1
|
Dupouy G, Cashell R, Brychkova G, Tuteja R, McKeown PC, Spillane C. PICKLE RELATED 2 is a Neofunctionalized Gene Duplicate Under Positive Selection With Antagonistic Effects to the Ancestral PICKLE Gene on the Seed Transcriptome. Genome Biol Evol 2023; 15:evad191. [PMID: 37931037 PMCID: PMC10630071 DOI: 10.1093/gbe/evad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The evolution and diversification of proteins capable of remodeling domains has been critical for transcriptional reprogramming during cell fate determination in multicellular eukaryotes. Chromatin remodeling proteins of the CHD3 family have been shown to have important and antagonistic impacts on seed development in the model plant, Arabidopsis thaliana, yet the basis of this functional divergence remains unknown. In this study, we demonstrate that genes encoding the CHD3 proteins PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) originated from a duplication event during the diversification of crown Brassicaceae, and that these homologs have undergone distinct evolutionary trajectories since this duplication, with PKR2 fast evolving under positive selection, while PKL is subject to purifying selection. We find that the rapid evolution of PKR2 under positive selection reduces the encoded protein's intrinsic disorder, possibly suggesting a tertiary structure configuration which differs from that of PKL. Our whole genome transcriptome analysis in seeds of pkr2 and pkl mutants reveals that they act antagonistically on the expression of specific sets of genes, providing a basis for their differing roles in seed development. Our results provide insights into how gene duplication and neofunctionalization can lead to differing and antagonistic selective pressures on transcriptomes during plant reproduction, as well as on the evolutionary diversification of the CHD3 family within seed plants.
Collapse
Affiliation(s)
- Gilles Dupouy
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| | - Ronan Cashell
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| | - Reetu Tuteja
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway H91 REW4, Ireland
| |
Collapse
|
2
|
Trujillo JT, Long J, Aboelnour E, Ogas J, Wisecaver JH. CHD chromatin remodeling protein diversification yields novel clades and domains absent in classic model organisms. Genome Biol Evol 2022; 14:6582301. [PMID: 35524943 PMCID: PMC9113485 DOI: 10.1093/gbe/evac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodelers play a fundamental role in the assembly of chromatin, regulation of transcription, and DNA repair. Biochemical and functional characterizations of the CHD family of chromatin remodelers from a variety of model organisms have shown that these remodelers participate in a wide range of activities. However, because the evolutionary history of CHD homologs is unclear, it is difficult to predict which of these activities are broadly conserved and which have evolved more recently in individual eukaryotic lineages. Here, we performed a comprehensive phylogenetic analysis of 8,042 CHD homologs from 1,894 species to create a model for the evolution of this family across eukaryotes with a particular focus on the timing of duplications that gave rise to the diverse copies observed in plants, animals, and fungi. Our analysis confirms that the three major subfamilies of CHD remodelers originated in the eukaryotic last common ancestor, and subsequent losses occurred independently in different lineages. Improved taxon sampling identified several subfamilies of CHD remodelers in plants that were absent or highly divergent in the model plant Arabidopsis thaliana. Whereas the timing of CHD subfamily expansions in vertebrates corresponds to whole genome duplication events, the mechanisms underlying CHD diversification in land plants appear more complicated. Analysis of protein domains reveals that CHD remodeler diversification has been accompanied by distinct transitions in domain architecture, contributing to the functional differences observed between these remodelers. This study demonstrates the importance of proper taxon sampling when studying ancient evolutionary events to prevent misinterpretation of subsequent lineage-specific changes and provides an evolutionary framework for functional and comparative analysis of this critical chromatin remodeler family across eukaryotes.
Collapse
Affiliation(s)
- Joshua T Trujillo
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jiaxin Long
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Erin Aboelnour
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Joseph Ogas
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
3
|
Ush regulates hemocyte-specific gene expression, fatty acid metabolism and cell cycle progression and cooperates with dNuRD to orchestrate hematopoiesis. PLoS Genet 2021; 17:e1009318. [PMID: 33600407 PMCID: PMC7891773 DOI: 10.1371/journal.pgen.1009318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
The generation of lineage-specific gene expression programmes that alter proliferation capacity, metabolic profile and cell type-specific functions during differentiation from multipotent stem cells to specialised cell types is crucial for development. During differentiation gene expression programmes are dynamically modulated by a complex interplay between sequence-specific transcription factors, associated cofactors and epigenetic regulators. Here, we study U-shaped (Ush), a multi-zinc finger protein that maintains the multipotency of stem cell-like hemocyte progenitors during Drosophila hematopoiesis. Using genomewide approaches we reveal that Ush binds to promoters and enhancers and that it controls the expression of three gene classes that encode proteins relevant to stem cell-like functions and differentiation: cell cycle regulators, key metabolic enzymes and proteins conferring specific functions of differentiated hemocytes. We employ complementary biochemical approaches to characterise the molecular mechanisms of Ush-mediated gene regulation. We uncover distinct Ush isoforms one of which binds the Nucleosome Remodeling and Deacetylation (NuRD) complex using an evolutionary conserved peptide motif. Remarkably, the Ush/NuRD complex specifically contributes to the repression of lineage-specific genes but does not impact the expression of cell cycle regulators or metabolic genes. This reveals a mechanism that enables specific and concerted modulation of functionally related portions of a wider gene expression programme. Finally, we use genetic assays to demonstrate that Ush and NuRD regulate enhancer activity during hemocyte differentiation in vivo and that both cooperate to suppress the differentiation of lamellocytes, a highly specialised blood cell type. Our findings reveal that Ush coordinates proliferation, metabolism and cell type-specific activities by isoform-specific cooperation with an epigenetic regulator.
Collapse
|
4
|
Wilson MM, Henshall DC, Byrne SM, Brennan GP. CHD2-Related CNS Pathologies. Int J Mol Sci 2021; 22:E588. [PMID: 33435571 PMCID: PMC7827033 DOI: 10.3390/ijms22020588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Epileptic encephalopathies (EE) are severe epilepsy syndromes characterized by multiple seizure types, developmental delay and even regression. This class of disorders are increasingly being identified as resulting from de novo genetic mutations including many identified mutations in the family of chromodomain helicase DNA binding (CHD) proteins. In particular, several de novo pathogenic mutations have been identified in the gene encoding chromodomain helicase DNA binding protein 2 (CHD2), a member of the sucrose nonfermenting (SNF-2) protein family of epigenetic regulators. These mutations in the CHD2 gene are causative of early onset epileptic encephalopathy, abnormal brain function, and intellectual disability. Our understanding of the mechanisms by which modification or loss of CHD2 cause this condition remains poorly understood. Here, we review what is known and still to be elucidated as regards the structure and function of CHD2 and how its dysregulation leads to a highly variable range of phenotypic presentations.
Collapse
Affiliation(s)
- Marc-Michel Wilson
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - David C. Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - Susan M. Byrne
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- Department of Paediatrics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland
- Department of Paediatric Neurology, Our Ladies Children’s Hospital Crumlin, Dublin 12, Ireland
| | - Gary P. Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 04, Ireland
| |
Collapse
|
5
|
Lu Y, Tan F, Zhao Y, Zhou S, Chen X, Hu Y, Zhou DX. A Chromodomain-Helicase-DNA-Binding Factor Functions in Chromatin Modification and Gene Regulation. PLANT PHYSIOLOGY 2020; 183:1035-1046. [PMID: 32439720 PMCID: PMC7333708 DOI: 10.1104/pp.20.00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
Proteins in the Chromodomain-Helicase/ATPase-DNA-binding domain (CHD) family are divided into three groups. The function of group I CHD proteins in nucleosome positioning is well established, while that of group II members (represented by CHD3/Mi2) remains unclear. Using high-throughput approaches, we investigated the function of the group II rice (Oryza sativa) CHD protein CHR729 in nucleosome positioning, gene expression, histone methylation, and binding. Our data revealed that the chr729 mutation led to increased nucleosome occupancy in the rice genome and altered the expression and histone H3K4me3 modification of many, mainly underexpressed, genes. Further analysis showed that the mutation affected both the deposition and depletion of H3K4me3 in distinct chromatin regions, with concomitant changes in H3K27me3 modification. Genetic and genomic analyses revealed that CHR729 and JMJ703, an H3K4 demethylase, had agonistic, antagonistic, and independent functions in modulating H3K4me3 and the expression of subsets of genes. In addition, CHR729 binding was enriched in H3K4me3-marked genic and H3K27me3-marked intergenic regions. The results indicate that CHR729 has distinct functions in regulating H3K4me3 and H3K27me3 modifications and gene expression at different chromatin domains and provide insight into chromatin regulation of bivalent genes marked by both H3K4me3 and H3K27me3.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Feng Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangsong Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, 448000 Jingmen, Hubei, China
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, Three Gorges University, 443002 Yichang, Hubei, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
- University Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Institute of Plant Science of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
6
|
Mačinković I, Theofel I, Hundertmark T, Kovač K, Awe S, Lenz J, Forné I, Lamp B, Nist A, Imhof A, Stiewe T, Renkawitz-Pohl R, Rathke C, Brehm A. Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Res 2019; 47:11649-11666. [PMID: 31701127 PMCID: PMC7145674 DOI: 10.1093/nar/gkz1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.
Collapse
Affiliation(s)
- Igor Mačinković
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ina Theofel
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Tim Hundertmark
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Stephan Awe
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Lenz
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Boris Lamp
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Renate Renkawitz-Pohl
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Christina Rathke
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| |
Collapse
|
7
|
Kovač K, Sauer A, Mačinković I, Awe S, Finkernagel F, Hoffmeister H, Fuchs A, Müller R, Rathke C, Längst G, Brehm A. Tumour-associated missense mutations in the dMi-2 ATPase alters nucleosome remodelling properties in a mutation-specific manner. Nat Commun 2018; 9:2112. [PMID: 29844320 PMCID: PMC5974244 DOI: 10.1038/s41467-018-04503-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
ATP-dependent chromatin remodellers are mutated in more than 20% of human cancers. The consequences of these mutations on enzyme function are poorly understood. Here, we characterise the effects of CHD4 mutations identified in endometrial carcinoma on the remodelling properties of dMi-2, the highly conserved Drosophila homologue of CHD4. Mutations from different patients have surprisingly diverse defects on nucleosome binding, ATPase activity and nucleosome remodelling. Unexpectedly, we identify both mutations that decrease and increase the enzyme activity. Our results define the chromodomains and a novel regulatory region as essential for nucleosome remodelling. Genetic experiments in Drosophila demonstrate that expression of cancer-derived dMi-2 mutants misregulates differentiation of epithelial wing structures and produces phenotypes that correlate with their nucleosome remodelling properties. Our results help to define the defects of CHD4 in cancer at the mechanistic level and provide the basis for the development of molecular approaches aimed at restoring their activity. ATP-dependent chromatin remodelers are often found mutated in human cancers. Here, the authors characterize the nucleosome remodelling properties of cancer-associated mutants of the Drosophila Chd4 homolog dMi-2.
Collapse
Affiliation(s)
- Kristina Kovač
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany
| | - Anja Sauer
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany
| | - Igor Mačinković
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany.,Center for Tumour Biology and Immunology, University of Marburg, 35043, Marburg, Germany
| | - Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053, Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053, Regensburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany.,Center for Tumour Biology and Immunology, University of Marburg, 35043, Marburg, Germany
| | - Christina Rathke
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053, Regensburg, Germany
| | - Alexander Brehm
- Institute for Molecular Biology and Tumour Research, University of Marburg, 35043, Marburg, Germany.
| |
Collapse
|
8
|
Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, Deutzmann R, Schwartz U, Maldonado R, Huber C, Dendorfer AS, Rippe K, Längst G. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res 2017; 45:10534-10554. [PMID: 28977666 PMCID: PMC5737555 DOI: 10.1093/nar/gkx711] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Fabian Erdel
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophia Pinz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Gröbner-Ferreira
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rodrigo Maldonado
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Claudia Huber
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne-Sarah Dendorfer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Kreher J, Kovač K, Bouazoune K, Mačinković I, Ernst AL, Engelen E, Pahl R, Finkernagel F, Murawska M, Ullah I, Brehm A. EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes. Nat Commun 2017; 8:14806. [PMID: 28378812 PMCID: PMC5382322 DOI: 10.1038/ncomms14806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Gene regulation by steroid hormones plays important roles in health and disease. In Drosophila, the hormone ecdysone governs transitions between key developmental stages. Ecdysone-regulated genes are bound by a heterodimer of ecdysone receptor (EcR) and Ultraspiracle. According to the bimodal switch model, steroid hormone receptors recruit corepressors in the absence of hormone and coactivators in its presence. Here we show that the nucleosome remodeller dMi-2 is recruited to ecdysone-regulated genes to limit transcription. Contrary to the prevalent model, recruitment of the dMi-2 corepressor increases upon hormone addition to constrain gene activation through chromatin remodelling. Furthermore, EcR and dMi-2 form a complex that is devoid of Ultraspiracle. Unexpectedly, EcR contacts the dMi-2 ATPase domain and increases the efficiency of dMi-2-mediated nucleosome remodelling. This study identifies a non-canonical EcR-corepressor complex with the potential for a direct regulation of ATP-dependent nucleosome remodelling by a nuclear hormone receptor.
Collapse
Affiliation(s)
- Judith Kreher
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Igor Mačinković
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Anna Luise Ernst
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Erik Engelen
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Roman Pahl
- Institute of Medical Biometry and Epidemiology, Philipps University Marburg, Marburg 35037, Germany
| | - Florian Finkernagel
- Center for Tumour Biology and Immunology, Philipps University Marburg, Marburg 35043, Germany
| | - Magdalena Murawska
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Ikram Ullah
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35037, Germany
| |
Collapse
|
10
|
Huang F, Zhu QH, Zhu A, Wu X, Xie L, Wu X, Helliwell C, Chaudhury A, Finnegan EJ, Luo M. Mutants in the imprinted PICKLE RELATED 2 gene suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:383-395. [PMID: 28155248 DOI: 10.1111/tpj.13500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
Endosperm cellularization is essential for embryo development and viable seed formation. Loss of function of the FERTILIZATION INDEPENDENT SEED (FIS) class Polycomb genes, which mediate trimethylation of histone H3 lysine27 (H3K27me3), as well as imbalanced contributions of parental genomes interrupt this process. The causes of the failure of cellularization are poorly understood. In this study we identified PICKLE RELATED 2 (PKR2) mutations which suppress seed abortion in fis1/mea by restoring endosperm cellularization. PKR2, a paternally expressed imprinted gene (PEG), encodes a CHD3 chromatin remodeler. PKR2 is specifically expressed in syncytial endosperm and its maternal copy is repressed by FIS1. Seed abortion in a paternal genome excess interploidy cross was also partly suppressed by pkr2. Simultaneous mutations in PKR2 and another PEG, ADMETOS (ADM), additively rescue the seed abortion in fis1 and in the interploidy cross, suggesting that PKR2 and ADM modulate endosperm cellularization independently and reproductive isolation between plants of different ploidy is established by imprinted genes. Genes upregulated in fis1 and downregulated in the presence of pkr2 are enriched in glycosyl-hydrolyzing activity, while genes downregulated in fis1 and upregulated in the presence of pkr2 are enriched with microtubule motor activity, consistent with the cellularization patterns in fis1 and the suppressor line. The antagonistic functions of FIS1 and PKR2 in modulating endosperm development are similar to those of PICKLE (PKL) and CURLY LEAF (CLF), which antagonistically regulate root meristem activity. Our results provide further insights into the function of imprinted genes in endosperm development and reproductive isolation.
Collapse
Affiliation(s)
- Fang Huang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Qian-Hao Zhu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Anyu Zhu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Xiaoba Wu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Liqiong Xie
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Chris Helliwell
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | | | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Ming Luo
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| |
Collapse
|
11
|
Zhang P, Torres K, Liu X, Liu CG, Pollock RE. An Overview of Chromatin-Regulating Proteins in Cells. Curr Protein Pept Sci 2017; 17:401-10. [PMID: 26796306 DOI: 10.2174/1389203717666160122120310] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatinregulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate-ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
12
|
Käser-Pébernard S, Pfefferli C, Aschinger C, Wicky C. Fine-tuning of chromatin composition and Polycomb recruitment by two Mi2 homologues during C. elegans early embryonic development. Epigenetics Chromatin 2016; 9:39. [PMID: 27651832 PMCID: PMC5024519 DOI: 10.1186/s13072-016-0091-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The nucleosome remodeling and deacetylase complex promotes cell fate decisions throughout embryonic development. Its core enzymatic subunit, the SNF2-like ATPase and Helicase Mi2, is well conserved throughout the eukaryotic kingdom and can be found in multiple and highly homologous copies in all vertebrates and some invertebrates. However, the reasons for such duplications and their implications for embryonic development are unknown. RESULTS Here we studied the two C. elegans Mi2 homologues, LET-418 and CHD-3, which displayed redundant activities during early embryonic development. At the transcriptional level, these two Mi2 homologues redundantly repressed the expression of a large gene population. We found that LET-418 physically accumulated at TSS-proximal regions on transcriptionally active genomic targets involved in growth and development. Moreover, LET-418 acted redundantly with CHD-3 to block H3K4me3 deposition at these genes. Our study also revealed that LET-418 was partially responsible for recruiting Polycomb to chromatin and for promoting H3K27me3 deposition. Surprisingly, CHD-3 displayed opposite activities on Polycomb, as it was capable of moderating its LET-418-dependent recruitment and restricted the amount of H3K27me3 on the studied target genes. CONCLUSION Although closely homologous, LET-418 and CHD-3 showed both redundant and opposite functions in modulating the chromatin environment at developmental target genes. We identified the interplay between LET-418 and CHD-3 to finely tune the levels of histone marks at developmental target genes. More than just repressors, Mi2-containing complexes appear as subtle modulators of gene expression throughout development. The study of such molecular variations in vertebrate Mi2 counterparts might provide crucial insights to our understanding of the epigenetic control of early development.
Collapse
Affiliation(s)
- Stéphanie Käser-Pébernard
- Biology Department, Zoology Institute, University of Fribourg, Ch. du musée 10, 1700 Fribourg, Switzerland ; Biology Department, Biochemistry Institute, University of Fribourg, Ch. du musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Biology Department, Zoology Institute, University of Fribourg, Ch. du musée 10, 1700 Fribourg, Switzerland
| | - Caroline Aschinger
- Biology Department, Zoology Institute, University of Fribourg, Ch. du musée 10, 1700 Fribourg, Switzerland
| | - Chantal Wicky
- Biology Department, Zoology Institute, University of Fribourg, Ch. du musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Ma X, Ma J, Zhai H, Xin P, Chu J, Qiao Y, Han L. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice. PLoS One 2015; 10:e0138934. [PMID: 26398683 PMCID: PMC4580627 DOI: 10.1371/journal.pone.0138934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/05/2015] [Indexed: 12/22/2022] Open
Abstract
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.
Collapse
Affiliation(s)
- Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Honghong Zhai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongli Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhi Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Hu Y, Lai Y, Zhu D. Transcription regulation by CHD proteins to control plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:223. [PMID: 24904618 PMCID: PMC4036436 DOI: 10.3389/fpls.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/05/2014] [Indexed: 05/19/2023]
Abstract
Chromodomain-Helicase-DNA (CHD)-binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PIKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.
Collapse
Affiliation(s)
- Yongfeng Hu
- *Correspondence: Yongfeng Hu, Jingchu University of Technology, Xiangshan Road 33, Jingmen, China e-mail:
| | | | | |
Collapse
|
16
|
Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol 2014; 385:417-32. [DOI: 10.1016/j.ydbio.2013.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
17
|
Maenner S, Müller M, Fröhlich J, Langer D, Becker PB. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 2013; 51:174-84. [PMID: 23870143 DOI: 10.1016/j.molcel.2013.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
Dosage compensation in Drosophila involves a global activation of genes on the male X chromosome. The activating complex (MSL-DCC) consists of male-specific-lethal (MSL) proteins and two long, noncoding roX RNAs. The roX RNAs are essential for X-chromosomal targeting, but their contributions to MSL-DCC structure and function are enigmatic. Conceivably, the RNA helicase MLE, itself an MSL subunit, is actively involved in incorporating roX into functional DCC. We determined the secondary structure of roX2 and mapped specific interaction sites for MLE in vitro. Upon addition of ATP, MLE disrupted a functionally important stem loop in roX2. This RNA remodeling enhanced specific ATP-dependent association of MSL2, the core subunit of the MSL-DCC, providing a link between roX and MSL subunits. Probing the conformation of roX in vivo revealed a remodeled stem loop in chromatin-bound roX2. The active remodeling of a stable secondary structure by MLE may constitute a rate-limiting step for MSL-DCC assembly.
Collapse
Affiliation(s)
- Sylvain Maenner
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
18
|
CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression. Dev Cell 2013; 26:223-36. [PMID: 23948251 DOI: 10.1016/j.devcel.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/02/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022]
Abstract
The chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly, the chromodomains of CHD5 directly bind H3K27me3 and are required for neuronal differentiation. In the absence of CHD5, a subgroup of Polycomb-repressed genes becomes aberrantly expressed. These findings provide insights into the regulatory role of CHD5 during neurogenesis and suggest how inactivation of this candidate tumor suppressor might contribute to neuroblastoma.
Collapse
|
19
|
Hu Y, Zhu N, Wang X, Yi Q, Zhu D, Lai Y, Zhao Y. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:33-42. [PMID: 23770592 DOI: 10.1016/j.plaphy.2013.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/02/2013] [Indexed: 05/24/2023]
Abstract
Snf2 family proteins are ATP-dependent chromatin remodeling factors that control many aspects of DNA events such as transcription, replication, homologous recombination and DNA repair. In animals several members in this family have been revealed to control gene expression in concert with other epigenetic mechanisms including histone modification, histone variants and DNA methylation. Their function in regulating genome expression in plant has hardly been disclosed before except in Arabidopsis. Here we identified 40 members of this family in the rice (Oryza Sativa) genome and constructed a phylogenetic tree together with Arabidopsis 41 Snf2 proteins. Sequence alignment of the Snf2 helicase regions revealed conserved motifs and blocks in most proteins. Expression profile analysis indicates that many rice Snf2 family genes show a tissue-specific expression pattern and some of them respond to abiotic stresses including drought, salt and cold. The results provide a basis for further analysis of their roles in epigenetic regulation to control rice development.
Collapse
Affiliation(s)
- Yongfeng Hu
- Jingchu University of Technology, 448000 Jingmen, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called "nucleosome remodeling" ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone-DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. "Remodeling" may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states.
Collapse
|
21
|
CHD4/NuRD maintains demethylation state of rDNA promoters through inhibiting the expression of the rDNA methyltransferase recruiter TIP5. Biochem Biophys Res Commun 2013; 437:101-7. [PMID: 23796711 DOI: 10.1016/j.bbrc.2013.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 12/17/2022]
Abstract
Despite the well-established fact that NuRD (nucleosome remodeling and histone deacetylase) is incapable of actively demethylating DNA, the complex is surprisingly showed to be required for the establishment of unmethylated state at promoters of ribosomal genes. But the molecular mechanism underlying how NuRD mediates unmethylation at rDNA promoters remains obscure. Here we show that NuRD directly binds to the promoter of rDNA transcription silencer TIP5 (TTF-I interacting protein 5), one of the components of nucleolar remodeling complex NoRC that silences rRNA genes by recruiting DNA methyltransferase to rDNA promoters and increasing DNA methylation. NuRD negatively regulates TIP5 expression, thereby inhibiting rDNA methylation and maintaining demethylation state of rDNA promoters. The deficiency of NuRD components in reprogrammed cells activates TIP5 expression, resulting in the increased fraction of heterochromatic rRNA genes and transcriptional silencing. Thus, NuRD is able to control methylation status of rDNA promoters through crosstalking with NoRC complex.
Collapse
|
22
|
Streubel G, Bouchard C, Berberich H, Zeller MS, Teichmann S, Adamkiewicz J, Müller R, Klempnauer KH, Bauer UM. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet 2013; 9:e1003343. [PMID: 23505388 PMCID: PMC3591284 DOI: 10.1371/journal.pgen.1003343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/10/2013] [Indexed: 01/10/2023] Open
Abstract
Protein arginine methyltransferase 4 (PRMT4)–dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling. Our manuscript deals with the Protein arginine methyltransferase 4 (PRMT4), which modifies arginine residues in histones and other chromatin-associated proteins and plays an important role in the regulation of gene expression. We addressed the question of how the transcriptional function of PRMT4 might contribute to cell lineage specification despite its ubiquitious expression pattern and how this could explain its involvement in tumorigenesis. As protein associations are likely to provide an answer to this question, we attempted to identify novel interaction partners of PRMT4 using a biochemical approach. By this means, we found that PRMT4 binds Mi2α and its close relative Mi2β. In the search for the biological role of this interaction, we found that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. Depletion of PRMT4 or Mi2α/β in human erythroleukemia cells resulted in deregulated cell proliferation and differentiation resembling the effects caused by c-Myb depletion. Our findings unravel an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling and gene activation and identify both coregulators as attractive targets for leukaemia research and therapy in the future.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Hannah Berberich
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Marc S. Zeller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | | | - Jürgen Adamkiewicz
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Reynolds N, O'Shaughnessy A, Hendrich B. Transcriptional repressors: multifaceted regulators of gene expression. Development 2013; 140:505-12. [DOI: 10.1242/dev.083105] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Through decades of research it has been established that some chromatin-modifying proteins can repress transcription, and thus are generally termed ‘repressors’. Although classic repressors undoubtedly silence transcription, genome-wide studies have shown that many repressors are associated with actively transcribed loci and that this is a widespread phenomenon. Here, we review the evidence for the presence of repressors at actively transcribed regions and assess what roles they might be playing. We propose that the modulation of expression levels by chromatin-modifying, co-repressor complexes provides transcriptional fine-tuning that drives development.
Collapse
Affiliation(s)
- Nicola Reynolds
- Wellcome Trust – Medical Research Council Stem Cell Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QRUK
| | - Aoife O'Shaughnessy
- Wellcome Trust – Medical Research Council Stem Cell Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QRUK
| | - Brian Hendrich
- Wellcome Trust – Medical Research Council Stem Cell Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QRUK
| |
Collapse
|
24
|
Ho KK, Zhang H, Golden BL, Ogas J. PICKLE is a CHD subfamily II ATP-dependent chromatin remodeling factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:199-210. [PMID: 23128324 DOI: 10.1016/j.bbagrm.2012.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 01/29/2023]
Abstract
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.
Collapse
Affiliation(s)
- Kwok Ki Ho
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | | |
Collapse
|
25
|
Epigenetic control of RNA polymerase I transcription in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:393-404. [PMID: 23063748 DOI: 10.1016/j.bbagrm.2012.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 11/22/2022]
Abstract
rRNA synthesis is regulated by genetic and epigenetic mechanisms. Epigenetic states are metastable, changing in response to appropriate signals, thereby modulating transcription in vivo. The establishment, maintenance and reversal of epigenetic features are fundamental for the cell's ability to 'remember' past events, to adapt to environmental changes or developmental cues and to propagate this information to the progeny. As packaging into chromatin is critical for the stability and integrity of repetitive DNA, keeping a fraction of rRNA genes in a metastable heterochromatic conformation prevents aberrant exchanges between repeats, thus safeguarding nucleolar structure and rDNA stability. In this review, we will focus on the nature of the molecular signatures that characterize a given epigenetic state of rDNA in mammalian cells, including noncoding RNA, DNA methylation and histone modifications, and the mechanisms by which they are established and maintained. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
26
|
Sakoparnig T, Kockmann T, Paro R, Beisel C, Beerenwinkel N. Binding profiles of chromatin-modifying proteins are predictive for transcriptional activity and promoter-proximal pausing. J Comput Biol 2012; 19:126-38. [PMID: 22300315 DOI: 10.1089/cmb.2011.0258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The establishment and maintenance of proper gene expression patterns is essential for stable cell differentiation. Using unsupervised learning techniques, chromatin states have been linked to discrete gene expression states, but these models cannot predict continuous gene expression levels, nor do they reveal detailed insight into the chromatin-based control of gene expression. Here, we employ regularized regression techniques to link, in a quantitative manner, binding profiles of chromatin proteins to gene expression levels and promoter-proximal pausing of RNA polymerase II in Drosophila melanogaster on a genome-wide scale. We apply stability selection to reliably detect interactions of chromatin features and predict several known, suggested, and novel proteins and protein pairs as transcriptional activators or repressors. Our integrative analysis reveals new insights into the complex interplay of transcriptional regulators in the context of gene expression. Supplementary Material is available at www.libertonline.com/cmb.
Collapse
Affiliation(s)
- Thomas Sakoparnig
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | | | | |
Collapse
|
27
|
The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc Natl Acad Sci U S A 2012; 109:8161-6. [PMID: 22570494 DOI: 10.1073/pnas.1201262109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
rRNA genes (rDNA) exist in two distinct epigenetic states, active promoters being unmethylated and marked by euchromatic histone modifications, whereas silent ones are methylated and exhibit heterochromatic features. Here we show that the nucleosome remodeling and deacetylation (NuRD) complex establishes a specific chromatin structure at rRNA genes that are poised for transcription activation. The promoter of poised rRNA genes is unmethylated, associated with components of the preinitiation complex, marked by bivalent histone modifications and covered by a nucleosome in the "off" position, which is refractory to transcription initiation. Repression of rDNA transcription in growth-arrested and differentiated cells correlates with elevated association of NuRD and increased levels of poised rRNA genes. Reactivation of transcription requires resetting the promoter-bound nucleosome into the "on" position by the DNA-dependent ATPase CSB (Cockayne syndrome protein B). The results uncover a unique mechanism by which ATP-dependent chromatin remodeling complexes with opposing activities establish a specific chromatin state and regulate transcription.
Collapse
|
28
|
Meier K, Mathieu EL, Finkernagel F, Reuter LM, Scharfe M, Doehlemann G, Jarek M, Brehm A. LINT, a novel dL(3)mbt-containing complex, represses malignant brain tumour signature genes. PLoS Genet 2012; 8:e1002676. [PMID: 22570633 PMCID: PMC3342951 DOI: 10.1371/journal.pgen.1002676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access. Mutations in the l(3)mbt result in the formation of brain tumours. The molecular basis underlying this phenotype has remained obscure. Here, we have isolated LINT, a novel protein complex containing dL(3)mbt, the corepressor dCoREST, and the uncharacterised protein dLint-1. We have used genome-wide ChIP–Seq analysis to map the binding sites of LINT. LINT occupies the promoters of many genes that are deregulated in l(3)mbt brain tumours, suggesting that these genes are repressed by LINT. Indeed, RNAi–mediated depletion of LINT subunits results in the derepression of these genes. Surprisingly, LINT-mediated repression is largely independent of histone modification status, arguing for a repression mechanism that operates by restricting promoter access.
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Eve-Lyne Mathieu
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - L. Maximilian Reuter
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Maren Scharfe
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Michael Jarek
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. PLANT PHYSIOLOGY 2012; 159:418-32. [PMID: 22452853 PMCID: PMC3375975 DOI: 10.1104/pp.112.194878] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/24/2012] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the ATP-dependent chromatin remodeler PICKLE (PKL) determines expression of genes associated with developmental identity. PKL promotes the epigenetic mark trimethylation of histone H3 lysine 27 (H3K27me3) that facilitates repression of tissue-specific genes in plants. It has previously been proposed that PKL acts indirectly to promote H3K27me3 by promoting expression of the POLYCOMB REPRESSIVE COMPLEX2 complex that generates H3K27me3. We undertook expression and chromatin immunoprecipitation analyses to further characterize the contribution of PKL to gene expression and developmental identity. Our expression data support a critical and specific role for PKL in expression of H3K27me3-enriched loci but do not support a role for PKL in expression of POLYCOMB REPRESSIVE COMPLEX2. Moreover, our chromatin immunoprecipitation data reveal that PKL protein is present at the promoter region of multiple H3K27me3-enriched loci, indicating that PKL directly acts on these loci. In particular, we find that PKL is present at LEAFY COTYLEDON1 and LEAFY COTYLEDON2 during germination, which is when PKL acts to repress these master regulators of embryonic identity. Surprisingly, we also find that PKL is present at the promoters of actively transcribed genes that are ubiquitously expressed such as ACTIN7 and POLYUBIQUITIN10 that do not exhibit PKL-dependent expression. Taken together, our data contravene the previous model of PKL action and instead support a direct role for PKL in determining levels of H3K27me3 at repressed loci. Our data also raise the possibility that PKL facilitates a common chromatin remodeling process that is not restricted to H3K27me3-enriched regions.
Collapse
|
30
|
CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome. Proc Natl Acad Sci U S A 2012; 109:5773-8. [PMID: 22451926 DOI: 10.1073/pnas.1203148109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone lysine methylation is an important component of the epigenetic system demarcating transcriptionally active and inactive chromatin domains. It is of primary importance in understanding how different histone lysine methylation marks and a specific combination of them are read and interpreted by chromatin proteins to regulate gene expression. In this paper, we report that the rice CHD3 protein CHR729 that was required for many aspects of plant development can interact with dimethylated histone H3 lysine 4 (H3K4me2, a mark associated with moderately expressed or repressed genes) and with trimethylated histone H3 lysine 27 (H3K27me3, a mark associated with repressed genes), respectively, through the chromodomains and the plant homeodomain (PHD) finger of the protein. A mutation or down-regulation of the gene provoked a decrease of H3K27me3 and H3K4me3 (a mark associated with active genes). Genome-wide analysis revealed that H3K27me3 and H3K4me3, respectively, were lost from about 56 and 23% of marked loci, which correspond mostly to under-expressed or repressed genes. In the mutant, a higher-than-expected proportion of down-regulated genes lost H3K4me3, among which many encode DNA-binding transcription factors. These results suggest that the rice CHD3 protein is a bifunctional chromatin regulator able to recognize and modulate H3K4 and H3K27 methylation over repressed or tissue-specific genes, which may be associated with regulation of a gene transcription program of plant development.
Collapse
|
31
|
Mathieu EL, Finkernagel F, Murawska M, Scharfe M, Jarek M, Brehm A. Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes. Nucleic Acids Res 2012; 40:4879-91. [PMID: 22362736 PMCID: PMC3367206 DOI: 10.1093/nar/gks178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ATP-dependent chromatin remodeler dMi-2 can play both positive and negative roles in gene transcription. Recently, we have shown that dMi-2 is recruited to the hsp70 gene in a heat shock-dependent manner, and is required to achieve high transcript levels. Here, we use chromatin immunoprecipitation sequencing (ChIP-Seq) to identify other chromatin regions displaying increased dMi-2 binding upon heat shock and to characterize the distribution of dMi-2 over heat shock genes. We show that dMi-2 is recruited to the body of at least seven heat shock genes. Interestingly, dMi-2 binding extends several hundred base pairs beyond the polyadenylation site into the region where transcriptional termination occurs. We find that dMi-2 does not associate with the entire nucleosome-depleted hsp70 locus 87A. Rather, dMi-2 binding is restricted to transcribed regions. Our results suggest that dMi-2 distribution over active heat shock genes are determined by transcriptional activity.
Collapse
Affiliation(s)
- Eve-Lyne Mathieu
- Institute for Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Davis MB, SanGil I, Berry G, Olayokun R, Neves LH. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines. BMC DEVELOPMENTAL BIOLOGY 2011; 11:66. [PMID: 22050674 PMCID: PMC3227616 DOI: 10.1186/1471-213x-11-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, University of Georgia, Athens, GA 30502, USA.
| | | | | | | | | |
Collapse
|
33
|
Murawska M, Hassler M, Renkawitz-Pohl R, Ladurner A, Brehm A. Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. PLoS Genet 2011; 7:e1002206. [PMID: 21829383 PMCID: PMC3145624 DOI: 10.1371/journal.pgen.1002206] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARP–dependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response. Cells respond to elevated temperatures with the rapid activation of heat shock genes to ensure cellular survival. Heat shock gene activation involves the synthesis of poly-[ADP-ribose] (PAR) at heat shock loci, the opening of chromatin structure, and the coordinated recruitment of transcription factors and chromatin regulators RNA polymerase II and components of the RNA processing machinery. The molecular roles of PAR and and ATP-dependent chromatin remodelers in heat shock gene activation are not clear. We show here that the chromatin remodeler dMi-2 is recruited to Drosophila heat shock genes in a PAR–dependent manner. We provide evidence that recruitment involves direct binding of dMi-2 to PAR polymers and identify novel PAR sensing regions in the dMi-2 protein, including the chromodomains and a series of motifs rich in K and R residues. Upon HS gene activation, dMi-2 associates with nascent transcripts. In addition, we find that dMi-2 and its catalytic activity are important for heat shock gene activation and co-transcriptional RNA processing efficiency. Our study uncovers a novel role of PAR during heat shock gene activation and establishes an unanticipated link between chromatin remodeler activity and RNA processing.
Collapse
Affiliation(s)
- Magdalena Murawska
- Institute of Tumor Research and Molecular Biology, Philipps University, Marburg, Germany
| | - Markus Hassler
- Genome Biology and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Andreas Ladurner
- Genome Biology and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiological Chemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians University, Munich, Germany
| | - Alexander Brehm
- Institute of Tumor Research and Molecular Biology, Philipps University, Marburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Aichinger E, Villar CB, Di Mambro R, Sabatini S, Köhler C. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. THE PLANT CELL 2011; 23:1047-60. [PMID: 21441433 PMCID: PMC3082253 DOI: 10.1105/tpc.111.083352] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 05/20/2023]
Abstract
The chromatin modifying Polycomb group (PcG) and trithorax group (trxG) proteins are central regulators of cell identity that maintain a tightly controlled balance between cell proliferation and cell differentiation. The opposing activities of PcG and trxG proteins ensure the correct expression of specific transcriptional programs at defined developmental stages. Here, we report that the chromatin remodeling factor PICKLE (PKL) and the PcG protein CURLY LEAF (CLF) antagonistically determine root meristem activity. Whereas loss of PKL function caused a decrease in meristematic activity, loss of CLF function increased meristematic activity. Alterations of meristematic activity in pkl and clf mutants were not connected with changes in auxin concentration but correlated with decreased or increased expression of root stem cell and meristem marker genes, respectively. Root stem cell and meristem marker genes are modified by the PcG-mediated trimethylation of histone H3 on lysine 27 (H3K27me3). Decreased expression levels of root stem cell and meristem marker genes in pkl correlated with increased levels of H3K27me3, indicating that root meristem activity is largely controlled by the antagonistic activity of PcG proteins and PKL.
Collapse
Affiliation(s)
- Ernst Aichinger
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zurich, Switzerland
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Corina B.R. Villar
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zurich, Switzerland
| | - Riccardo Di Mambro
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, 00185 Rome, Italy
| | - Claudia Köhler
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Address correspondence to
| |
Collapse
|
35
|
Passannante M, Marti CO, Pfefferli C, Moroni PS, Kaeser-Pebernard S, Puoti A, Hunziker P, Wicky C, Müller F. Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans. PLoS One 2010; 5:e13681. [PMID: 21060680 PMCID: PMC2965115 DOI: 10.1371/journal.pone.0013681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/06/2010] [Indexed: 12/25/2022] Open
Abstract
Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.
Collapse
Affiliation(s)
| | | | | | - Paolo S. Moroni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Alessandro Puoti
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter Hunziker
- Functional Genomics Center Zürich, University/ETH Zurich, Zürich, Switzerland
| | - Chantal Wicky
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Fritz Müller
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Cooper MT, Conant AW, Kennison JA. Molecular genetic analysis of Chd3 and polytene chromosome region 76B-D in Drosophila melanogaster. Genetics 2010; 185:811-22. [PMID: 20439780 PMCID: PMC2907203 DOI: 10.1534/genetics.110.115121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/20/2010] [Indexed: 01/08/2023] Open
Abstract
The Drosophila melanogaster Chd3 gene encodes a member of the CHD group of SNF2/RAD54 ATPases. CHD proteins are conserved from yeast to man and many are subunits of chromatin-remodeling complexes that facilitate transcription. Drosophila CHD3 proteins are not found in protein complexes, but as monomers that remodel chromatin in vitro. CHD3 colocalize with elongating RNA polymerase II on salivary gland polytene chromosomes. Since the role of Chd3 in development was unknown, we isolated and characterized the essential genes within the 640-kb region of the third chromosome (polytene chromosome region 76B-D) that includes Chd3. We recovered mutations in 24 genes that are essential for zygotic viability. We found that transposon-insertion mutants for 46% of the essential genes are included in the Drosophila Gene Disruption Project collection. None of the essential genes that we identified are in a 200-kb region that includes Chd3. We generated a deletion of Chd3 by targeted gene replacement. This deletion had no effect on either viability or fertility.
Collapse
Affiliation(s)
| | | | - James A. Kennison
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2785
| |
Collapse
|
37
|
Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, Köhler C. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 2009; 5:e1000605. [PMID: 19680533 PMCID: PMC2718830 DOI: 10.1371/journal.pgen.1000605] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/16/2009] [Indexed: 11/19/2022] Open
Abstract
Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA–binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell differentiation by suppressing embryonic development. In higher eukaryotes only a small proportion of genomic information is required in any specific cell type at a given developmental stage. The intricate decision whether a gene should be active or repressed is made by the counteractive activities of trithorax group (trxG) and Polycomb group (PcG) proteins that form part of a chromatin-based cellular memory system. Here we show that the CHD3 proteins PICKLE and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and activate PcG protein target genes. Lack of PKL function can partially suppress PcG mutant leaf and flower phenotypes, supporting the idea that CHD3 proteins and PcG proteins act antagonistically during plant development. We identified PcG genes among the direct PKL/PKR2 targets in roots and demonstrated that lack of pkl pkr2 results in reduced PcG protein activities, leading to similar root phenotypes in pkl pkr2 and PcG protein mutants. Previous studies have implicated PKL as a transcriptional repressor, but we provide evidence that CHD3 proteins such as PKL and PKR2 act as transcriptional activators in plants and assume trxG-like function to counteract PcG protein–mediated gene repression.
Collapse
Affiliation(s)
- Ernst Aichinger
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, Zurich, Switzerland
| | - Corina B. R. Villar
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, Zurich, Switzerland
| | - Sara Farrona
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Lars Hennig
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, Zurich, Switzerland
| | - Claudia Köhler
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
39
|
Drosophila HP1c is regulated by an auto-regulatory feedback loop through its binding partner Woc. PLoS One 2009; 4:e5089. [PMID: 19352434 PMCID: PMC2662408 DOI: 10.1371/journal.pone.0005089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023] Open
Abstract
HP1 is a major component of chromatin and regulates gene expression through its binding to methylated histone H3. Most eukaryotes express at least three isoforms of HP1 with similar domain architecture. However, despite the common specificity for methylated histone H3, the three HP1 isoforms bind to different regions of the genome. Most of the studies so far focused on the HP1a isoform and its role in transcriptional regulation. As HP1a requires additional factors to bind methylated chromatin in vitro, we wondered whether another isoform might also require additional targeting factors. Indeed, we found that HP1c interacts with the DNA binding factors Woc and Row and requires Woc to become targeted to chromatin in vivo. Moreover, we show that the interaction between HP1c and Woc constitutes a transcriptional feedback loop that operates to balance the concentration of HP1c within the cell. This regulation may prevent HP1c from binding to methylated heterochromatin.
Collapse
|
40
|
dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. EMBO J 2009; 28:533-44. [PMID: 19165147 DOI: 10.1038/emboj.2009.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/08/2022] Open
Abstract
The ATP-dependent chromatin remodeller Mi-2 functions as a transcriptional repressor and contributes to the suppression of cell fates during development in several model organisms. Mi-2 is the ATPase subunit of the conserved Nucleosome Remodeling and Deacetylation (NuRD) complex, and transcriptional repression by Mi-2 is thought to be dependent on its associated histone deacetylase. Here, we have purified a novel dMi-2 complex from Drosophila that is distinct from dNuRD. dMec (dMEP-1 complex) is composed of dMi-2 and dMEP-1. dMec is a nucleosome-stimulated ATPase that is expressed in embryos, larval tissues and adult flies. Surprisingly, dMec is far more abundant than dNuRD and constitutes the major dMi-2-containing complex. Both dNuRD and dMec associate with proneural genes of the achaete-scute complex. However, despite lacking a histone deacetylase subunit, only dMec contributes to the repression of proneural genes. These results reveal an unexpected complexity in the composition and function of Mi-2 complexes.
Collapse
|
41
|
Abstract
Histone modifications play an important role in shaping chromatin structure. Here, we describe the use of an in vitro chromatin assembly system from Drosophila embryo extracts to investigate the dynamic changes of histone modifications subsequent to histone deposition. In accordance with what has been observed in vivo, we find a deacetylation of the initially diacetylated isoform of histone H4, which is dependent on chromatin assembly. Immediately after deposition of the histones onto DNA, H4 is monomethylated at K20, which is required for an efficient deacetylation of the H4 molecule. H4K20 methylation-dependent dl(3)MBT association with chromatin and the identification of a dl(3)MBT-dRPD3 complex suggest that a deacetylase is specifically recruited to the monomethylated substrate through interaction with dl(3)MBT. Our data demonstrate that histone modifications are added and removed during chromatin assembly in a highly regulated manner.
Collapse
|