1
|
Shao X, Yokomori R, Ong JZL, Shen H, Kappei D, Chen L, Yeoh AEJ, Tan SH, Sanda T. Transcriptional regulatory program controlled by MYB in T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:2573-2584. [PMID: 39488662 DOI: 10.1038/s41375-024-02455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The transcription factor MYB is frequently upregulated in T-cell acute lymphoblastic leukemia (T-ALL), a hematological malignancy originating from T-cell precursors. Here, we demonstrate that MYB plays a crucial role by regulating genes essential for T-ALL pathogenesis. Integrative analysis reveals a long MYB isoform, ENST00000367814.8, which is dominantly expressed and confers a proliferative advantage in T-ALL cells. Rapid depletion of MYB via dTAG-mediated protein degradation affects a large number of genes, which can be classified into early response or late response genes based on their kinetics. Early response genes include many genes involved in hematopoiesis, such as TAL1, RUNX1, GATA3, IKZF2, and CXCR4. Their expression can be recovered at later time-points, suggesting the presence of a negative feedback loop mechanism. In contrast, late response genes, which are continuously downregulated after MYB depletion, includes many genes involved in cell proliferation as well as TAL1 targets, thereby affecting the cellular phenotype.
Collapse
Affiliation(s)
- Xiaoman Shao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jolynn Zu Lin Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
2
|
Anand S, Vikramdeo KS, Sudan SK, Sharma A, Acharya S, Khan MA, Singh S, Singh AP. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024; 43:409-421. [PMID: 37950087 PMCID: PMC11015973 DOI: 10.1007/s10555-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Amod Sharma
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Srijan Acharya
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
3
|
Harada T, Perez MW, Kalfon J, Braes FD, Batley R, Eagle K, Nabet B, Leifer B, Kruell J, Paralkar VR, Stegmaier K, Koehler AN, Orkin SH, Pimkin M. Rapid-kinetics degron benchmarking reveals off-target activities and mixed agonism-antagonism of MYB inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536032. [PMID: 37066194 PMCID: PMC10104119 DOI: 10.1101/2023.04.07.536032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay. The inhibitors demonstrated partial specificity for MYB target genes but displayed significant off-target activity. Unexpectedly, the inhibitors displayed bimodal on-target effects, acting as mixed agonists-antagonists. Our data uncover unforeseen agonist effects of small molecules originally developed as TF inhibitors and argue that rapid-kinetics benchmarking against degron models should be used for functional characterization of transcriptional modulators.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Flora Dievenich Braes
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Rashad Batley
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Ken Eagle Consulting, Houston, TX, 77494, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Becky Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jasmin Kruell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Angela N. Koehler
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Boston, MA, 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| |
Collapse
|
4
|
Tadi S, Ka-Yan Cheung V, Lee CS, Nguyen K, Luk PP, Low THH, Palme C, Clark J, Gupta R. MYB RNA detection by in situ hybridisation has high sensitivity and specificity for the diagnosis of adenoid cystic carcinoma. Pathology 2023; 55:456-465. [PMID: 37055331 DOI: 10.1016/j.pathol.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common primary salivary gland cancers. ACC has several benign and malignant mimics amongst salivary gland neoplasms. An accurate diagnosis of ACC is essential for optimal management of the patients and their follow-up. Upregulation of MYB has been described in 85-90% of ACC, but not in other salivary gland neoplasms. In ACC, MYB upregulation can occur as a result of a genetic rearrangement t(6;9) (q22-23;p23-24), MYB copy number variation (CNV), or enhancer hijacking of MYB. All mechanisms of MYB upregulation result in increased RNA transcription that can be detected using RNA in situ hybridisation (ISH) methods. In this study, utilising 138 primary salivary gland neoplasms including 78 ACC, we evaluate the diagnostic utility of MYB RNA ISH for distinguishing ACC from other primary salivary gland neoplasms with a prominent cribriform architecture including pleomorphic adenoma, basal cell adenoma, basal cell adenocarcinoma, epithelial myoepithelial carcinoma, and polymorphous adenocarcinoma. Fluorescent in situ hybridisation and next generation sequencing were also performed to evaluate the sensitivity and specificity of RNA ISH for detecting increased MYB RNA when MYB gene alterations were present. Detection of MYB RNA has 92.3% sensitivity and 98.2% specificity for a diagnosis of ACC amongst salivary gland neoplasms. The sensitivity of MYB RNA detection by ISH (92.3%) is significantly higher than that of the FISH MYB break-apart probe (42%) for ACC. Next generation sequencing did not demonstrate MYB alterations in cases that lacked MYB RNA overexpression indicating high sensitivity of MYB RNA ISH for detecting MYB gene alterations. The possibility that the sensitivity may be higher in clinical practice with contemporary samples as compared with older retrospective tissue samples with RNA degradation is not entirely excluded. In addition to the high sensitivity and specificity, MYB RNA testing can be performed using standard IHC platforms and protocols and evaluated using brightfield microscopy making it a time and cost-efficient diagnostic tool in routine clinical practice.
Collapse
Affiliation(s)
- Sahithi Tadi
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Veronica Ka-Yan Cheung
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - C Soon Lee
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW, Australia; Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; CONCERT Biobank, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
| | - Kevin Nguyen
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Peter P Luk
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Tsu-Hui Hubert Low
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Carsten Palme
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jonathan Clark
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Emerick C, Mariano FV, Vargas PA, Nör JE, Squarize CH, Castilho RM. Adenoid Cystic Carcinoma from the salivary and lacrimal glands and the breast: different clinical outcomes to the same tumor. Crit Rev Oncol Hematol 2022; 179:103792. [PMID: 35973662 DOI: 10.1016/j.critrevonc.2022.103792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a biphasic malignant lesion that can develop at various anatomical sites. Salivary and lacrimal ACC lesions have a high risk of local invasion, metastasis, and poor prognosis. In more distant organs, such as the breast, ACC is a rarer and less aggressive lesion. One of the major predictors of mortality of ACC is perineural invasion, which can be seen in 30% of breast lesions, 85% of salivary lesions, and almost 100% of lacrimal gland tumors. The biological differences between these three ACC tumors are still poorly understood. We focused on the current understanding of the genetic variations observed on ACC tumors and prognostic differences associated with distinct anatomical sites. A special effort was made to present the currently available therapies alongside the emerging strategies under development.
Collapse
Affiliation(s)
- Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, and Endodontics, Angiogenesis Research Laboratory, University of Michigan School of Dentistry Ann Arbor, Michigan, USA; Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane H Squarize
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Distinct clinicopathological and genomic features in solid and basaloid adenoid cystic carcinoma of the breast. Sci Rep 2022; 12:8504. [PMID: 35590093 PMCID: PMC9120443 DOI: 10.1038/s41598-022-12583-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Adenoid cystic carcinoma (AdCC) of the breast is a rare indolent carcinoma of salivary gland-type tumors, frequently associated with MYB genetic alteration. Solid and basaloid adenoid cystic carcinoma (SB-AdCC) is considered a sparse variant of AdCC. This study sought to search for clinicopathological and genomic features in SB-AdCC. Registered clinicopathological data on a cohort of 13 AdCC of the breast cases, including six conventional adenoid cystic carcinoma (C-AdCC) cases and seven SB-AdCC cases, were collected. MYB gene rearrangement via fluorescent in situ hybridization was investigated and MYB protein expression was evaluated by immunohistochemistry. Compared with C-AdCC, we found that the distribution of SB-AdCC cases were shifted to older age and were more frequently distant metastasis. Moreover, metastasis cases also showed a high (exceed 30%) Ki-67 index. Both groups showed MYB rearrangements and MYB protein expression, but they were less frequent in SB-AdCC than C-AdCC. To conclude, our results suggest that SB-AdCC is an aggressive variant of mammary AdCC with a higher incidence of distant metastases compared with C-AdCC, though they share common molecular features. A high Ki-67 index may be an adverse prognostic factor for metastasis.
Collapse
|
7
|
Bale TA, Rosenblum MK. The 2021 WHO Classification of Tumors of the Central Nervous System: An update on pediatric low-grade gliomas and glioneuronal tumors. Brain Pathol 2022; 32:e13060. [PMID: 35218102 PMCID: PMC9245930 DOI: 10.1111/bpa.13060] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The 2021 5th edition of the WHO Classification of Tumors of the Central Nervous System reflects the discovery of genetic alterations underlying many central nervous system (CNS) neoplasms. Insights gained from technologic advances and novel applications in molecular diagnostics, including next‐generation sequencing and DNA methylation‐based profiling, coupled with the recognition of clinicopathologic correlates, have prompted substantial changes to CNS tumor classification; this is particularly true for pediatric low‐grade gliomas and glioneuronal tumors (pLGG/GNTs). The 2021 WHO now classifies gliomas, glioneuronal tumors and neuronal tumors into 6 families, three of which encompass pLGG/LGNTs: “Pediatric type diffuse low‐grade gliomas,” “circumscribed astrocytic gliomas,” and “glioneuronal and neuronal tumors.” Among these are six newly recognized tumor types: “diffuse astrocytoma, MYB or MYBL1‐altered”; “polymorphous low grade neuroepithelial tumor of the young (PLNTY)”; “diffuse low‐grade glioma‐MAPK altered”; “Diffuse glioneuronal tumor with oligodendroglioma‐like features and nuclear clusters (DGONC)”; “myxoid glioneuronal tumor (MGT)”; and “multinodular and vacuolating neuronal tumor (MVNT).” We review these newly recognized entities in the context of general changes to the WHO schema, discuss implications of the new classification for treatment of pLGG/LGNT, and consider strategies for molecular testing and interpretation.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
9
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
10
|
Luo L, Kang H, Li X, Ness SA, Stidley CA. Two-step mixed model approach to analyzing differential alternative RNA splicing. PLoS One 2020; 15:e0232646. [PMID: 33035235 PMCID: PMC7546511 DOI: 10.1371/journal.pone.0232646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
Changes in gene expression can correlate with poor disease outcomes in two ways: through changes in relative transcript levels or through alternative RNA splicing leading to changes in relative abundance of individual transcript isoforms. The objective of this research is to develop new statistical methods in detecting and analyzing both differentially expressed and spliced isoforms, which appropriately account for the dependence between isoforms and multiple testing corrections for the multi-dimensional structure of at both the gene- and isoform- level. We developed a linear mixed effects model-based approach for analyzing the complex alternative RNA splicing regulation patterns detected by whole-transcriptome RNA-sequencing technologies. This approach thoroughly characterizes and differentiates three types of genes related to alternative RNA splicing events with distinct differential expression/splicing patterns. We applied the concept of appropriately controlling for the gene-level overall false discovery rate (OFDR) in this multi-dimensional alternative RNA splicing analysis utilizing a two-step hierarchical hypothesis testing framework. In the initial screening test we identify genes that have differentially expressed or spliced isoforms; in the subsequent confirmatory testing stage we examine only the isoforms for genes that have passed the screening tests. Comparisons with other methods through application to a whole transcriptome RNA-Seq study of adenoid cystic carcinoma and extensive simulation studies have demonstrated the advantages and improved performances of our method. Our proposed method appropriately controls the gene-level OFDR, maintains statistical power, and is flexible to incorporate advanced experimental designs.
Collapse
Affiliation(s)
- Li Luo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Xichen Li
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | - Scott A. Ness
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Christine A. Stidley
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
11
|
FOXO1 Confers Maintenance of the Dark Zone Proliferation and Survival Program and Can Be Pharmacologically Targeted in Burkitt Lymphoma. Cancers (Basel) 2019; 11:cancers11101427. [PMID: 31557894 PMCID: PMC6826697 DOI: 10.3390/cancers11101427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
The FOXO1 transcription factor plays a central role in the proliferation and survival of B cells at several stages of differentiation. B cell malignancies, with exception of classical Hodgkin lymphoma, maintain expression of FOXO1 at levels characteristic for their non-malignant counterparts. Extensive expression profiling had revealed that Burkitt lymphoma (BL) show many characteristics of the dark zone (DZ) germinal center (GC) B cell program. Here we show that FOXO1 knockdown inhibits proliferation of human BL cell lines. The anti-proliferative effect of the FOXO1 knockdown is associated with the repression of the DZ B cell program including expression of MYB, CCND3, RAG2, BACH2, and CXCR4. In addition, the induction of signaling pathways of the light zone (LZ) program like NF-κB and PI3K-AKT was observed. Using a rescue experiment we identified downregulation of the proto-oncogene MYB as a critical factor contributing to the antiproliferative effect of FOXO1 knockdown. In an attempt to estimate the feasibility of pharmacological FOXO1 repression, we found that the small molecular weight FOXO1 inhibitor AS1842856 induces cell death and growth arrest in BL cell lines at low concentrations. Interestingly, we found that overactivation of FOXO1 also induces growth inhibition in BL cell lines, indicating the importance of a tight regulation of FOXO1 activity in BL.
Collapse
|
12
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
13
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
14
|
Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z, Manne S, Khan O, Yang X, Wherry EJ. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb. Cell Rep 2018; 20:2584-2597. [PMID: 28903040 DOI: 10.1016/j.celrep.2017.08.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erietta Stelekati
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sixiang Yu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangying Cai
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA; College of Life Sciences, Peking University, Beijing, China
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Liu X, Xu Y, Han L, Yi Y. Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer 2018; 9:1259-1266. [PMID: 29675107 PMCID: PMC5907674 DOI: 10.7150/jca.23992] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
Transcription factor MYB is essential for the tumorigenesis of multiple cancers, especially leukemia, breast cancer, colon cancer, adenoid cystic carcinoma and brain cancer. Thus, MYB has been regarded as an attractive target for tumor therapy. However, pioneer studies of antisense oligodeoxynucleotides against MYB, which were launched three decades ago in leukemia therapy, were discontinued because of their unsatisfactory clinical outcomes. In recent years, the roles of MYB in tumor transformation have become increasingly clear. Moreover, the regulatory mechanisms of MYB, such as the vital effects of MYB co-regulators on MYB activity and of transcriptional elongation on MYB expression, have been unveiled. These observations have underpinned novel approaches in inhibiting MYB. This review discusses the structure, function and regulation of MYB, focusing on recent insights into MYB-associated oncogenesis and how MYB-targeted therapeutics can be explored. Additionally, the main MYB-targeted therapies, including novel genetic therapy, RNA interference, microRNAs and low-molecular-weight compounds, which are especially promising inhibitors that target MYB co-regulators and transcriptional elongation, are described, and their prospects are assessed.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yunxiao Xu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Liping Han
- School of Life Science, Changchun Normal University, Changchun, Jilin Province, P.R. China
| | - Yan Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
16
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
17
|
Frerich CA, Brayer KJ, Painter BM, Kang H, Mitani Y, El-Naggar AK, Ness SA. Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 2017; 9:7341-7358. [PMID: 29484115 PMCID: PMC5800907 DOI: 10.18632/oncotarget.23641] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
The relative rarity of salivary gland adenoid cystic carcinoma (ACC) and its slow growing yet aggressive nature has complicated the development of molecular markers for patient stratification. To analyze molecular differences linked to the protracted disease course of ACC and metastases that form 5 or more years after diagnosis, detailed RNA-sequencing (RNA-seq) analysis was performed on 68 ACC tumor samples, starting with archived, formalin-fixed paraffin-embedded (FFPE) samples up to 25 years old, so that clinical outcomes were available. A statistical peak-finding approach was used to classify the tumors that expressed MYB or MYBL1, which had overlapping gene expression signatures, from a group that expressed neither oncogene and displayed a unique phenotype. Expression of MYB or MYBL1 was closely correlated to the expression of the SOX4 and EN1 genes, suggesting that they are direct targets of Myb proteins in ACC tumors. Unsupervised hierarchical clustering identified a subgroup of approximately 20% of patients with exceptionally poor overall survival (median less than 30 months) and a unique gene expression signature resembling embryonic stem cells. The results provide a strategy for stratifying ACC patients and identifying the high-risk, poor-outcome group that are candidates for personalized therapies.
Collapse
Affiliation(s)
- Candace A Frerich
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Brandon M Painter
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yoshitsugu Mitani
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott A Ness
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| |
Collapse
|
18
|
Ness SA. Editorial: Targeting MYB Oncogene Expression in Adenoid Cystic Carcinoma. J Natl Cancer Inst 2017; 109:3845955. [PMID: 28954283 DOI: 10.1093/jnci/djx054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Scott A Ness
- Department of Internal Medicine/Molecular Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
19
|
Brown RB, Madrid NJ, Suzuki H, Ness SA. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome. PLoS One 2017; 12:e0176675. [PMID: 28459821 PMCID: PMC5411089 DOI: 10.1371/journal.pone.0176675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/14/2017] [Indexed: 11/29/2022] Open
Abstract
RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.
Collapse
Affiliation(s)
- Roger B. Brown
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Nathaniel J. Madrid
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Hideaki Suzuki
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Achinko D, Dormer A, Narayanan M, Norman E, Abbas M. Regulatory patterns of differentially expressed genes in Ebola and related viruses are critical for viral screening and diagnosis. F1000Res 2017. [DOI: 10.12688/f1000research.10597.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Viral detection techniques and applications are a critical first step to pathogen detection within a given population, especially during outbreaks. Common viral tests currently used are direct specimen examination, indirect examination and serological tests. Serological tests have gained intense interest because they are rapidly performed with patient blood samples for quick diagnosis and treatment. The diagnostic techniques developed around serology are often expensive, require expertise to use and cannot be afforded by developing countries with recurrent viral outbreaks. Therefore exploiting the huge amount of viral data available in various databases is critical to develop affordable and easy-to-use diagnostic tools. Methods This study obtained viral sample data from Gene Expression Omnibus database with focus on use of viral glycoprotein for host penetration. Gene relative mean across 34 obtained viral samples were extracted into data tables and used with edgeR statistical software in R version 3.3.1. Results Three clusters previously known to be LCK specific (Ebola virus relative viral cluster, EBOVC), CD209 specific (Mean differentiation cluster, MDC) and both LCK and CD209 specific (Kurtosis group cluster, KGC), expressed unique patterns of four proteins of interest (CD209, LCK, IL-2 and MYB). Differential expression analysis showed two cluster patterns on heatmaps, with differentially expressed proteins down-regulated in MDC but up-regulated in KGC and EBOVC for all pairwise cluster comparative analyses performed. Heatmaps showed two distinct immune related patterns, identifying MDC as B-lymphotropic while KGC and EBOVC as T-lymphotropic. Identified pathways were dominantly involved with homeostasis of immune cells and viral cell surface receptors involved in protein kinase activities. Conclusions Regulatory proteomic variants identified in clusters suggest transcription repression of HLA class I alleles. This study identified viral expression patterns with screening and therapeutic applications. Given that the viral pathogenetic pathway for Ebola has not been clearly identified yet, assembling its components is vital for vaccine development.
Collapse
|
21
|
Achinko DA, Dormer A, Narayanan M, Norman EF, Abbas M. Identification of genetic pathways driving Ebola virus disease in humans and targets for therapeutic intervention. F1000Res 2016. [DOI: 10.12688/f1000research.9778.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction: LCK gene, also known as lymphocyte-specific proto-oncogene, is expressed in lymphocytes, and associated with coordinated expression of MHC class I and II in response to physiological stimuli, mediated through a combined interaction of promoters, suppressors, and enhancers. Differential usage of LCK promoters, transcribes dysfunctional transcript variants leading to leukemogenesis and non-induction of MHC class I gene variants. Viruses use C-type lectins, like CD209, to penetrate the cell, and inhibit Pattern Recognition Receptors (PRR), hence evading immune destruction. Given that Ebolavirus (EBOV) disease burden could result from a dysfunctional LCK pathway, identification of the genetic pathway leading to proper immune induction is a major priority. Methods: Data for EBOV related virus samples were obtained from Gene Expression Omnibus database and RMEAN information per gene per sample were entered into a table of values. R software v.3.3.1 was used to process differential expression patterns across samples for LCK, CD209 and immune-related genes. Principal component analysis (PCA) using ggbiplot v.0.55 was used to explain the variance across samples. Results: Data analyses identified three viral clusters based on transmission patterns as follows: LCK-CD209 dependent, LCK-dependent specific to EBOV, and CD209 dependent. Compared to HLA class II gene variants, HLA class I (A, B and C) variants were <2 fold expressed, especially for EBOV samples. PCA analyses classified TYRO3, TBK1 and LCK genes independent of the data, leading to identification of a possible pathway involving LCK, IL2, PI3k, TBK1, TYRO3 and MYB genes with downstream induction of immune T-cells. Discussion: This is the first study undertaken to understand the non-functional immune pathway, leading to EBOV disease pathogenesis and high fatality rates. Our lab currently exploits, through cutting edge genetic technology to understand the interplay of identified genes required for proper immune induction. This will guide antiviral therapy and possible markers for viral disease identification during outbreaks.
Collapse
|
22
|
Nakano K, Uchimaru K, Utsunomiya A, Yamaguchi K, Watanabe T. Dysregulation of c-Myb Pathway by Aberrant Expression of Proto-oncogene MYB Provides the Basis for Malignancy in Adult T-cell Leukemia/lymphoma Cells. Clin Cancer Res 2016; 22:5915-5928. [PMID: 27307595 DOI: 10.1158/1078-0432.ccr-15-1739] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Adult T-cell leukemia/lymphoma (ATLL) is an aggressive human T-cell malignancy induced by human T-lymphotrophic virus-1 (HTLV-1) infection. The genetic alterations in infected cells that lead to transformation have not been completely elucidated, thus hindering the identification of effective therapeutic targets for ATL. Here, we present the first assessment of MYB proto-oncogene dysregulation in ATL and an exploration of its role in the onset of ATL. EXPERIMENTAL DESIGN We investigated the expression patterns of MYB splicing variants in ATL. The molecular characteristics of the c-Myb-9A isoform, which was overexpressed in ATL cells, were examined using chromatin immunoprecipitation and promoter assays. We further examined the biologic impacts of abnormal c-Myb overexpression in ATL using overall c-Myb knockdown with shRNA or c-Myb-9A knockdown with morpholino oligomers. RESULTS Both total c-Myb and c-Myb-9A, which exhibited strong transforming activity, were overexpressed in ATL cells in a leukemogenesis- and progression-dependent manner. Knockdown of either total c-Myb or c-Myb-9A induced ATL cell death. c-Myb transactivates nine genes that encode essential regulators of cell proliferation and NF-κB signaling. c-Myb-9A induced significantly stronger transactivation of all tested genes and stronger NF-κB activation compared with wild-type c-Myb. CONCLUSIONS Our data demonstrate that c-Myb pathway overactivation caused by unbalanced c-Myb-9A overexpression is associated with disorders in cellular homeostasis and consequently, accelerated transformation, cell proliferation, and malignancy in ATL cells. These data support the notion of the c-Myb pathway as a promising new therapeutic target for ATL. Clin Cancer Res; 22(23); 5915-28. ©2016 AACR.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Department of Hematology and Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan
| | - Kazunari Yamaguchi
- Department of Safety Research on Blood and Biologics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. .,Department of Advanced Medical Innovation, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
23
|
Kim EK, Yoon SO, Kim SH, Yang WI, Cho YA, Kim SJ. Upregulated Neuro-oncological Ventral Antigen 1 (NOVA1) Expression Is Specific to Mature and Immature T- and NK-Cell Lymphomas. J Pathol Transl Med 2016; 50:104-12. [PMID: 26922803 PMCID: PMC4804152 DOI: 10.4132/jptm.2016.02.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 01/04/2023] Open
Abstract
Background: Recent studies have revealed that the splicing factor neuro-oncological ventral antigen 1 (NOVA1) is enriched in fibroblasts and accumulated T cells of tertiary lymphoid structures. In the present study, we investigated NOVA1 expression in various subtypes of mature and immature T- and natural killer (NK)-cell lymphomas as well as in various B-cell lymphoma subtypes. Methods: NOVA1 immunoexpression was evaluated in hyperplastic palatine tonsils (n = 20), T- and NK-cell lymphomas (n = 177), diffuse large B-cell lymphomas (n = 151), and other types of B cell lymphomas (n = 31). Nuclear staining intensity and percentage of positive tumor cells were graded. NOVA1 mRNA expression was analyzed in various lymphoma cell lines. Results: Tumor cells of T- and NK-cell lymphomas showed higher expression levels of NOVA1 than did normal paracortical T cells, and 56.5% of T- and NK-cell lymphoma cases showed diffuse and strong expression. The NOVA1 expression level varied according to the subtype; it was higher in angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-negative anaplastic large cell lymphoma (ALCL), and T lymphoblastic leukemia/lymphoma (T-LBL), but it was lower in ALK-positive ALCL. In almost all B-cell lymphomas, NOVA1 expression was very low or negative. NOVA1 mRNA was also expressed in Jurkat, a T-LBL cell line. Conclusions: The present findings suggest that NOVA1 upregulation may be involved in certain subtypes of T- and NK-cell lymphomas, but not in B-cell lymphomas. Upregulated NOVA1 expression seems to be a specific biological feature of activated T cells such as T- and NK-cell lymphomas.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Hee Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul, Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ah Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jeong Kim
- Department of Internal Medicine, Division of Hematology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Brayer KJ, Frerich CA, Kang H, Ness SA. Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discov 2015; 6:176-87. [PMID: 26631070 DOI: 10.1158/2159-8290.cd-15-0859] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/24/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Adenoid cystic carcinoma (ACC), the second most common malignancy of salivary glands, is a rare tumor with a bleak prognosis for which therapeutic targets are unavailable. We used RNA sequencing (RNA-seq) to analyze low-quality RNA from archival, formaldehyde-fixed, paraffin-embedded samples. In addition to detecting the most common ACC translocation, t(6;9) fusing the MYB proto-oncogene to NFIB, we also detected previously unknown t(8;9) and t(8;14) translocations fusing the MYBL1 gene to the NFIB and RAD51B genes, respectively. RNA-seq provided information about gene fusions, alternative RNA splicing, and gene expression signatures. Interestingly, tumors with MYB and MYBL1 translocations displayed similar gene expression profiles, and the combined MYB and MYBL1 expression correlated with outcome, suggesting that the related MYB proteins are interchangeable oncogenic drivers in ACC. Our results provide important details about the biology of ACC and illustrate how archival tissue samples can be used for detailed molecular analyses of rare tumors. SIGNIFICANCE Using RNA-seq to perform whole-transcriptome analysis of archival ACC tumor samples, we identified novel, recurrent gene fusions, detected alternative RNA splicing, and established gene expression signatures that provide detailed information about the biology of ACC tumors.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Candace A Frerich
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Huining Kang
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Scott A Ness
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
25
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel) 2014; 6:2049-71. [PMID: 25279451 PMCID: PMC4276956 DOI: 10.3390/cancers6042049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/11/2014] [Accepted: 09/26/2014] [Indexed: 12/02/2022] Open
Abstract
This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.
Collapse
|
27
|
Stenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol 2014; 50:683-90. [DOI: 10.1016/j.oraloncology.2014.04.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
|
28
|
Baron BW, Anastasi J, Bies J, Reddy PL, Joseph L, Thirman MJ, Wroblewski K, Wolff L, Baron JM. GFI1B, EVI5, MYB--additional genes that cooperate with the human BCL6 gene to promote the development of lymphomas. Blood Cells Mol Dis 2013; 52:68-75. [PMID: 23910958 DOI: 10.1016/j.bcmd.2013.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 01/11/2023]
Abstract
The BCL6 gene, which is expressed in certain B- and T-cell human lymphomas, is involved with chromosomal rearrangements and mutations in a number of these neoplasms. Lymphomagenesis is believed to evolve through a multi-step accumulation of genetic alterations in these tumors. We used retroviral insertional mutagenesis in transgenic mice expressing the human BCL6 transgene in order to identify genes that cooperate with BCL6 during lymphomatous transformation. We previously reported PIM1 as the most frequently recurring cooperating gene in this model. We now report three newly identified cooperating genes-GFI1B, EVI5, and MYB-that we identified in the lymphomas of retroviral-injected BCL6 transgenic mice (but not in retroviral-injected non-transgenic controls); mRNA and protein expression of GFI1B and EVI5 were decreased in the murine tumors, whereas MYB mRNA and protein expression were increased or decreased. These findings correlated with protein expression in human lymphomas, both B- and T-cell. Improved therapy of lymphomas may necessitate the development of combinations of drugs that target the alterations specific to each neoplasm.
Collapse
Affiliation(s)
- Beverly W Baron
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
30
|
Manzotti G, Mariani SA, Corradini F, Bussolari R, Cesi V, Vergalli J, Ferrari-Amorotti G, Fragliasso V, Soliera AR, Cattelani S, Raschellà G, Holyoake TL, Calabretta B. Expression of p89(c-Mybex9b), an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells. Blood Cancer J 2012; 2:e71. [PMID: 22829973 PMCID: PMC3366069 DOI: 10.1038/bcj.2012.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023] Open
Abstract
The c-Myb gene encodes the p75c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is pc-Mybex9b, which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of pc-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of pc-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75c-Myb, pc-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of pc-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of pc-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34+ cells, without affecting the levels of p75c-Myb. Together, these studies indicate that expression of the low-abundance pc-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells.
Collapse
|
31
|
Laurent B, Randrianarison-Huetz V, Frisan E, Andrieu-Soler C, Soler E, Fontenay M, Dusanter-Fourt I, Duménil D. A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-CoREST complex through the dimethylation of its SNAG domain. J Cell Sci 2012; 125:993-1002. [PMID: 22399799 DOI: 10.1242/jcs.095877] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gfi-1B is a transcriptional repressor essential for the regulation of erythropoiesis and megakaryopoiesis. Here we identify Gfi-1B p32, a Gfi-1B isoform, as essential for erythroid differentiation. Gfi-1B p32 is generated by alternative splicing and lacks the two first zinc finger domains of the protein. Selective knock down of Gfi-1B p32 compromises erythroid differentiation, whereas its ectopic expression induces erythropoiesis in the absence of erythropoietin. Gfi-1B p32 isoform binds to Gfi-1B target gene promoters and associates with the LSD1-CoREST repressor complex more efficiently than the major Gfi-1B p37 isoform. Furthermore, we show that Gfi-1B includes a KSKK motif in its SNAG domain, which recruits the repressor complex only when dimethylated on lysine 8. Mutation of lysine 8 prevents Gfi-1B p32-induced erythroid development. Our results thus highlight a key role for the alternatively spliced Gfi-1B p32 isoform in erythroid development.
Collapse
Affiliation(s)
- Benoît Laurent
- Institut Cochin, Université Paris Descartes, Paris Sorbonne Cité, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou YE, O'Rourke JP, Edwards JS, Ness SA. Single molecule analysis of c-myb alternative splicing reveals novel classifiers for precursor B-ALL. PLoS One 2011; 6:e22880. [PMID: 21853052 PMCID: PMC3154906 DOI: 10.1371/journal.pone.0022880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/06/2011] [Indexed: 11/18/2022] Open
Abstract
The c-Myb transcription factor, a key regulator of proliferation and differentiation in hematopoietic and other cell types, has an N-terminal DNA binding domain and a large C-terminal domain responsible for transcriptional activation, negative regulation and determining target gene specificity. Overexpression and rearrangement of the c-myb gene (MYB) has been reported in some patients with leukemias and other types of cancers, implicating activated alleles of c-myb in the development of human tumors. Alternative RNA splicing can produce variants of c-myb with qualitatively distinct transcriptional activities that may be involved in transformation and leukemogenesis. Here, by performing a detailed, single molecule assay we found that c-myb alternative RNA splicing was elevated and much more complex in leukemia samples than in cell lines or CD34+ hematopoietic progenitor cells from normal donors. The results revealed that leukemia samples express more than 60 different c-myb splice variants, most of which have multiple alternative splicing events and were not detectable by conventional microarray or PCR approaches. For example, the single molecule assay detected 21 and 22 splice variants containing the 9B and 9S exons, respectively, most of which encoded unexpected variant forms of c-Myb protein. Furthermore, the detailed analysis identified some splice variants whose expression correlated with poor survival in a small cohort of precursor B-ALL samples. Our findings indicate that single molecule assays can reveal complexities in c-myb alternative splicing that have potential as novel biomarkers and could help explain the role of c-Myb variants in the development of human leukemia.
Collapse
Affiliation(s)
- Ye E. Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - John P. O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jeremy S. Edwards
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
33
|
Quintana AM, Zhou YE, Pena JJ, O'Rourke JP, Ness SA. Dramatic repositioning of c-Myb to different promoters during the cell cycle observed by combining cell sorting with chromatin immunoprecipitation. PLoS One 2011; 6:e17362. [PMID: 21364958 PMCID: PMC3043100 DOI: 10.1371/journal.pone.0017362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/01/2011] [Indexed: 02/05/2023] Open
Abstract
The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP) assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ye E. Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Janeth J. Pena
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - John P. O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
34
|
MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 2011; 117:3816-25. [PMID: 21296997 DOI: 10.1182/blood-2010-05-285064] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated levels of microRNA miR-155 represent a candidate pathogenic factor in chronic B-lymphocytic leukemia (B-CLL). In this study, we present evidence that MYB (v-myb myeloblastosis viral oncogene homolog) is overexpressed in a subset of B-CLL patients. MYB physically associates with the promoter of miR-155 host gene (MIR155HG, also known as BIC, B-cell integration cluster) and stimulates its transcription. This coincides with the hypermethylated histone H3K4 residue and spread hyperacetylation of H3K9 at MIR155HG promoter. Our data provide evidence of oncogenic activities of MYB in B-CLL that include its stimulatory role in MIR155HG transcription.
Collapse
|
35
|
Quintana AM, Liu F, O'Rourke JP, Ness SA. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis. BMC Cancer 2011; 11:3. [PMID: 21205319 PMCID: PMC3038977 DOI: 10.1186/1471-2407-11-30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/04/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). METHODS RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. RESULTS RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90±8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31±4% and 4±1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. CONCLUSION RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
- St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | - Fan Liu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - John P O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Scott A Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| |
Collapse
|
36
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
37
|
Abstract
The c-myb gene encodes two proteins, termed p75 and p89. Of these, the larger isoform is transcribed from an alternatively spliced message that contains an additional exon, exon 9A. Disruption of the c-myb locus in mice results in embryonic lethality due to defective hematopoiesis and in the adult, tissue-specific inactivation of c-myb in hematopoietic tissues blocks differentiation along several lineages. The c-myb knock-out mouse models described thus far result in the disruption of both the p75 and p89 isoforms, making it impossible to assign a definitive role to p89(c-Myb) in development and hematopoiesis. We have therefore generated a null-mutant mouse where exon 9A has been systemically deleted that results in the absence of only the p89-myb transcript and protein. Unlike disruption of both forms of the c-myb gene, loss of only the p89-encoding isoform does not have any deleterious effects on mammalian hematopoiesis and development.
Collapse
|
38
|
Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 2010; 120:593-606. [PMID: 20093773 DOI: 10.1172/jci38030] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/23/2009] [Indexed: 01/01/2023] Open
Abstract
Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL-ENL fusion protein, but exactly how is unclear. Here we have demonstrated that c-Myb is recruited to the MLL histone methyl transferase complex by menin, a protein important for MLL-associated leukemic transformation, and that it contributes substantially to MLL-mediated methylation of histone H3 at lysine 4 (H3K4). Silencing MYB in human leukemic cell lines and primary patient material evoked a global decrease in H3K4 methylation, an unexpected decrease in HOXA9 and MEIS1 gene expression, and decreased MLL and menin occupancy in the HOXA9 gene locus. This decreased occupancy was associated with a diminished ability of an MLL-ENL fusion protein to transform normal mouse hematopoietic cells. Previous studies have shown that MYB expression is regulated by Hoxa9 and Meis1, indicating the existence of an autoregulatory feedback loop. The finding that c-Myb has the ability to direct epigenetic marks, along with its participation in an autoregulatory feedback loop with genes known to transform hematopoietic cells, lends mechanistic and translationally relevant insight into its role in MLL-associated leukemogenesis.
Collapse
Affiliation(s)
- Shenghao Jin
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chen L, Xu S, Zeng X, Li J, Yin W, Chen Y, Shao Z, Jin W. c-myb activates CXCL12 transcription in T47D and MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:1-7. [PMID: 20043041 DOI: 10.1093/abbs/gmp108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokine C-X-C motif ligand 12 (CXCL12) is a potent chemotactic and angiogenic factor that has been proposed to play a role in organ-specific metastasis and angiogenic activity in several malignancies. In this study, we found that the overexpression of c-myb could elevate CXCL12 mRNA level and CXCL12 promoter activity in human T47D and MCF-7 breast cancer cells. Chromatin immunoprecipitation assay demonstrated that c-myb could bind to the CXCL12 promoter in the cells transfected with cmyb expression vector. c-myb siRNA attenuated CXCL12 promoter activity and the binding of c-myb to the CXCL12 promoter in T47D and MCF-7 cells. These results indicated that c-myb could activate CXCL12 promoter transcription.
Collapse
Affiliation(s)
- Li Chen
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Abstract
The role of miRNAs in regulating megakaryocyte differentiation was examined using bipotent K562 human leukemia cells. miR-34a is strongly up-regulated during phorbol ester–induced megakaryocyte differentiation, but not during hemin-induced erythrocyte differentiation. Enforced expression of miR-34a in K562 cells inhibits cell proliferation, induces cell-cycle arrest in G1 phase, and promotes megakaryocyte differentiation as measured by CD41 induction. miR-34a expression is also up-regulated during thrombopoietin-induced differentiation of CD34+ hematopoietic precursors, and its enforced expression in these cells significantly increases the number of megakaryocyte colonies. miR-34a directly regulates expression of MYB, facilitating megakaryocyte differentiation, and of CDK4 and CDK6, to inhibit the G1/S transition. However, these miR-34a target genes are down-regulated rapidly after inducing megakaryocyte differentiation before miR-34a is induced. This suggests that miR-34a is not responsible for the initial down-regulation but may contribute to maintaining their suppression later on. Previous studies have implicated miR-34a as a tumor suppressor gene whose transcription is activated by p53. However, in p53-null K562 cells, phorbol esters induce miR-34a expression independently of p53 by activating an alternative phorbol ester-responsive promoter to produce a longer pri-miR-34a transcript.
Collapse
|
41
|
Fu RH, Liu SP, Ou CW, Yu HH, Li KW, Tsai CH, Shyu WC, Lin SZ. Alternative Splicing Modulates Stem Cell Differentiation. Cell Transplant 2009; 18:1029-38. [PMID: 19523332 DOI: 10.3727/096368909x471260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell–cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Wei Ou
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hui Yu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Wei Li
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
42
|
Abstract
After DNA replication, sister chromatids must be untangled, or decatenated, before mitosis so that chromatids do not tear during anaphase. Topoisomerase IIalpha (Topo IIalpha) is the major decatenating enzyme. Topo IIalpha inhibitors prevent decatenation, causing cells to arrest during mitosis. Here we report that acute myeloid leukemia cells fail to arrest at the mitotic decatenation checkpoint, and their progression through this checkpoint is regulated by the DNA repair component Metnase (also termed SETMAR). Metnase contains a SET histone methylase and transposase nuclease domain, and is a component of the nonhomologous end-joining DNA double-strand break repair pathway. Metnase interacts with Topo IIalpha and enhances its decatenation activity. Here we show that multiple types of acute leukemia cells have an attenuated mitotic arrest when decatenation is inhibited and that in an acute myeloid leukemia (AML) cell line this is mediated by Metnase. Of further importance, Metnase permits continued proliferation of these AML cells even in the presence of the clinical Topo IIalpha inhibitor VP-16. In vitro, purified Metnase prevents VP-16 inhibition of Topo IIalpha decatenation of tangled DNA. Thus, Metnase expression levels may predict AML resistance to Topo IIalpha inhibitors, and Metnase is a potential therapeutic target for small molecule interference.
Collapse
|
43
|
Fang F, Rycyzyn MA, Clevenger CV. Role of c-Myb during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells. Endocrinology 2009; 150:1597-606. [PMID: 19036881 PMCID: PMC2659289 DOI: 10.1210/en.2008-1079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/14/2008] [Indexed: 01/17/2023]
Abstract
Implicated in the pathogenesis of breast cancer, prolactin (PRL) mediates its function in part through the prolactin receptor (PRLr)-associated Janus kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5) signaling complex. To delineate the mechanisms of Stat5a regulation in breast cancer, transcription factor-transcription factor (TF-TF) array analysis was employed to identify associated transcriptional regulators. These analyses revealed a PRL-inducible association of Stat5a with the transcription factor and protooncogene c-Myb. Confirmatory co-immunoprecipitation studies using lysates from both T47D and MCF7 breast cancer cells revealed a PRL-inducible association between these transcription factors. Ectopic expression of c-Myb enhanced the PRL-induced expression from both composite and synthetic Stat5a-responsive luciferase reporters. Chromatin immunoprecipitation assays also revealed a PRL-inducible association between c-Myb and endogenous Stat5a-responsive CISH promoter, which was associated with an enhanced expression of CISH gene product at the RNA and protein levels. Small interfering RNA-mediated c-Myb knockdown impaired the PRL-induced mRNA expression of five Stat5-responsive genes. DNA binding-defective mutants of c-Myb, incapable of activating expression from a c-Myb-responsive reporter, maintained their ability to enhance a Stat5a-responsive reporter. At a cellular level, ectopic expression of c-Myb resulted in an increase in T47D proliferation. Taken together, these results indicate that c-Myb potentiates Stat5a-driven gene expression, possibly functioning as a Stat5a coactivator, in human breast cancer.
Collapse
Affiliation(s)
- Feng Fang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
44
|
Abstract
Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
Collapse
Affiliation(s)
- Thomas D Schmittgen
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Parks Hall, 500 West 12th Avenue, Columbus, Ohio, OH 43210 USA.
| | | |
Collapse
|
45
|
Leeman JR, Weniger MA, Barth TF, Gilmore TD. Deletion analysis and alternative splicing define a transactivation inhibitory domain in human oncoprotein REL. Oncogene 2008; 27:6770-81. [PMID: 18695674 DOI: 10.1038/onc.2008.284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Misregulation of REL, a nuclear factor-kappaB family transcription factor, has been implicated in several human lymphoid malignancies. REL has a conserved N-terminal DNA-binding/dimerization domain called the Rel homology domain (RHD) and a C-terminal transactivation domain (TAD). Here, we define the sequences (amino acids (aa) 323-422) between the RHD and TAD as a REL inhibitory domain (RID) because deletion of these sequences increases both REL transactivation and DNA binding. Furthermore, we have characterized two REL mRNA splice variants that encode proteins with alterations near RID: one lacking exon 9 sequences (aa 308-330; RELDelta9) and one with an exonized Alu fragment insertion of 32 aa after aa 307 (REL+Alu). Deletion of RID or exon 9-encoded sequences increases transactivation by GAL4-REL by approximately threefold. Moreover, deletion of RID or exon 9 sequences increases transactivation by full-length REL from certain kappaB site-containing promoters and increases DNA binding by REL. Deletion of RID does not affect REL's ability to transform chicken spleen cells. Reverse transcriptase-polymerase chain reaction analysis of mRNA from both primary lymphoma samples and several transformed tissue culture cell lines indicates that the RELDelta9 splice variant is preferentially expressed in lymphoma, suggesting that the REL transcript lacking exon 9 could serve as a marker for certain types of lymphoid tumors.
Collapse
Affiliation(s)
- J R Leeman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The transcription factor MYB has a key role as a regulator of stem and progenitor cells in the bone marrow, colonic crypts and a neurogenic region of the adult brain. It is in these compartments that a deficit in MYB activity leads to severe or lethal phenotypes. As was predicted from its leukaemogenicity in several animal species, MYB has now been identified as an oncogene that is involved in some human leukaemias. Moreover, recent evidence has strengthened the case that MYB is activated in colon and breast cancer: a block to MYB expression is overcome by mutation of the regulatory machinery in the former disease and by oestrogen receptor-alpha (ERalpha) in the latter.
Collapse
Affiliation(s)
- Robert G Ramsay
- Peter MacCallum Cancer Centre, St Andrew's Place, Melbourne, Victoria 3002, Australia
| | | |
Collapse
|