1
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
2
|
Zhao J, Peter D, Brandina I, Liu X, Galej WP. Structural basis of 5' splice site recognition by the minor spliceosome. Mol Cell 2025; 85:652-664.e4. [PMID: 39809272 DOI: 10.1016/j.molcel.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition. SNRNP25 and SNRNP35 specifically recognize U11 snRNA, while PDCD7 bridges SNRNP25 and SNRNP48, located at the distal ends of the particle. SNRNP48 and ZMAT5 are positioned near the 5' end of U11 snRNA and stabilize binding of the incoming 5'SS. Recognition of the U12-type 5'SS is achieved through base-pairing to the 5' end of the U11 snRNA and unexpected, non-canonical base-triple interactions with the U11 snRNA stem-loop 3. Our structures provide mechanistic insights into U12-dependent intron recognition and the evolution of the splicing machinery.
Collapse
Affiliation(s)
- Jiangfeng Zhao
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Daniel Peter
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Irina Brandina
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Xiangyang Liu
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
3
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Bai R, Yuan M, Zhang P, Luo T, Shi Y, Wan R. Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome. Science 2024; 383:1245-1252. [PMID: 38484052 DOI: 10.1126/science.adn7272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
The minor spliceosome, which is responsible for the splicing of U12-type introns, comprises five small nuclear RNAs (snRNAs), of which only one is shared with the major spliceosome. In this work, we report the 3.3-angstrom cryo-electron microscopy structure of the fully assembled human minor spliceosome pre-B complex. The atomic model includes U11 small nuclear ribonucleoprotein (snRNP), U12 snRNP, and U4atac/U6atac.U5 tri-snRNP. U11 snRNA is recognized by five U11-specific proteins (20K, 25K, 35K, 48K, and 59K) and the heptameric Sm ring. The 3' half of the 5'-splice site forms a duplex with U11 snRNA; the 5' half is recognized by U11-35K, U11-48K, and U11 snRNA. Two proteins, CENATAC and DIM2/TXNL4B, specifically associate with the minor tri-snRNP. A structural analysis uncovered how two conformationally similar tri-snRNPs are differentiated by the minor and major prespliceosomes for assembly.
Collapse
Affiliation(s)
- Rui Bai
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Meng Yuan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pu Zhang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Luo
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Research Center for Industries of the Future, Key Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
5
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Distinct Minor Splicing Patterns across Cancers. Genes (Basel) 2022; 13:genes13020387. [PMID: 35205431 PMCID: PMC8871696 DOI: 10.3390/genes13020387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
In human cells, the U12 spliceosome, also known as the minor spliceosome, is responsible for the splicing of 0.5% of introns, while the major U2 spliceosome is responsible for the other 99.5%. While many studies have been done to characterize and understand splicing dysregulation in cancer, almost all of them have focused on U2 splicing and ignored U12 splicing, despite evidence suggesting minor splicing is involved in cell cycle regulation. In this study, we analyzed RNA-seq data from The Cancer Genome Atlas for 14 different cohorts to determine differential splicing of minor introns in tumor and adjacent normal tissue. We found that in some cohorts, such as breast cancer, there was a strong skew towards minor introns showing increased splicing in the tumor; in others, such as the renal chromophobe cell carcinoma cohort, the opposite pattern was found, with minor introns being much more likely to have decreased splicing in the tumor. Further analysis of gene expression did not reveal any candidate regulatory mechanisms that could cause these different minor splicing phenotypes between cohorts. Our data suggest context-dependent roles of the minor spliceosome in tumorigenesis and provides a foundation for further investigation of minor splicing in cancer, which could then serve as a basis for novel therapeutic strategies.
Collapse
|
7
|
Field-theoretic density estimation for biological sequence space with applications to 5' splice site diversity and aneuploidy in cancer. Proc Natl Acad Sci U S A 2021; 118:2025782118. [PMID: 34599093 DOI: 10.1073/pnas.2025782118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Density estimation in sequence space is a fundamental problem in machine learning that is also of great importance in computational biology. Due to the discrete nature and large dimensionality of sequence space, how best to estimate such probability distributions from a sample of observed sequences remains unclear. One common strategy for addressing this problem is to estimate the probability distribution using maximum entropy (i.e., calculating point estimates for some set of correlations based on the observed sequences and predicting the probability distribution that is as uniform as possible while still matching these point estimates). Building on recent advances in Bayesian field-theoretic density estimation, we present a generalization of this maximum entropy approach that provides greater expressivity in regions of sequence space where data are plentiful while still maintaining a conservative maximum entropy character in regions of sequence space where data are sparse or absent. In particular, we define a family of priors for probability distributions over sequence space with a single hyperparameter that controls the expected magnitude of higher-order correlations. This family of priors then results in a corresponding one-dimensional family of maximum a posteriori estimates that interpolate smoothly between the maximum entropy estimate and the observed sample frequencies. To demonstrate the power of this method, we use it to explore the high-dimensional geometry of the distribution of 5' splice sites found in the human genome and to understand patterns of chromosomal abnormalities across human cancers.
Collapse
|
8
|
Akinyi MV, Frilander MJ. At the Intersection of Major and Minor Spliceosomes: Crosstalk Mechanisms and Their Impact on Gene Expression. Front Genet 2021; 12:700744. [PMID: 34354740 PMCID: PMC8329584 DOI: 10.3389/fgene.2021.700744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Many eukaryotic species contain two separate molecular machineries for removing non-coding intron sequences from pre-mRNA molecules. The majority of introns (more than 99.5% in humans) are recognized and excised by the major spliceosome, which utilizes relatively poorly conserved sequence elements at the 5′ and 3′ ends of the intron that are used for intron recognition and in subsequent catalysis. In contrast, the minor spliceosome targets a rare group of introns (approximately 0.5% in humans) with highly conserved sequences at the 5′ and 3′ ends of the intron. Minor introns coexist in the same genes with major introns and while the two intron types are spliced by separate spliceosomes, the two splicing machineries can interact with one another to shape mRNA processing events in genes containing minor introns. Here, we review known cooperative and competitive interactions between the two spliceosomes and discuss the mechanistic basis of the spliceosome crosstalk, its regulatory significance, and impact on spliceosome diseases.
Collapse
Affiliation(s)
- Maureen V Akinyi
- Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
10
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Wang S, Li N, Jin S, Zhang R, Xu T. Polymerase acidic subunit of H9N2 polymerase complex induces cell apoptosis by binding to PDCD 7 in A549 cells. Virol J 2021; 18:75. [PMID: 33849599 PMCID: PMC8045253 DOI: 10.1186/s12985-021-01547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background H9N2 influenza virus, a subtype of influenza A virus, can spread across different species and induce the respiratory infectious disease in humans, leading to a severe public health risk and a huge economic loss to poultry production. Increasing studies have shown that polymerase acidic (PA) subunit of RNA polymerase in ribonucleoproteins complex of H9N2 virus involves in crossing the host species barriers, the replication and airborne transmission of H9N2 virus. Methods Here, to further investigate the role of PA subunit during the infection of H9N2 influenza virus, we employed mass spectrometry (MS) to search the potential binding proteins of PA subunit of H9N2 virus. Our MS results showed that programmed cell death protein 7 (PDCD7) is a binding target of PA subunit. Co-immunoprecipitation and pull-down assays further confirmed the interaction between PDCD7 and PA subunit. Overexpression of PA subunit in A549 lung cells greatly increased the levels of PDCD7 in the nuclear and induced cell death assayed by MTT assay. Results Flow cytometry analysis and Western blot results showed that PA subunit overexpression significantly increased the expression of pro-apoptotic protein, bax and caspase 3, and induced cell apoptosis. However, knockout of PDCD7 effectively attenuated the effects of PA overexpression in cell apoptosis. Conclusions In conclusion, the PA subunit of H9N2 virus bind with PDCD7 and regulated cell apoptosis, which provide new insights in the role of PA subunit during H9N2 influenza virus infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01547-7.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Na Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Shugang Jin
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Yamada M, Ono M, Ishii T, Suzuki H, Uehara T, Takenouchi T, Kosaki K. Establishing intellectual disability as the key feature of patients with biallelic RNPC3 variants. Am J Med Genet A 2021; 185:1836-1840. [PMID: 33650182 DOI: 10.1002/ajmg.a.62152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/14/2023]
Abstract
Some mammalian genes contain both major and minor introns, the splicing of which require distinctive major and minor spliceosomes, respectively; these genes are referred to as minor intron containing-genes. RNPC3 (RNA-binding domain-containing protein 3) is one of the proteins that are unique to the minor spliceosome U11/U12 di-snRNP. Only two families with biallelic pathogenic variants in the RNPC3 gene encoding the protein have been reported so far, and the affected members in both families had proportional short stature. While the affected members of the originally identified family did not have intellectual disability, the patients from the other family exhibited intellectual disability. Here, we report on a patient with severe primordial microcephalic dwarfism and intellectual disability who carried compound heterozygous variants in RNPC3 (NM_017619.3): c.261dup, p.Leu88Thrfs*11 and c.1228T>G, p.Phe410Val. The single nucleotide substitution c.1228T>G had a very high predictive score for pathogenicity: the p.Phe410 residue is highly conserved down to fish. Based on ACMG (American College of Medical Genetics and Genomics) guideline, this non-synonymous variant was scored as likely pathogenic. This documentation of yet another patient with biallelic RNPC3 variants exhibiting intellectual disability lends further support to the notion that intellectual disability is a key feature of the spectrum of RNPC3-related disorders.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Masae Ono
- Department of Pediatrics, Tokyo Teishin Hospital, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Moyer DC, Larue GE, Hershberger CE, Roy SW, Padgett RA. Comprehensive database and evolutionary dynamics of U12-type introns. Nucleic Acids Res 2020; 48:7066-7078. [PMID: 32484558 PMCID: PMC7367187 DOI: 10.1093/nar/gkaa464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
During nuclear maturation of most eukaryotic pre-messenger RNAs and long non-coding RNAs, introns are removed through the process of RNA splicing. Different classes of introns are excised by the U2-type or the U12-type spliceosomes, large complexes of small nuclear ribonucleoprotein particles and associated proteins. We created intronIC, a program for assigning intron class to all introns in a given genome, and used it on 24 eukaryotic genomes to create the Intron Annotation and Orthology Database (IAOD). We then used the data in the IAOD to revisit several hypotheses concerning the evolution of the two classes of spliceosomal introns, finding support for the class conversion model explaining the low abundance of U12-type introns in modern genomes.
Collapse
Affiliation(s)
- Devlin C Moyer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Courtney E Hershberger
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Richard A Padgett
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Cologne A, Benoit-Pilven C, Besson A, Putoux A, Campan-Fournier A, Bober MB, De Die-Smulders CEM, Paulussen ADC, Pinson L, Toutain A, Roifman CM, Leutenegger AL, Mazoyer S, Edery P, Lacroix V. New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients. RNA (NEW YORK, N.Y.) 2019; 25:1130-1149. [PMID: 31175170 PMCID: PMC6800510 DOI: 10.1261/rna.071423.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age- and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls.
Collapse
Affiliation(s)
- Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Clara Benoit-Pilven
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Alicia Besson
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Audrey Putoux
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Amandine Campan-Fournier
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Michael B Bober
- Division of Medical Genetics, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Christine E M De Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lucile Pinson
- Genetic Department for Rare Diseases and Personalized Medicine, Clinical Division, CHU Montpellier, F-34000 Montpellier, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, F-37000 Tours, France
- UMR 1253, iBrain, Tours University, Inserm, F-37000 Tours, France
| | - Chaim M Roifman
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Division for Immunology and Allergy, Canadian Center for Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Sylvie Mazoyer
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
| | - Patrick Edery
- "Genetics of Neurodevelopment" Team, Lyon Neuroscience Research Centre, UMR5292 CNRS U1028 Inserm, University of Lyon, F-69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Hospices Civils de Lyon, F-69500 Bron, France
| | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
16
|
Abo Elwafa R, Gamaleldin M, Ghallab O. The clinical and prognostic significance of FIS1, SPI1, PDCD7 and Ang2 expression levels in acute myeloid leukemia. Cancer Genet 2018; 233-234:84-95. [PMID: 30555023 DOI: 10.1016/j.cancergen.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The marked heterogeneity of acute myeloid leukemia (AML) renders precisely predicting patient prognosis extremely difficult. Genetic alterations, fusions and mutations, may result in misexpression of key genes in AML. We aimed to investigate the expression patterns of 4 novel genes; FIS1, SPI1, PDCD7 and Ang2 to determine their potential prognostic role in AML patients. METHODS Bone marrow mononuclear cells were analyzed for of FIS1, SPI1, PDCD7 and Ang2 expression levels by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 100 newly diagnosed cytogenetically normal (CN-AML) patients, and 100 non-malignant controls. RESULTS FIS1, SPI1, PDCD7 and Ang2 were significantly overexpressed in CN-AML patients (p < 0.001). Their high expression levels were significantly associated with lower complete remission (CR) rate, shorter relapse-free survival (RFS) and overall survival (OS). On multivariate analysis, high FIS1 expression showed a significant impact on CR response after induction therapy (OR = 88.777, 95% C.I: 2.85-2765.78, p = 0.011) while high PDCD7 appeared to be an independent risk factor for RFS (HR = 5.107, 95% C.I: 1.731-15.066, p = 0.003) and OS (HR = 7.353, 95% C.I: 1.859-29.079, p = 0.004) in CN-AML patients. CONCLUSIONS FIS1 and PDCD7 expression are considered independent risk factors and should be integrated into the current AML stratification system.
Collapse
Affiliation(s)
- Reham Abo Elwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Marwa Gamaleldin
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omar Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Norppa AJ, Kauppala TM, Heikkinen HA, Verma B, Iwaï H, Frilander MJ. Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:396-409. [PMID: 29255062 PMCID: PMC5824358 DOI: 10.1261/rna.062844.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Tuuli M Kauppala
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Harri A Heikkinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Jutzi D, Akinyi MV, Mechtersheimer J, Frilander MJ, Ruepp MD. The emerging role of minor intron splicing in neurological disorders. Cell Stress 2018; 2:40-54. [PMID: 31225466 PMCID: PMC6558932 DOI: 10.15698/cst2018.03.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pre-mRNA splicing is an essential step in eukaryotic gene expression. Mutations in cis-acting sequence elements within pre-mRNA molecules or trans-acting factors involved in pre-mRNA processing have both been linked to splicing dysfunction that give rise to a large number of human diseases. These mutations typically affect the major splicing pathway, which excises more than 99% of all introns in humans. However, approximately 700-800 human introns feature divergent intron consensus sequences at their 5' and 3' ends and are recognized by a separate pre-mRNA processing machinery denoted as the minor spliceosome. This spliceosome has been studied less than its major counterpart, but has received increasing attention during the last few years as a novel pathomechanistic player on the stage in neurodevelopmental and neurodegenerative diseases. Here, we review the current knowledge on minor spliceosome function and discuss its potential pathomechanistic role and impact in neurodegeneration.
Collapse
Affiliation(s)
- Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Maureen V Akinyi
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Jonas Mechtersheimer
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9NU London, UK
| |
Collapse
|
19
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
20
|
Verbeeren J, Verma B, Niemelä EH, Yap K, Makeyev EV, Frilander MJ. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA. PLoS Genet 2017; 13:e1006824. [PMID: 28549066 PMCID: PMC5473595 DOI: 10.1371/journal.pgen.1006824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3′ untranslated region (3′UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3′UTR to non-productive isoforms with a long 3′UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5′ splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3′UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm. The cellular homeostasis of many components of the eukaryotic RNA processing machinery is regulated via negative feed-back pathways that result in the formation of both productive and non-productive mRNA species. Typically, the formation of non-productive mRNAs species results from changes in alternative splicing that disrupt the reading frame of the protein coding region and leads to destabilization of the mRNA. Here, we have investigated the homeostasis regulation of the U11/U12-65K mRNA that encodes an essential protein component of the minor (U12-dependent) spliceosome intron recognition complex. We show that homeostasis is regulated at the level of nuclear mRNA export and mRNA 3′-end formation, and that it can be further regulated during neuronal differentiation. We describe a multilayered regulatory system utilizing alternative exon definition interactions that use the input from both spliceosomes and the polyadenylation machinery to decide between productive and non-productive mRNA formation. Because the 65K protein is an essential component of the minor spliceosome, this regulatory pathway can potentially affect the expression of ~700 genes containing U12-type introns.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Elina H. Niemelä
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Karen Yap
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Eugene V. Makeyev
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Mikko J. Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
21
|
Niemelä EH, Verbeeren J, Singha P, Nurmi V, Frilander MJ. Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes. RNA Biol 2016; 12:1256-64. [PMID: 26479860 DOI: 10.1080/15476286.2015.1096489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Jens Verbeeren
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Prosanta Singha
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Visa Nurmi
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Mikko J Frilander
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| |
Collapse
|
22
|
Park SJ, Jung HJ, Nguyen Dinh S, Kang H. Structural features important for the U12 snRNA binding and minor spliceosome assembly of Arabidopsis U11/U12-small nuclear ribonucleoproteins. RNA Biol 2016; 13:670-9. [PMID: 27232356 DOI: 10.1080/15476286.2016.1191736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although seven proteins unique to U12 intron-specific minor spliceosomes, denoted as U11/U12-65K, -59K, -48K, -35K, -31K, -25K, and -20K, have been identified in humans and the roles of some of them have been demonstrated, the functional role of most of these proteins in plants is not understood. A recent study demonstrated that Arabidopsis U11/U12-65K is essential for U12 intron splicing and normal plant development. However, the structural features and sequence motifs important for 65 K binding to U12 snRNA and other spliceosomal proteins remain unclear. Here, we demonstrated by domain-deletion analysis that the C-terminal region of the 65 K protein bound specifically to the stem-loop III of U12 snRNA, whereas the N-terminal region of the 65 K protein was responsible for interacting with the 59 K protein. Analysis of the interactions between each snRNP protein using yeast two-hybrid analysis and in planta bimolecular fluorescence complementation and luciferase complementation imaging assays demonstrated that the core interactions among the 65 K, 59 K, and 48 K proteins were conserved between plants and animals, and multiple interactions were observed among the U11/U12-snRNP proteins. Taken together, these results reveal that U11/U12-65K is an indispensible component of the minor spliceosome complex by binding to both U11/U12-59K and U12 snRNA, and that multiple interactions among the U11/U12-snRNP proteins are necessary for minor spliceosome assembly.
Collapse
Affiliation(s)
- Su Jung Park
- a Department of Plant Biotechnology , College of Agriculture and Life Sciences, Chonnam National University , Yongbong-dong, Buk-gu, Gwangju , South Korea
| | - Hyun Ju Jung
- a Department of Plant Biotechnology , College of Agriculture and Life Sciences, Chonnam National University , Yongbong-dong, Buk-gu, Gwangju , South Korea
| | - Sy Nguyen Dinh
- a Department of Plant Biotechnology , College of Agriculture and Life Sciences, Chonnam National University , Yongbong-dong, Buk-gu, Gwangju , South Korea
| | - Hunseung Kang
- a Department of Plant Biotechnology , College of Agriculture and Life Sciences, Chonnam National University , Yongbong-dong, Buk-gu, Gwangju , South Korea
| |
Collapse
|
23
|
Xu T, Kim BM, Kwak KJ, Jung HJ, Kang H. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3397-406. [PMID: 27091878 PMCID: PMC4892727 DOI: 10.1093/jxb/erw158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development.
Collapse
Affiliation(s)
- Tao Xu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Bo Mi Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Kyung Jin Kwak
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| |
Collapse
|
24
|
Niemelä EH, Frilander MJ. Regulation of gene expression through inefficient splicing of U12-type introns. RNA Biol 2015; 11:1325-9. [PMID: 25692230 PMCID: PMC4615840 DOI: 10.1080/15476286.2014.996454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
U12-type introns are a rare class of nuclear introns that are removed by a dedicated U12-dependent spliceosome and are thought to regulate the expression of their target genes owing through their slower splicing reaction. Recent genome-wide studies on the splicing of U12-type introns are now providing new insights on the biological significance of this parallel splicing machinery. The new studies cover multiple different organisms and experimental systems, including human patient cells with mutations in the components of the minor spliceosome, zebrafish with similar mutations and various experimentally manipulated human cells and Arabidopsis plants. Here, we will discuss the potential implications of these studies on the understanding of the mechanism and regulation of the minor spliceosome, as well as their medical implications.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; Genome Biology Research Program ; University of Helsinki ; Helsinki , Finland
| | | |
Collapse
|
25
|
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 2015; 6:6042. [PMID: 25586593 PMCID: PMC4349895 DOI: 10.1038/ncomms7042] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations in the spliceosome gene ZRSR2 — located on the X chromosome — are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3΄ splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here, we characterize ZRSR2 as an essential component of the minor spliceosome (U12-dependent) assembly. shRNA mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns, and RNA-Sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns while splicing of the U2-type introns remain mostly unaffected. ZRSR2 deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS.
Collapse
|
26
|
Niemelä EH, Oghabian A, Staals RHJ, Greco D, Pruijn GJM, Frilander MJ. Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome. Nucleic Acids Res 2014; 42:7358-69. [PMID: 24848017 PMCID: PMC4066798 DOI: 10.1093/nar/gku391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels.
Collapse
Affiliation(s)
- Elina H Niemelä
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Ali Oghabian
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Raymond H J Staals
- Department of Biomolecular Chemistry, Radboud Institute for Molecular Life Sciences and Institute for Molecules and Materials, Radboud University Nijmegen,The Netherlands
| | - Dario Greco
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Radboud Institute for Molecular Life Sciences and Institute for Molecules and Materials, Radboud University Nijmegen,The Netherlands
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
27
|
Minor class splicing shapes the zebrafish transcriptome during development. Proc Natl Acad Sci U S A 2014; 111:3062-7. [PMID: 24516132 DOI: 10.1073/pnas.1305536111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.
Collapse
|
28
|
Tian Y, Huang Z, Wang Z, Yin C, Zhou L, Zhang L, Huang K, Zhou H, Jiang X, Li J, Liao L, Yang M, Meng F. Identification of novel molecular markers for prognosis estimation of acute myeloid leukemia: over-expression of PDCD7, FIS1 and Ang2 may indicate poor prognosis in pretreatment patients with acute myeloid leukemia. PLoS One 2014; 9:e84150. [PMID: 24416201 PMCID: PMC3885535 DOI: 10.1371/journal.pone.0084150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 11/13/2013] [Indexed: 11/21/2022] Open
Abstract
Numerous factors impact on the prognosis of acute myeloid leukemia (AML), among which molecular genetic abnormalities are developed increasingly, however, accurate prediction for newly diagnosed AML patients remains unsatisfied. For further improving the prognosis evaluation system, we investigated the transcripts levels of PDCD7, FIS1, FAM3A, CA6, APP, KLRF1, ATCAY, GGT5 and Ang2 in 97 AML patients and 30 non-malignant controls, and validated using the published microarray data from 225 cytogenetically normal AML (CN-AML) patients treated according to the German AMLCG-1999 protocol. Real-time quantitative polymerase chain reaction and western blot were carried out, and clinical data were collected and analyzed. High Ang2 and FIS1 expression discriminated the CR rate of AML patients (62.5% versus 82.9% for Ang2, P = 0.011; 61.4% versus 82.2% for FIS1, P = 0.029). In CN-AML, patients with high FIS1 expression were more likely to be resistant to two courses of induction (P = 0.035). Overall survival (OS) and relapse-free survival (RFS) were shorter in CN-AML patients with high PDCD7 expression (P<0.001; P = 0.006), and PDCD7 was revealed to be an independent risk factor for OS in CN-AML (P = 0.004). In the analysis of published data from 225 CN-AML patients, PDCD7 remained independently predicting OS in CN-AML (P = 0.039). As a conclusion, Ang2 and FIS1 seem related to decreased CR rate of AML patients, and PDCD7 is associated with shorter OS and RFS in CN-AML. Hence, PDCD7, Ang2 and FIS1 may indicate a more aggressive form and poor prognosis of AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cytogenetic Analysis
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Immunoblotting
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Multivariate Analysis
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/metabolism
- Recurrence
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Treatment Outcome
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- Young Adult
Collapse
Affiliation(s)
- Yiming Tian
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zoufang Huang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhixiang Wang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changxin Yin
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanlan Zhou
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxiu Zhang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kaikai Huang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hongsheng Zhou
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xuejie Jiang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jinming Li
- Bioinformatics Department, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Libin Liao
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mo Yang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanyi Meng
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
29
|
Rösel-Hillgärtner TD, Hung LH, Khrameeva E, Le Querrec P, Gelfand MS, Bindereif A. A novel intra-U1 snRNP cross-regulation mechanism: alternative splicing switch links U1C and U1-70K expression. PLoS Genet 2013; 9:e1003856. [PMID: 24146627 PMCID: PMC3798272 DOI: 10.1371/journal.pgen.1003856] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function. The accurate removal of intervening sequences (introns) from precursor messenger RNAs (pre-mRNAs) represents an essential step in the expression of most eukaryotic protein-coding genes. Alternative splicing can create from a single primary transcript various mature mRNAs with diverse, sometimes even antagonistic, biological functions. Many human diseases are based on alternative-splicing defects, and most interestingly, certain defects are caused by mutations in general splicing factors that participate in each splicing event. To address the question of how a general splicing factor can regulate alternative splicing events, here we investigated the regulatory role of the U1C protein, a specific component of the U1 small nuclear ribonucleoprotein (snRNP) and important in initial 5′ splice site recognition. Our RNA-Seq analysis demonstrated that U1C affects more than 300 cases of alternative splicing in the human system. One U1C target, U1-70K, appeared to be particularly interesting, because both protein products are components of the U1 snRNP and functionally depend on each other. Analyzing the mechanistic basis of this intra-U1 snRNP cross-regulation, we discovered a U1C-dependent alternative splicing switch in the U1-70K pre-mRNA that regulates U1-70K expression. In sum, this feedback loop controls and links U1C and U1-70K homeostasis to guarantee correct U1 snRNP assembly and function.
Collapse
Affiliation(s)
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Patrick Le Querrec
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
30
|
Ishihara T, Ariizumi Y, Shiga A, Kato T, Tan CF, Sato T, Miki Y, Yokoo M, Fujino T, Koyama A, Yokoseki A, Nishizawa M, Kakita A, Takahashi H, Onodera O. Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:4136-47. [PMID: 23740936 DOI: 10.1093/hmg/ddt262] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disappearance of TAR-DNA-binding protein 43 kDa (TDP-43) from the nucleus contributes to the pathogenesis of amyotrophic lateral sclerosis (ALS), but the nuclear function of TDP-43 is not yet fully understood. TDP-43 associates with nuclear bodies including Gemini of coiled bodies (GEMs). GEMs contribute to the biogenesis of uridine-rich small nuclear RNA (U snRNA), a component of splicing machinery. The number of GEMs and a subset of U snRNAs decrease in spinal muscular atrophy, a lower motor neuron disease, suggesting that alteration of U snRNAs may also underlie the molecular pathogenesis of ALS. Here, we investigated the number of GEMs and U11/12-type small nuclear ribonucleoproteins (snRNP) by immunohistochemistry and the level of U snRNAs using real-time quantitative RT-PCR in ALS tissues. GEMs decreased in both TDP-43-depleted HeLa cells and spinal motor neurons in ALS patients. Levels of several U snRNAs decreased in TDP-43-depleted SH-SY5Y and U87-MG cells. The level of U12 snRNA was decreased in tissues affected by ALS (spinal cord, motor cortex and thalamus) but not in tissues unaffected by ALS (cerebellum, kidney and muscle). Immunohistochemical analysis revealed the decrease in U11/12-type snRNP in spinal motor neurons of ALS patients. These findings suggest that loss of TDP-43 function decreases the number of GEMs, which is followed by a disturbance of pre-mRNA splicing by the U11/U12 spliceosome in tissues affected by ALS.
Collapse
|
31
|
Turunen JJ, Verma B, Nyman TA, Frilander MJ. HnRNPH1/H2, U1 snRNP, and U11 snRNP cooperate to regulate the stability of the U11-48K pre-mRNA. RNA (NEW YORK, N.Y.) 2013; 19:380-9. [PMID: 23335637 PMCID: PMC3677248 DOI: 10.1261/rna.036715.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) is a major contributor to proteome diversity, but it also regulates gene expression by introducing premature termination codons (PTCs) that destabilize transcripts, typically via the nonsense-mediated decay (NMD) pathway. Such AS events often take place within long, conserved sequence elements, particularly in genes encoding various RNA binding proteins. AS-NMD is often activated by the protein encoded by the same gene, leading to a self-regulating feedback loop that maintains constant protein levels. However, cross-regulation between different RNA binding proteins is also common, giving rise to finely tuned regulatory networks. Recently, we described a feedback mechanism regulating two protein components of the U12-dependent spliceosome (U11-48K and U11/U12-65K) through a highly conserved sequence element. These elements contain a U11 snRNP-binding splicing enhancer (USSE), which, through the U11 snRNP, activates an upstream U2-type 3'ss, resulting in the degradation of the U11-48K mRNA by AS-NMD. Through phylogenetic analysis, we now identify a G-rich sequence element that is conserved in fishes as well as mammals. We show that this element binds hnRNPF/H proteins in vitro. Knockdown of hnRNPH1/H2 or mutations in the G-run both lead to enhanced activation of the 3'ss in vivo, suggesting that hnRNPH1/H2 proteins counteract the 3'ss activation. Furthermore, we provide evidence that U1 binding immediately downstream from the G-run similarly counteracts the U11-mediated activation of the alternative 3'ss. Thus, our results elucidate the mechanism in which snRNPs from both spliceosomes together with hnRNPH1/H2 proteins regulate the recognition and activation of the highly conserved alternative splice sites within the U11-48K pre-mRNA.
Collapse
|
32
|
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:61-76. [PMID: 23074130 PMCID: PMC3584512 DOI: 10.1002/wrna.1141] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janne J Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Kwak KJ, Jung HJ, Lee KH, Kim YS, Kim WY, Ahn SJ, Kang H. The minor spliceosomal protein U11/U12-31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants. PLoS One 2012; 7:e43707. [PMID: 22912901 PMCID: PMC3422263 DOI: 10.1371/journal.pone.0043707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
U12 intron-specific spliceosomes contain U11 and U12 small nuclear ribonucleoproteins and mediate the removal of U12 introns from precursor-mRNAs. Among the several proteins unique to the U12-type spliceosomes, an Arabidopsis thaliana AtU11/U12-31K protein has been shown to be indispensible for proper U12 intron splicing and for normal growth and development of Arabidopsis plants. Here, we assessed the functional roles of the rice (Oryza sativa) OsU11/U12-31K protein in U12 intron splicing and development of plants. The U11/U12-31K transcripts were abundantly expressed in the shoot apical meristems (SAMs) of Arabidopsis and rice. Ectopic expression of OsU11/U12-31K in AtU11/U12-31K-defecient Arabidopsis mutant complemented the incorrect U12 intron splicing and abnormal development phenotypes of the Arabidopsis mutant plants. Impaired cell division activity in the SAMs and inflorescence stems observed in the AtU11/U12-31K-deficient mutant was completely recovered to normal by the expression of OsU11/U12-31K. Similar to Arabidopsis AtU11/U12-31K, rice OsU11/U12-31K was determined to harbor RNA chaperone activity. Collectively, the present findings provide evidence for the emerging idea that the U11/U12-31K protein is an indispensible RNA chaperone that functions in U12 intron splicing and is necessary for normal development of monocotyledonous plants as well as dicotyledonous plants.
Collapse
Affiliation(s)
- Kyung Jin Kwak
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Kwang Ho Lee
- Department of Wood Science and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Young Soon Kim
- Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Won Yong Kim
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Sung Ju Ahn
- Department of Bioenergy Science and Technology and Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
- * E-mail:
| |
Collapse
|
34
|
Abstract
U12 snRNA is analogous to U2 snRNA of the U2-dependent spliceosome and is essential for the splicing of U12-dependent introns in metazoan cells. The essential region of U12 snRNA, which base pairs to the branch site of minor class introns is well characterized. However, other regions which are outside of the branch site base pairing region are not yet characterized and the requirement of these structures in U12-dependent splicing is not clear. U12 snRNA is predicted to form an intricate secondary structure containing several stem-loops and single-stranded regions. Using a previously characterized branch site genetic suppression assay, we generated second-site mutations in the suppressor U12 snRNA to investigate the in vivo requirement of structural elements in U12-dependent splicing. Our results show that stem-loop IIa is essential and required for in vivo splicing. Interestingly, an evolutionarily conserved stem-loop IIb is dispensable for splicing. We also show that stem-loop III, which binds to a p65 RNA binding protein of the U11-U12 di.snRNP complex, is essential for in vivo splicing. The data validate the existence of proposed stem-loops of U12 snRNA and provide experimental support for individual secondary structures.
Collapse
Affiliation(s)
- Kavleen Sikand
- Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | |
Collapse
|
35
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
36
|
Kim WY, Jung HJ, Kwak KJ, Kim MK, Oh SH, Han YS, Kang H. The Arabidopsis U12-type spliceosomal protein U11/U12-31K is involved in U12 intron splicing via RNA chaperone activity and affects plant development. THE PLANT CELL 2010; 22:3951-62. [PMID: 21148817 PMCID: PMC3027169 DOI: 10.1105/tpc.110.079103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
U12 introns are removed from precursor-mRNA by a U12 intron-specific spliceosome that contains U11 and U12 small nuclear ribonucleoproteins. Although several proteins unique to the U12-type spliceosome have been identified, the manner by which they affect U12-dependent intron splicing as well as plant growth and development remain largely unknown. Here, we assessed the role of U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana. T-DNA-tagged homozygote lines for U11/U12-31K could not be obtained, and heterozygote mutants were defective for seed maturation, indicating that U11/U12-31K is essential for the normal development of Arabidopsis. Knockdown of U11/U12-31K by artificial microRNA caused a defect in proper U12 intron splicing, resulting in abnormal stem growth and development of Arabidopsis. This defect in proper splicing was not restricted to specific U12-type introns, but most U12 intron splicing was influenced by U11/U12-31K. The stunted inflorescence stem growth was recovered by exogenously applied gibberellic acid (GA), but not by cytokinin, auxin, or brassinosteroid. GA metabolism-related genes were highly downregulated in U11/U12-31K knockdown plants. Importantly, U11/U12-31K was determined to harbor RNA chaperone activity. We propose that U11/U12-31K is an RNA chaperone that is indispensible for proper U12 intron splicing and for normal growth and development of plants.
Collapse
|
37
|
Gene expression profiling of U12-type spliceosome mutant Drosophila reveals widespread changes in metabolic pathways. PLoS One 2010; 5:e13215. [PMID: 20949011 PMCID: PMC2952598 DOI: 10.1371/journal.pone.0013215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly. Methodology/Principal Findings We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. Conclusions/Significance U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.
Collapse
|
38
|
Verbeeren J, Niemelä EH, Turunen JJ, Will CL, Ravantti JJ, Lührmann R, Frilander MJ. An ancient mechanism for splicing control: U11 snRNP as an activator of alternative splicing. Mol Cell 2010; 37:821-33. [PMID: 20347424 DOI: 10.1016/j.molcel.2010.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 11/03/2009] [Accepted: 12/23/2009] [Indexed: 12/15/2022]
Abstract
Alternative pre-mRNA splicing is typically regulated by specific protein factors that recognize unique sequence elements in pre-mRNA and affect, directly or indirectly, nearby splice site usage. We show that 5' splice site sequences (5'ss) of U12-type introns, when repeated in tandem, form a U11 snRNP-binding splicing enhancer, USSE. Binding of U11 to the USSE regulates alternative splicing of U2-type introns by activating an upstream 3'ss. The U12-type 5'ss-like sequences within the USSE have a regulatory role and do not function as splicing donors. USSEs, present both in animal and plant genes encoding the U11/U12 di-snRNP-specific 48K and 65K proteins, create sensitive switches that respond to intracellular levels of functional U11 snRNP and alter the stability of 48K and 65K mRNAs. We conclude that U11 functions not only in 5'ss recognition in constitutive splicing, but also as an activator of U2-dependent alternative splicing and as a regulator of the U12-dependent spliceosome.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Yoshimura T, Toyoda S, Kuramochi-Miyagawa S, Miyazaki T, Miyazaki S, Tashiro F, Yamato E, Nakano T, Miyazaki JI. Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Dev Biol 2009; 335:216-27. [DOI: 10.1016/j.ydbio.2009.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/25/2022]
|
40
|
Tidow H, Andreeva A, Rutherford TJ, Fersht AR. Solution structure of the U11-48K CHHC zinc-finger domain that specifically binds the 5' splice site of U12-type introns. Structure 2009; 17:294-302. [PMID: 19217400 DOI: 10.1016/j.str.2008.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
The formation of stable 18S U11/U12 di-snRNPs before their association with the pre-mRNA is a characteristic feature of the minor spliceosome. During the spliceosomal assembly, the 18S snRNP binds cooperatively to the introns' 5' splice and branch point site. The molecular basis for this recognition is still unknown. Here, we report the solution structure of the U11-48K CHHC Zn finger, a domain unique to the minor spliceosome. The CHHC Zn-finger structure revealed an unexpected similarity to the TFIIIA domains, with distinct features originating from the type and separation of the zinc-coordinating residues. We show that this domain specifically binds the 5' splice site sequence of U12-type introns when base paired to U11 snRNA in vitro and hence may contribute to the U12 intron recognition. We propose a model in which the U11-48K Zn finger stabilizes U11-5' splice site base pairing and thus plays an important role during the minor spliceosome assembly.
Collapse
Affiliation(s)
- Henning Tidow
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB20QH, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Andreeva A, Tidow H. A novel CHHC Zn-finger domain found in spliceosomal proteins and tRNA modifying enzymes. ACTA ACUST UNITED AC 2008; 24:2277-80. [PMID: 18703587 PMCID: PMC2562017 DOI: 10.1093/bioinformatics/btn431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We report a previously uncharacterized CHHC Zn-finger domain identified in spliceosomal U11-48K proteins, tRNA methyl-transferases TRM13 and gametocyte specific factors. We show that this domain behaves as an independent folding unit and that it stoichiometrically binds zinc in a one-to-one ratio. Based on the conserved sequence features we predict that this domain may function as a RNA recognition and binding module.
Collapse
|