1
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 PMCID: PMC12044431 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
2
|
Kociemba J, Jørgensen ACS, Tadić N, Harris A, Sideri T, Chan WY, Ibrahim F, Ünal E, Skehel M, Shahrezaei V, Argüello-Miranda O, van Werven FJ. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 2024; 43:3256-3286. [PMID: 38886580 PMCID: PMC11294583 DOI: 10.1038/s44318-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.
Collapse
Affiliation(s)
- Johanna Kociemba
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK
- I-X Centre for AI In Science, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Nika Tadić
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Theodora Sideri
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Wei Yee Chan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK.
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | | |
Collapse
|
3
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Possible Molecular Targeting of Biofilm-Associated Genes by Nano-Ag in Candida albicans. Appl Biochem Biotechnol 2024; 196:4205-4233. [PMID: 37922031 DOI: 10.1007/s12010-023-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
The treatment of candidiasis infections is hindered by the presence of biofilms. Here, we report the biofilm-associated genes as potential molecular targets by silver nanoparticles (nano-Ag) in Candida albicans. Nano-Ag was biosynthesized using Bacillus licheniformis, Bacillus cereus, and Fusarium oxysporum. The physicochemical properties of the microbial-synthesized of nano-Ag are widely characterized by visual observation, ultraviolet-visible spectroscopy, scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. Characterization results revealed the formation of nano-Ag. Antiplanktonic cells and antibiofilm activities of nano-Ag were also demonstrated by minimum inhibition concentrations (MIC), minimum fungicidal concentration (MFC), MFC/MIC ratio, crystal violet staining, 2,3-bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT), and microscopic image analysis. We have analyzed the expressions of biofilm-associated genes in C. albicans treated with different concentrations of nano-Ag based on MIC. The expression profile of BCR1, ALS1, ALS3, HWP1, and ECE1 showed downregulated genes involved in these pathways by the treatment with nanoparticles. Negative regulators, TUP1, NRG1, and TOR1, were upregulated by the treatment of nano-Ag. Our study suggests that nano-Ag affects gene expression and may subsequently decrease the pathogenesis of C. albicans by inhibiting biofilm formation. Molecular targeting of biofilm-associated genes involved in biofilm formation by nano-Ag may be an effective treatment strategy for candidiasis infections.
Collapse
Affiliation(s)
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Nima Bahador
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
4
|
MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. mBio 2023; 14:e0218323. [PMID: 38015416 PMCID: PMC10746247 DOI: 10.1128/mbio.02183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Biswas B, Gangwar G, Nain V, Gupta I, Thakur A, Puria R. Rapamycin and Torin2 inhibit Candida auris TOR: Insights through growth profiling, docking, and MD simulations. J Biomol Struct Dyn 2023; 41:8445-8461. [PMID: 36264093 DOI: 10.1080/07391102.2022.2134927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
The fungus Candida auris is a pathogen of utmost concern due to its rapid emergence across the globe, acquired antifungal drug tolerance, thermotolerance, and ability to survive in hospital settings and preserved foods. Recent incidences of comorbidity of corona patients with its infection in hospital settings highlighted the importance of understanding the pathobiology and drug tolerance of this fungus on priority. The Target of rapamycin (TOR) is a central regulator of growth across eukaryotes with an illustrated role in fungal pathology. The role of the TOR signalling pathway in the growth of C. auris is yet to be described. In-silico, analysis revealed the presence of highly conserved Tor kinase, components of TORC, and key downstream components in C. auris. Rapamycin and Torin2, the specific inhibitors of Tor reduce the growth of C. auris. An inhibition of Tor leads to cell cycle arrest at the G1 phase with a defect in cytokinesis. Interestingly, with an insignificant difference in growth at 30 and 37 °C, a sharp decline in growth is seen with Torin2 at 37 °C. The heterogeneous response emphasizes the importance of physiology-based differential cellular response at different temperatures. In addition, the inhibition of Tor suppresses the biofilm formation. In silico studies through docking and simulations showed rapamycin and torin2 as specific inhibitors of C. auris Tor kinase (CauTor kinase) and hence can be exploited for a thorough understanding of the TOR signalling pathway in pathobiology and drug tolerance of C. auris. HIGHLIGHTSConservation of TOR signalling pathway in Candida aurisRapamycin and torin2 are specific inhibitors of Cau TorUnderstanding of the role of TOR signalling pathway through the use of inhibitors rapamycin and torin2.Heterogenous response of C. auris to torin2 at different physiological conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Biswambhar Biswas
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, India
| | - Garima Gangwar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Delhi, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol 2022; 88:e0081422. [PMID: 36073947 PMCID: PMC9499027 DOI: 10.1128/aem.00814-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO2 pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO2, using a laboratory scale CO2 pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO2 pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified MDS3 as the causative mutant gene, a putative member of the TOR signaling pathway. The MDS3Seg.63 allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of MDS3Seg.63 in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO2 pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. IMPORTANCE The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO2 pressure in such tanks compromises production by the yeast of the desirable fruity “banana” flavor (isoamyl acetate). The cause of the CO2 inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO2 inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, MDS3T2171C, and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO2 pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.
Collapse
|
8
|
Wang Y, Zhou J, Zou Y, Chen X, Liu L, Qi W, Huang X, Chen C, Liu NN. Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Rep 2022; 38:110293. [PMID: 35081357 DOI: 10.1016/j.celrep.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xinhua Huang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Anderson TM, Shammami MA, Taddei SM, Finkel JS. How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic Fungus Candida albicans. UJEMI+ 2021; 2:1-13. [PMID: 35493534 PMCID: PMC9052792 DOI: 10.14288/ujemi.v2i.193711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases. $4.5 billion was allocated to 75,055 hospitalizations, while $2.6 billion went to 8,993,230 outpatient visits. For Candida infections specifically, the cost was $1.4 billion. Currently, there are few classes of antifungals available, and resistance is growing. The identification of genes required for biofilm formation is essential for new antifungal development. This review details how to identify, verify, and characterize defective biofilm formation mutants in C. albicans. This includes how to run an in vitro biofilm formation assay, how to create clean deletions using the modified CRISPR-Cas9 system, how to assay to identify the potential causes of the defect, and how to create complementation strains to confirm the mutant defect.
Collapse
Affiliation(s)
- Tania M Anderson
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Marcelio A Shammami
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Steven M Taddei
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Jonathan S Finkel
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| |
Collapse
|
10
|
Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. Am J Transl Res 2020; 12:6988-7001. [PMID: 33312346 PMCID: PMC7724324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans is a major opportunistic fungal pathogen of humans, especially in the oral cavity it involves in precancerous lesions. Numerous transcriptional regulators and hypha-specific genes involved in the morphogenesis mechanisms have been identified. Its virulence is predominantly attributed to the potentiality of morphological switching from yeast and pseudohyphae to hyphal growth. Giving attention in farnesol for prevention or intervention of its virulence sense and possible etiologic role in some uncovered premalignant diseases, in addition, to be a quorum-sensing signal molecule and relationship with HOG pathway, although its morphological switching inhibiting function has attracted high attention and got great progress in being elucidated, their exact mode of action is not completely understood. This report provides a review of characteristic aspects of farnesol signaling and HOG pathway during hyphal development. It also includes other associated pathways, molecules, and novel drug development based on the latest researches over the last decade. Furthermore, farnesol as immunomodulatory to host is an important inferring.
Collapse
Affiliation(s)
- Xueting Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Hong He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou 310020, Zhejiang, China
| | - Jiamei Liu
- Zhejiang HospitalHangzhou 310013, Zhejiang, China
| | - Shangfeng Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang UniversityHangzhou 310012, Zhejiang, China
| |
Collapse
|
11
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
12
|
Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Med Mycol 2019; 57:S307-S317. [DOI: 10.1093/mmy/myy136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.
Collapse
Affiliation(s)
- Christopher P Eades
- Department of Clinical Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Darius P H Armstrong-James
- National Heart and Lung Institute, Imperial College London, UK
- Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Ahmed K, Carter DE, Lajoie P. Hyperactive
TORC
1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity. FEBS Lett 2019; 593:1957-1973. [DOI: 10.1002/1873-3468.13463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Khadija Ahmed
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| | - David E. Carter
- Robarts Research Institute The University of Western Ontario London Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| |
Collapse
|
14
|
The Candida albicans TOR-Activating GTPases Gtr1 and Rhb1 Coregulate Starvation Responses and Biofilm Formation. mSphere 2017; 2:mSphere00477-17. [PMID: 29152581 PMCID: PMC5687921 DOI: 10.1128/msphere.00477-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in eukaryotic cells and in the fungal pathogen Candida albicans regulates morphogenesis and nitrogen acquisition. Gtr1 encodes a highly conserved GTPase that in Saccharomyces cerevisiae regulates nitrogen sensing and TORC1 activation. Here, we characterize the role of C. albicans GTR1 in TORC1 activation and compare it with the previously characterized GTPase Rhb1. A homozygous gtr1/gtr1 mutant exhibited impaired TORC1-mediated phosphorylation of ribosomal protein S6 and increased susceptibility to rapamycin. Overexpression of GTR1 impaired nitrogen starvation-induced filamentous growth, MEP2 expression, and growth in bovine serum albumin as the sole nitrogen source. Both GTR1 and RHB1 were shown to regulate genes involved in ribosome biogenesis, amino acid biosynthesis, and expression of biofilm growth-induced genes. The rhb1/rhb1 mutant exhibited a different pattern of expression of Sko1-regulated genes and increased susceptibility to Congo red and calcofluor white. The homozygous gtr1/gtr1 mutant exhibited enhanced flocculation phenotypes and, similar to the rhb1/rhb1 mutant, exhibited enhanced biofilm formation on plastic surfaces. In summary, Gtr1 and Rhb1 link nutrient sensing and biofilm formation and this connectivity may have evolved to enhance the competitiveness of C. albicans in niches where there is intense competition with other microbes for space and nutrients. IMPORTANCECandida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients.
Collapse
|
15
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
16
|
Brown AJP, Cowen LE, di Pietro A, Quinn J. Stress Adaptation. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0048-2016. [PMID: 28721857 PMCID: PMC5701650 DOI: 10.1128/microbiolspec.funk-0048-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Fungal species display an extraordinarily diverse range of lifestyles. Nevertheless, the survival of each species depends on its ability to sense and respond to changes in its natural environment. Environmental changes such as fluctuations in temperature, water balance or pH, or exposure to chemical insults such as reactive oxygen and nitrogen species exert stresses that perturb cellular homeostasis and cause molecular damage to the fungal cell. Consequently, fungi have evolved mechanisms to repair this damage, detoxify chemical insults, and restore cellular homeostasis. Most stresses are fundamental in nature, and consequently, there has been significant evolutionary conservation in the nature of the resultant responses across the fungal kingdom and beyond. For example, heat shock generally induces the synthesis of chaperones that promote protein refolding, antioxidants are generally synthesized in response to an oxidative stress, and osmolyte levels are generally increased following a hyperosmotic shock. In this article we summarize the current understanding of these and other stress responses as well as the signaling pathways that regulate them in the fungi. Model yeasts such as Saccharomyces cerevisiae are compared with filamentous fungi, as well as with pathogens of plants and humans. We also discuss current challenges associated with defining the dynamics of stress responses and with the elaboration of fungal stress adaptation under conditions that reflect natural environments in which fungal cells may be exposed to different types of stresses, either sequentially or simultaneously.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Antonio di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071 Córdoba, Spain
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
17
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
18
|
Caplice N, Moran GP. Candida albicans exhibits enhanced alkaline and temperature induction of Efg1-regulated transcripts relative to Candida dubliniensis. GENOMICS DATA 2015; 6:130-5. [PMID: 26697354 PMCID: PMC4664712 DOI: 10.1016/j.gdata.2015.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Filamentous growth is an important virulence trait of the human pathogenic fungi within the genus Candida, and the greater propensity of C. albicans to form hyphae has been proposed to account for the greater virulence of this species relative to the less pathogenic species C. dubliniensis. In this meta-analysis, we compare the transcriptional response of C. dubliniensis and C. albicans to the individual environmental stimuli that shape the gene expression profiles during filamentation in 10% serum, namely alkaline pH, 37 °C and reduced cell density. We could identify conserved core temperature and pH responses, however many signature Efg1-regulated, hypha-induced transcripts (e.g. ECE1, HWP1) exhibited reduced or lack of induction in C. dubliniensis. Comparison of the activity of the HWP1 and ECE1 promoters in both species using GFP fusions showed a lag in serum induced fluorescence in C. dubliniensis relative to C. albicans and nutrient depletion was required for maximal expression of these Efg1-regulated transcripts in C. dubliniensis.
Collapse
|
19
|
Chowdhury T, Köhler JR. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans. Mol Microbiol 2015; 98:384-402. [PMID: 26173379 DOI: 10.1111/mmi.13130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
Abstract
TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant.
Collapse
Affiliation(s)
- Tahmeena Chowdhury
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans. Antimicrob Agents Chemother 2015. [PMID: 26195510 DOI: 10.1128/aac.00726-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.
Collapse
|
21
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
22
|
Yucel EB, Eraslan S, Ulgen KO. The impact of medium acidity on the chronological life span ofSaccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions. FEBS J 2014; 281:1281-303. [DOI: 10.1111/febs.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Esra B. Yucel
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| |
Collapse
|
23
|
Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. EUKARYOTIC CELL 2013; 12:1369-82. [PMID: 23913543 DOI: 10.1128/ec.00118-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vacuolar membrane ATPase (V-ATPase) is a protein complex that utilizes ATP hydrolysis to drive protons from the cytosol into the vacuolar lumen, acidifying the vacuole and modulating several key cellular response systems in Saccharomyces cerevisiae. To study the contribution of V-ATPase to the biology and virulence attributes of the opportunistic fungal pathogen Candida albicans, we created a conditional mutant in which VMA3 was placed under the control of a tetracycline-regulated promoter (tetR-VMA3 strain). Repression of VMA3 in the tetR-VMA3 strain prevents V-ATPase assembly at the vacuolar membrane and reduces concanamycin A-sensitive ATPase-specific activity and proton transport by more than 90%. Loss of C. albicans V-ATPase activity alkalinizes the vacuolar lumen and has pleiotropic effects, including pH-dependent growth, calcium sensitivity, and cold sensitivity. The tetR-VMA3 strain also displays abnormal vacuolar morphology, indicative of defective vacuolar membrane fission. The tetR-VMA3 strain has impaired aspartyl protease and lipase secretion, as well as attenuated virulence in an in vitro macrophage killing model. Repression of VMA3 suppresses filamentation, and V-ATPase-dependent filamentation defects are not rescued by overexpression of RIM8, MDS3, EFG1, CST20, or UME6, which encode positive regulators of filamentation. Specific chemical inhibition of Vma3p function also results in defective filamentation. These findings suggest either that V-ATPase functions downstream of these transcriptional regulators or that V-ATPase function during filamentation involves independent mechanisms and alternative signaling pathways. Taken together, these data indicate that V-ATPase activity is a fundamental requirement for several key virulence-associated traits in C. albicans.
Collapse
|
24
|
Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Genet Biol 2013; 60:74-86. [PMID: 23856128 DOI: 10.1016/j.fgb.2013.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022]
Abstract
Candida albicans is the most common fungal pathogen of humans, forming both commensal and opportunistic pathogenic interactions, causing a variety of skin and soft tissue infections in healthy people. In immunocompromised patients C. albicans can result in invasive, systemic infections that are associated with a high incidence of mortality. Propolis is a complex mixture of several resinous substances which are collected from plants by bees. Here, we demonstrated the fungicidal activity of propolis against all three morphogenetic types of C. albicans and that propolis-induced cell death was mediated via metacaspase and Ras signaling. To identify genes that were involved in propolis tolerance, we screened ~800 C. albicans homozygous deletion mutants for decreased tolerance to propolis. Fifty-one mutant strains were identified as being hypersensitive to propolis including seventeen genes involved in cell adhesion, biofilm formation, filamentous growth, phenotypic switching and pathogenesis (HST7, GIN4, VPS34, HOG1, ISW2, SUV3, MDS3, HDA2, KAR3, YHB1, NUP85, CDC10, MNN9, ACE2, FKH2, and SNF5). We validated these results by showing that propolis inhibited the transition from yeast-like to hyphal growth. Propolis was shown to contain compounds that conferred fluorescent properties to C. albicans cells. Moreover, we have shown that a topical pharmaceutical preparation, based upon propolis, was able to control C. albicans infections in a mouse model for vulvovaginal candidiasis. Our results strongly indicate that propolis could be used as a strategy for controlling candidiasis.
Collapse
|
25
|
Feng J, Zhao Y, Duan Y, Jiang L. Genetic interactions between protein phosphatases CaPtc2p and CaPph3p in response to genotoxins and rapamycin inCandida albicans. FEMS Yeast Res 2013; 13:85-96. [DOI: 10.1111/1567-1364.12012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | | - Yinong Duan
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | |
Collapse
|
26
|
Gerami-Nejad M, Zacchi LF, McClellan M, Matter K, Berman J. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. MICROBIOLOGY-SGM 2013; 159:565-579. [PMID: 23306673 DOI: 10.1099/mic.0.064097-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans is the most prevalent fungal pathogen of humans. The current techniques used to construct C. albicans strains require integration of exogenous DNA at ectopic locations, which can exert position effects on gene expression that can confound the interpretation of data from critical experiments such as virulence assays. We have identified a large intergenic region, NEUT5L, which facilitates the integration and expression of ectopic genes. To construct and integrate inserts into this novel locus, we re-engineered yeast/bacterial shuttle vectors by incorporating 550 bp of homology to NEUT5L. These vectors allow rapid, facile cloning through in vivo recombination (gap repair) in Saccharomyces cerevisiae and efficient integration of the construct into the NEUT5L locus. Other useful features of these vectors include a choice of three selectable markers (URA3, the recyclable URA3-dpl200 or NAT1), and rare restriction enzyme recognition sites for releasing the insert from the vector prior to transformation into C. albicans, thereby reducing the insert size and preventing integration of non-C. albicans DNA. Importantly, unlike the commonly used RPS1/RP10 locus, integration at NEUT5L has no negative effect on growth rates and allows native-locus expression levels, making it an ideal genomic locus for the integration of exogenous DNA in C. albicans.
Collapse
Affiliation(s)
- Maryam Gerami-Nejad
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia F Zacchi
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathleen Matter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Su C, Lu Y, Liu H. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell 2012; 24:385-97. [PMID: 23171549 PMCID: PMC3564525 DOI: 10.1091/mbc.e12-06-0477] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many signaling pathways important for hyphal development have been identified, but how Candida albicans coordinates information from these signaling pathways during hyphal development remains a major question. It is shown that reduced Tor1 signaling lowers the basal activity of the Hog1 MAP kinase to sustain hyphal elongation. Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/protein kinase A and promoter recruitment of the histone deacetylase Hda1 under reduced target of rapamycin (Tor1) signaling. The GATA family transcription factor Brg1 recruits Hda1 to promoters for sustained hyphal development, and BRG1 expression is a readout of reduced Tor1 signaling. How Tor1 regulates BRG1 expression is not clear. Using a forward genetic screen for mutants that can sustain hyphal elongation in rich media, we found hog1, ssk2, and pbs2 mutants of the HOG mitogen-activated protein kinase pathway to express BRG1 irrespective of rapamycin. Furthermore, rapamycin lowers the basal activity of Hog1 through the functions of the two Hog1 tyrosine phosphatases Ptp2 and Ptp3. Active Hog1 represses the expression of BRG1 via the transcriptional repressor Sko1 as Sko1 disassociates from the promoter of BRG1 in the hog1 mutant or in rapamycin. Our data suggest that reduced Tor1 signaling lowers Hog1 basal activity via Hog1 phosphatases to activate BRG1 expression for hyphal elongation.
Collapse
Affiliation(s)
- Chang Su
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
28
|
Aragon AD, Torrez-Martinez N, Edwards JS. Genomic analysis of Saccharomyces cerevisiae isolates that grow optimally with glucose as the sole carbon source. Electrophoresis 2012; 33:3514-20. [PMID: 23135695 DOI: 10.1002/elps.201200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/07/2022]
Abstract
A population of Saccharomyces cerevisiae was cultured for approximately 450 generations in the presence of high glucose to select for genetic variants that grew optimally under these conditions. Using the parental strain BY4741 as the starting population, an evolved culture was obtained after aerobic growth in a high glucose medium for approximately 450 generations. After the evolution period, three single colony isolates were selected for analysis. Next-generation Ion Torrent sequencing was used to evaluate genetic changes. Greater than 100 deletion/insertion changes were found with approximately half of these effecting genes. Additionally, over 180 SNPs were identified with more than one-quarter of these resulting in a nonsynonymous mutation. Affymetrix DNA microarrays and RNseq analysis were used to determine differences in gene expression in the evolved strains compared to the parental strain. It was established that approximately 900 genes demonstrated significantly altered expression in the evolved strains relative to the parental strain. Many of these genes showed similar alterations in their expression in all three evolved strains. Interestingly, genes with altered expression in the three evolved strains included genes with a role in oxidative metabolism. Overall these results are consistent with the physiological observations of optimal growth with glucose as the carbon source. Namely, the decreased ethanol production suggest that the underlying metabolism switched from fermentation to respiration during the selection for optimal growth on glucose.
Collapse
Affiliation(s)
- Anthony D Aragon
- UNM Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
29
|
Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. EUKARYOTIC CELL 2011; 11:168-82. [PMID: 22194462 DOI: 10.1128/ec.05200-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a major fungal pathogen in humans. In C. albicans, secreted aspartyl protease 2 (Sap2) is the most highly expressed secreted aspartic protease in vitro and is a virulence factor. Recent research links the small GTPase Rhb1 to C. albicans target of rapamycin (TOR) signaling in response to nitrogen availability. The results of this study show that Rhb1 is related to cell growth through the control of SAP2 expression when protein is the major nitrogen source. This process involves various components of the TOR signaling pathway, including Tor1 kinase and its downstream effectors. TOR signaling not only controls SAP2 transcription but also affects Sap2 protein levels, possibly through general amino acid control. DNA microarray analysis identifies other target genes downstream of Rhb1 in addition to SAP2. These findings provide new insight into nutrients, Rhb1-TOR signaling, and expression of C. albicans virulence factor.
Collapse
|
30
|
Selvig K, Alspaugh JA. pH Response Pathways in Fungi: Adapting to Host-derived and Environmental Signals. MYCOBIOLOGY 2011; 39:249-56. [PMID: 22783112 PMCID: PMC3385132 DOI: 10.5941/myco.2011.39.4.249] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/13/2011] [Accepted: 11/24/2011] [Indexed: 05/08/2023]
Abstract
Microorganisms are significantly affected when the ambient pH of their environment changes. They must therefore be able to sense and respond to these changes in order to survive. Previous investigators have studied various fungal species to define conserved pH-responsive signaling pathways. One of these pathways, known as the Pal/Rim pathway, is activated in response to alkaline pH signals, ultimately targeting the PacC/Rim101 transcription factor. Although the central signaling components are conserved among divergent filamentous and yeast-like fungi, there is some degree of signaling specificity between fungal species. This specificity exists primarily in the downstream transcriptional targets of this pathway, likely allowing differential adaptation to species-specific environmental niches. In this review, the role of the Pal/Rim pathway in fungal pH response is discussed. Also highlighted are functional differences present in this pathway among human fungal pathogens, differences that allow these specialized microorganisms to survive in the various micro-environments of the infected human host.
Collapse
Affiliation(s)
- Kyla Selvig
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Finkel JS, Yudanin N, Nett JE, Andes DR, Mitchell AP. Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant. Fungal Genet Biol 2011; 48:1056-61. [PMID: 21820070 PMCID: PMC3185220 DOI: 10.1016/j.fgb.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.
Collapse
Affiliation(s)
- JS Finkel
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - N Yudanin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - JE Nett
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - DR Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - AP Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
32
|
Shertz CA, Cardenas ME. Exploiting and subverting Tor signaling in the pathogenesis of fungi, parasites, and viruses. PLoS Pathog 2011; 7:e1002269. [PMID: 21980290 PMCID: PMC3182915 DOI: 10.1371/journal.ppat.1002269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Cecelia A. Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lu Y, Su C, Wang A, Liu H. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 2011; 9:e1001105. [PMID: 21811397 PMCID: PMC3139633 DOI: 10.1371/journal.pbio.1001105] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/31/2011] [Indexed: 12/21/2022] Open
Abstract
Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin) signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification. Many organisms are able to change their phenotype in response to changes in the environment, a phenomenon referred to as plasticity. Candida albicans, a major opportunistic fungal pathogen of humans, can undergo reversible morphological changes between yeast (spherical) and hyphal (filamentous) forms of growth in response to environmental cues. This morphological plasticity is essential for its pathogenesis and survival in its hosts. In this study, we show that hyphal development is initiated and maintained by two major nutrient-sensing cellular growth pathways that act by removing the inhibition provided by the transcriptional repressor Nrg1. While initiation requires a rapid but temporary disappearance of Nrg1 via activation of the cAMP-dependent protein kinase A pathway, maintenance requires the recruitment to promoters of the Hda1 histone deacetylase under conditions of reduced signaling by the target of rapamycin (TOR) kinase, leading to chromatin remodeling that blocks Nrg1 access to the promoters of hypha-specific genes. We observed that recruitment of Hda1 to promoters happens only during the time window when Nrg1 is absent. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals in the regulation of gene expression and phenotypic plasticity during development and cell fate specification.
Collapse
Affiliation(s)
- Yang Lu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Chang Su
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Allen Wang
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. EUKARYOTIC CELL 2010; 9:1383-97. [PMID: 20639413 DOI: 10.1128/ec.00042-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida dubliniensis is closely related to Candida albicans; however, it is responsible for fewer infections in humans and is less virulent in animal models of infection. C. dubliniensis forms fewer hyphae in vivo, and this may contribute to its reduced virulence. In this study we show that, unlike C. albicans, C. dubliniensis fails to form hyphae in yeast extract-peptone-dextrose (YPD) medium supplemented with 10% (vol/vol) fetal calf serum (YPDS medium). However, C. dubliniensis filaments in water plus 10% (vol/vol) fetal calf serum (WS), and this filamentation is inhibited by the addition of peptone and glucose. Repression of filamentation in YPDS medium could be partly overcome by preculture in synthetic Lee's medium. Unlike C. albicans, inoculation of C. dubliniensis in YPDS medium did not result in increased UME6 transcription. However, >100-fold induction of UME6 was observed when C. dubliniensis was inoculated in nutrient-poor WS medium. The addition of increasing concentrations of peptone to WS medium had a dose-dependent effect on reducing UME6 expression. Transcript profiling of C. dubliniensis hyphae in WS medium identified a starvation response involving expression of genes in the glyoxylate cycle and fatty acid oxidation. In addition, a core, shared transcriptional response with C. albicans could be identified, including expression of virulence-associated genes including SAP456, SAP7, HWP1, and SOD5. Preculture in nutrient-limiting medium enhanced adherence of C. dubliniensis, epithelial invasion, and survival following coculture with murine macrophages. In conclusion, C. albicans, unlike C. dubliniensis, appears to form hyphae in liquid medium regardless of nutrient availability, which may account for its increased capacity to cause disease in humans.
Collapse
|