significant induction of target genes of c-Myc such as Aurora kinase A (Aurka) and ornithine decarboxylase (ODC). Interestingly, JAK2 V617F mutant enhanced resistance to cisplatin (CDDP)-induced DNA damage and ectopic expression of Aurka in Ba/F3 cells exhibited similar resistance to CDDP. Conversely, knockdown and inhibition of Aurka in cells expressing JAK2 V617F mutant abolished the resistance to CDDP, suggesting that Aurka is most likely critical for resistance to DNA damage in cells transformed by JAK2 V617F mutant. In addition, we found that ODC inhibitor, DL-α-difluoromethylornithine (DFMO) prevented the proliferation of the JAK2 V617F mutant-induced transformed cells. Taking these observations together, c-Myc plays an essential role in JAK2 V617F mutant-induced hematopoietic disorder and would be a good target for the treatment of MPN.
Collapse
|
34
|
Nussenzveig RH, Burjanivova T, Salama ME, Ogilvie NW, Marcinek J, Plank L, Agarwal AM, Perkins SL, Prchal JT. Detection ofJAK2mutations in paraffin marrow biopsies by high resolution melting analysis: identification ofL611Salone and in cis withV617Fin polycythemia vera. Leuk Lymphoma 2012; 53:2479-86. [PMID: 22642932 DOI: 10.3109/10428194.2012.697562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Roberto H Nussenzveig
- ARUP Laboratories and Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Funakoshi-Tago M, Nagata T, Tago K, Tsukada M, Tanaka K, Nakamura S, Mashino T, Kasahara T. Fullerene derivative prevents cellular transformation induced by JAK2 V617F mutant through inhibiting c-Jun N-terminal kinase pathway. Cell Signal 2012; 24:2024-34. [PMID: 22750290 DOI: 10.1016/j.cellsig.2012.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The constitutively activated mutation (V617F) of tyrosine kinase Janus kinase 2 (JAK2) is found in the majority of patients with myeloproliferative neoplasms (MPNs). The development of a novel chemical compound to suppress JAK2 V617F mutant-induced onset of MPNs and clarification of the signaling cascade downstream of JAK2 V617F mutant will provide clues to treat MPNs. Here we found that a water-soluble pyrrolidinium fullerene derivative, C(60)-bis (N, N-dimethylpyrrolidinium iodide), markedly induced apoptosis of JAK2 V617F mutant-induced transformed cells through a novel mechanism, inhibiting c-Jun N-terminal kinase (JNK) activation pathway but not generation of reactive oxygen species (ROS). Pyrrolidinium fullerene derivative significantly reduced the protein expression level of apoptosis signal-regulating kinase 1 (ASK1), one of the mitogen-activated protein kinase kinase kinases (MAPKKK), resulting in the inhibition of upstream molecules of JNK, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7). Strikingly, the knockdown of ASK1 enhanced the sensitivity to pyrrolidinium fullerene derivative-induced apoptosis, and the treatment with a JNK inhibitor, SP600125, also induced apoptosis of the transformed cells by JAK2 V617F mutant. Furthermore, administration of both SP600125 and pyrrolidinium fullerene derivative markedly inhibited JAK2 V617F mutant-induced tumorigenesis in nude mice. Taking these findings together, JAK2 V617F mutant-induced JNK signaling pathway is an attractive target for MPN therapy, and pyrrolidinium fullerene derivative is now considered a candidate potent drug for MPNs.
Collapse
|
36
|
Abstract
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | |
Collapse
|
37
|
Erythropoietin in brain development and beyond. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:953264. [PMID: 22567318 PMCID: PMC3335485 DOI: 10.1155/2012/953264] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 01/17/2023]
Abstract
Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
Collapse
|
38
|
Funakoshi-Tago M. [Analysis of the mechanism of polycythemia vera by studying JAK2 mutant-induced signaling pathway]. YAKUGAKU ZASSHI 2011; 131:1183-7. [PMID: 21804321 DOI: 10.1248/yakushi.131.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been well established that disruption of JAK2 signaling regulation is involved in various hematopoietic disorders; however, the detailed mechanism by which abnormal activation of JAK2 exhibits transforming activity remains to be elucidated. The somatic JAK2 mutation (V617F) was identified in most patients with polycythemia vera (PV). Here, we show that JAK2 V617F mutant was constitutively active and exhibited tumorigenesis activity as a potent oncogene when erythropoietin receptor (EpoR) was co-expressed. To clarify the signaling pathway of JAK2 V617F mutant, we investigated the functional role of downstream transcription factor STAT5 in its induced cellular transformation and tumorigenesis in nude mice. Interestingly, JAK2 V617F mutant failed to exhibit transforming activity when STAT5 activation was inhibited utilizing EpoR mutant (HM). Furthermore, the expression of constitutively active STAT5 mutant (1*6) exhibited transforming activity. Taking these observations together, it is concluded STAT5 plays an essential role in EpoR-JAK2 V617F mutant-induced hematopoietic disorder and would be a good target for the treatment of PV.
Collapse
|
39
|
Sumi K, Tago K, Kasahara T, Funakoshi-Tago M. Aurora kinase A critically contributes to the resistance to anti-cancer drug cisplatin in JAK2 V617F mutant-induced transformed cells. FEBS Lett 2011; 585:1884-90. [PMID: 21557940 DOI: 10.1016/j.febslet.2011.04.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
JAK2 V617F mutant induces transformation through aberrant activation of various transcription factors. We found that the expression of Aurora kinase A (Aurka) was significantly induced by mutant JAK2 through c-Myc expression. Interestingly, mutant JAK2 enhanced resistance to cisplatin (CDDP)-induced DNA damage, and effectively suppressed apoptosis. Ectopic expression of Aurka in Ba/F3 cells exhibited similar resistance to CDDP, and this required kinase activity. Conversely, knockdown and inhibition of Aurka in cells expressing mutant JAK2 abolished the resistance to CDDP. Taken together, Aurka is most likely critical for resistance to DNA damage in cells transformed by JAK2 V617F mutant.
Collapse
Affiliation(s)
- Kazuya Sumi
- Department of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. PLoS One 2011; 6:e18522. [PMID: 21533163 PMCID: PMC3078918 DOI: 10.1371/journal.pone.0018522] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/10/2011] [Indexed: 12/27/2022] Open
Abstract
Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2 domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains (JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2 increased the Km for ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this inhibitory mechanism but does not significantly affect substrate preference or Km for ATP. These results provide the biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Arturo Sanz
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Ungureanu
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Tuija Pekkala
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | | | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Olli Silvennoinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
41
|
Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 2011; 19:45-55. [PMID: 21220115 DOI: 10.1016/j.str.2010.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/25/2010] [Accepted: 10/31/2010] [Indexed: 11/28/2022]
Abstract
The shared cytokine receptor gp130 signals as a homodimer or heterodimer through activation of Janus kinases (Jaks) associated with the receptor intracellular domains. Here, we reconstitute, in parts and whole, the full-length gp130 homodimer in complex with the cytokine interleukin-6 (IL-6), its alpha receptor (IL-6Rα) and Jak1, for electron microscopy imaging. We find that the full-length gp130 homodimer complex has intimate interactions between the trans- and juxtamembrane segments of the two receptors, appearing to form a continuous connection between the extra- and intracellular regions. 2D averages and 3D reconstructions of full-length Jak1 reveal a three lobed structure comprising FERM-SH2, pseudokinase, and kinase modules possessing extensive intersegmental flexibility that likely facilitates allosteric activation. Single-particle imaging of the gp130/IL-6/IL-6Rα/Jak1 holocomplex shows Jak1 associated with the membrane proximal intracellular regions of gp130, abutting the would-be inner leaflet of the cell membrane. Jak1 association with gp130 is enhanced by the presence of a membrane environment.
Collapse
Affiliation(s)
- Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Yang J, Ikezoe T, Nishioka C, Furihata M, Yokoyama A. AZ960, a novel Jak2 inhibitor, induces growth arrest and apoptosis in adult T-cell leukemia cells. Mol Cancer Ther 2011; 9:3386-95. [PMID: 21159615 DOI: 10.1158/1535-7163.mct-10-0416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive disease in which the Jak2/Stat5 pathway is constitutively activated. This study found that AZ960, a novel inhibitor of Jak2 kinase, effectively induced growth arrest and apoptosis of human T-cell lymphotropic virus type 1, HTLV-1-infected T cells (MT-1 and MT-2) in parallel with downregulation of the phosphorylated forms of Jak2 and Bcl-2 family proteins including Bcl-2 and Mcl-1. Interestingly, AZ960 increased levels of Bcl-xL in MT-1 and MT-2 cells in association with accumulation of cAMP response element-binding protein bound to the Bcl-xL promoter as measured by chromatin immunoprecipitation assay. Importantly, genetic inhibition of Bcl-xL by a small interfering RNA potentiated antiproliferative effects of AZ960 in MT-1 cells. Taken together, Jak2 is an attractive molecular target for treatment of ATL. Concomitant blockade of Jak2 and Bcl-xL may be a promising treatment strategy for this lethal disease.
Collapse
Affiliation(s)
- Jing Yang
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | |
Collapse
|
43
|
Putters J, da Silva Almeida AC, van Kerkhof P, van Rossum AGSH, Gracanin A, Strous GJ. Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS One 2011; 6:e14676. [PMID: 21347402 PMCID: PMC3036580 DOI: 10.1371/journal.pone.0014676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/13/2011] [Indexed: 12/04/2022] Open
Abstract
Background Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of certain cytokine receptors is mediated by the ubiquitin ligase SCF(βTrCP). In several instances, Janus kinase (Jak) family members can stabilise their cognate cytokine receptors at the cell surface. Principal Findings In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces down-regulation of the growth hormone receptor by SCF(βTrCP). Using γ2A human fibroblast cells we show that both growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate the importance of cellular concentration on growth hormone receptor function. Both Jak2 and βTrCP bind to neighbouring linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth hormone sensitivity is regulated by the cellular level of non-committed Jak2. Conclusions/Significance As signal transduction of many cytokine receptors depends on Jak2, the study suggests an integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the receptors.
Collapse
Affiliation(s)
- Joyce Putters
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana C. da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Peter van Kerkhof
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnes G. S. H. van Rossum
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Ger J. Strous
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Kamishimoto J, Tago K, Kasahara T, Funakoshi-Tago M. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation. Cell Signal 2011; 23:849-56. [PMID: 21255641 DOI: 10.1016/j.cellsig.2011.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
The disruption of Janus kinase 2 (JAK2) signaling regulation by its point mutation, V617F, is involved in various myeloproliferative disorders (MPDs). JAK2 V617F mutant induced constitutive activation of Akt when erythropoietin receptor (EpoR) was coexpressed; however, the physiological role of Akt activation in MPDs has not been elucidated. LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, inhibited Akt activation and induced apoptotic cell death in cells expressing JAK2 V617F mutant and EpoR. Previously, it has been shown that the phosphorylation at Y479 in EpoR is critical for the interaction with PI3K, an upstream molecule of Akt. Hence, EpoR mutant with a point mutation of Y479F, which fails to activate Akt, is useful for addressing the role of Akt activation in JAK2 V617F mutant-induced tumorigenesis. Interestingly, under the expression of EpoR Y479F mutant, JAK2 V617F mutant failed to exhibit potent anti-apoptotic activity. In addition, JAK2 V617F mutant-induced phosphorylation of CREB and GSK-3β was significantly decreased in cells expressing EpoR Y479F mutant, resulting in the downregulation of Bcl-XL and Mcl-1 expression. Furthermore, compared with when nude mice were inoculated with cells expressing JAK2 V617F mutant and EpoR, the lifespan of nude mice inoculated with cells expressing JAK2 V617F mutant and EpoR Y479F mutant was effectively prolonged. Taken together, it was clarified that PI3K-Akt activation through the phosphorylation of EpoR at Y479 is required for oncogenic signaling of JAK2 V617F mutant and that targeted disruption of this pathway has therapeutic utility.
Collapse
Affiliation(s)
- Jun Kamishimoto
- Department of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
45
|
Funakoshi-Tago M, Tago K, Sato Y, Tominaga SI, Kasahara T. JAK2 is an important signal transducer in IL-33-induced NF-κB activation. Cell Signal 2010; 23:363-70. [PMID: 20940045 DOI: 10.1016/j.cellsig.2010.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/01/2010] [Indexed: 01/17/2023]
Abstract
IL-33, a member of the IL-1 family of cytokines, has been shown to activate NF-κB and MAP kinase family through the IL-1 receptor-related protein, ST2L. In this study, we found that IL-33 rapidly activated a tyrosine kinase, JAK2. Interestingly, we demonstrated the functional involvement of JAK2 in IL-33-induced IκBα degradation and NF-κB activation, since a JAK2 inhibitor, AG490, effectively inhibited this signaling pathway. Furthermore, IL-33 failed to induce IκBα degradation and NF-κB activation in JAK2-deficient MEFs expressing ST2L, compared with wild-type MEFs expressing ST2L. In addition, the introduction of wild-type JAK2 but not kinase dead JAK2 mutant (K882R) restored the IL-33-induced efficient activation of NF-κB in JAK2-deficient MEFs expressing ST2L, resulting in the induction of IL-6, CCL2/MCP-1 and CXCL1/KC expression. On the other hand, the activation of ERK, JNK and p38 was unaffected by JAK2 inhibition and JAK2 deficiency. Thus, these data demonstrate that JAK2 plays an important role in regulating IL-33-induced NF-κB activation.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.
| | | | | | | | | |
Collapse
|
46
|
Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 2010; 87:436-44. [PMID: 20826270 DOI: 10.1016/j.ajhg.2010.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/03/2010] [Accepted: 08/17/2010] [Indexed: 11/16/2022] Open
Abstract
The lymphatic vasculature is essential for the recirculation of extracellular fluid, fat absorption, and immune function and as a route of tumor metastasis. The dissection of molecular mechanisms underlying lymphangiogenesis has been accelerated by the identification of tissue-specific lymphatic endothelial markers and the study of congenital lymphedema syndromes. We report the results of genetic analyses of a kindred inheriting a unique autosomal-recessive lymphedema-choanal atresia syndrome. These studies establish linkage of the trait to chromosome 1q32-q41 and identify a loss-of-function mutation in PTPN14, which encodes a nonreceptor tyrosine phosphatase. The causal role of PTPN14 deficiency was confirmed by the generation of a murine Ptpn14 gene trap model that manifested lymphatic hyperplasia with lymphedema. Biochemical studies revealed a potential interaction between PTPN14 and the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. These results suggest a unique and conserved role for PTPN14 in the regulation of lymphatic development in mammals and a nonconserved role in choanal development in humans.
Collapse
Affiliation(s)
- Audrey C Au
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ma W, Kantarjian H, Zhang X, Wang X, Zhang Z, Yeh CH, O'Brien S, Giles F, Bruey JM, Albitar M. JAK2 exon 14 deletion in patients with chronic myeloproliferative neoplasms. PLoS One 2010; 5:e12165. [PMID: 20730051 PMCID: PMC2921382 DOI: 10.1371/journal.pone.0012165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
Background The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Δexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. Methodology/Principal Findings We investigated the possibility that MPN patients may express the JAK2 Δexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR–based fluorescent fragment analysis method to quantify JAK2 Δexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Δexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression = 5.41% [2.13%–26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression = 3.88% [2.08%–12.22%]). Immunoprecipitation studies demonstrated that patients expressing Δexon14 mRNA expressed a corresponding truncated JAK2 protein. The Δexon14 variant was not detected in the 46 control subjects. Conclusions/Significance These data suggest that expression of the JAK2 Δexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for testing.
Collapse
Affiliation(s)
- Wanlong Ma
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Hagop Kantarjian
- Department of Leukemia, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Xi Zhang
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Xiuqiang Wang
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Zhong Zhang
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Chen-Hsiung Yeh
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Susan O'Brien
- Department of Leukemia, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Francis Giles
- The Cancer Treatment & Research Center (CTRC) at the University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jean Marie Bruey
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Maher Albitar
- Department of Hematology/Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Oncogenic JAK2V617F requires an intact SH2-like domain for constitutive activation and induction of a myeloproliferative disease in mice. Blood 2010; 116:4600-11. [PMID: 20696946 DOI: 10.1182/blood-2009-07-236133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The oncogenic JAK2V617F mutation is found in myeloproliferative neoplasms (MPNs) and is believed to be critical for leukemogenesis. Here we show that JAK2V617F requires an intact SH2 domain for constitutive activation of downstream signaling pathways. In addition, there is a strict requirement of cytokine receptor expression for the activation of this oncogene. Further analysis showed that the SH2 domain mutation did not interfere with JAK2 membrane distribution. However, coimmunoprecipitated experiments revealed a role for the SH2 domain in the aggregation and cross-phosphorylation of JAK2V617F at the cell membrane. Forced overexpression of cytokine receptors could rescue the JAK2V617F SH2 mutant supporting a critical role of JAK2V617F abundance for constitutive activation. However, under physiologic cytokine receptor expression the SH2 domain is absolutely necessary for oncogenic JAK2V617F activation. This is demonstrated in a bone marrow transplantation model, in which an intact SH2 domain in JAK2V617F is required for the induction of an MPN-like disease. Thus, our results points to an indispensable role of the SH2 domain in JAK2V617F-induced MPNs.
Collapse
|
49
|
Cheng MB, Zhang Y, Zhong X, Sutter B, Cao CY, Chen XS, Cheng XK, Zhang Y, Xiao L, Shen YF. Stat1 mediates an auto-regulation of hsp90β gene in heat shock response. Cell Signal 2010; 22:1206-13. [DOI: 10.1016/j.cellsig.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
|
50
|
Abstract
PURPOSE OF REVIEW In 1985-1989, erythropoietin (EPO), its receptor (EPOR), and janus kinase 2 were cloned; established to be essential for definitive erythropoiesis; and initially intensely studied. Recently, new impetus, tools, and model systems have emerged to re-examine EPO/EPOR actions, and are addressed in this review. Impetus includes indications that EPO affects significantly more than standard erythroblast survival pathways, the development of novel erythropoiesis-stimulating agents, increasing evidence for EPO/EPOR cytoprotection of ischemically injured tissues, and potential EPO-mediated worsening of tumorigenesis. RECENT FINDINGS New findings are reviewed in four functional contexts: (pro)erythroblast survival mechanisms, new candidate EPO/EPOR effects on erythroid cell development and new EPOR responses, EPOR downmodulation and trafficking, and novel erythropoiesis-stimulating agents. SUMMARY As Current Opinion, this monograph seeks to summarize, and provoke, new EPO/EPOR action concepts. Specific problems addressed include: beyond (and before) BCL-XL, what key survival factors are deployed in early-stage proerythroblasts? Are distinct EPO/EPOR signals transduced in stage-selective fashions? Is erythroblast proliferation also modulated by EPO/EPOR signals? What functions are subserved by new noncanonical EPO/EPOR response factors (e.g. podocalyxin like-1, tribbles 3, reactive oxygen species, and nuclear factor kappa B)? What key regulators mediate EPOR inhibition and trafficking? And for emerging erythropoiesis-stimulating agents, to what extent do activities parallel EPOs (or differ in advantageous, potentially complicating ways, or both)?
Collapse
Affiliation(s)
- Don M Wojchowski
- Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA.
| | | | | |
Collapse
|