1
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Giussani P, Brioschi L, Gjoni E, Riccitelli E, Viani P. Sphingosine 1-Phosphate Stimulates ER to Golgi Ceramide Traffic to Promote Survival in T98G Glioma Cells. Int J Mol Sci 2024; 25:8270. [PMID: 39125841 PMCID: PMC11312410 DOI: 10.3390/ijms25158270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response.
Collapse
Affiliation(s)
| | | | | | | | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy; (P.G.); (L.B.); (E.G.); (E.R.)
| |
Collapse
|
3
|
Jia Y, Wang H, Ma B, Zhang Z, Wang J, Wang J, Chen O. Lipid metabolism-related genes are involved in the occurrence of asthma and regulate the immune microenvironment. BMC Genomics 2024; 25:129. [PMID: 38297226 PMCID: PMC10832186 DOI: 10.1186/s12864-023-09795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Lipid metabolism plays a pivotal role in asthma pathogenesis. However, a comprehensive analysis of the importance of lipid metabolism-related genes (LMRGs) in regulating the immune microenvironment in asthma remains lacking. The transcriptome matrix was downloaded from the Gene Expression Omnibus (GEO) dataset. Differentially expressed analysis and weighted gene coexpression network analysis (WGCNA) were conducted on the GSE74986 dataset to select hub LMRGs, and gene set enrichment analysis (GSEA) was conducted to explore their biological functions. The CIBERSORT algorithm was used to determine immune infiltration in the asthma and control groups, and the correlation of diagnostic biomarkers and immune cells was performed via Spearman correlation analysis. Subsequently, a competitive endogenous RNA (ceRNA) network was constructed to investigate the hidden molecular mechanism of asthma. The expression levels of the hub genes were further validated in the GSE143192 dataset, and RT‒qPCR and immunofluorescence were performed to verify the reliability of the results in the OVA asthma model. Lastly, the ceRNA network was confirmed by qRT-PCR and RNAi experiments in the characteristic cytokine (IL-13)-induced asthma cellular model. RESULTS ASAH1, ACER3 and SGPP1 were identified as hub LMRGs and were mainly involved in protein secretion, mTORC1 signaling, and fatty acid metabolism. We found more infiltration of CD8+ T cells, activated NK cells, and monocytes and less M0 macrophage infiltration in the asthma group than in the healthy control group. In addition, ASAH1, ACER3, and SGPP1 were negatively correlated with CD8+ T cells and activated NK cells, but positively correlated with M0 macrophages. Within the ceRNA network, SNHG9-hsa-miR-615-3p-ACER3, hsa-miR-212-5p and hsa-miR-5682 may play crucial roles in asthma pathogenesis. The low expression of ASAH1 and SGPP1 in asthma was also validated in the GSE74075 dataset. After SNHG9 knockdown, miR-615-3p expression was significantly upregulated, while that of ACER3 was significantly downregulated. CONCLUSION ASAH1, ACER3 and SGPP1 might be diagnostic biomarkers for asthma, and are associated with increased immune system activation. In addition, SNHG9-hsa-miR-615-3p-ACER3 may be viewed as effective therapeutic targets for asthma. Our findings might provide a novel perspective for future research on asthma.
Collapse
Affiliation(s)
- Yuanmin Jia
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Haixia Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Bin Ma
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Zeyi Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Jingjing Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Jin Wang
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, No. 2, Jianguo Xiaojing 3Rd Road, Shizhong District, Jinan City, Shandong Province, China.
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China.
| |
Collapse
|
4
|
Cai Z, Deng L, Fan Y, Ren Y, Ling Y, Tu J, Cai Y, Xu X, Chen M. Dysregulation of Ceramide Metabolism Is Linked to Iron Deposition and Activation of Related Pathways in the Aorta of Atherosclerotic Miniature Pigs. Antioxidants (Basel) 2023; 13:4. [PMID: 38275624 PMCID: PMC10812416 DOI: 10.3390/antiox13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
The miniature pig is a suitable animal model for investigating human cardiovascular diseases. Nevertheless, the alterations in lipid metabolism within atherosclerotic plaques of miniature pigs, along with the underlying mechanisms, remain to be comprehensively elucidated. In this study, we aim to examine the alterations in lipid composition and associated pathways in the abdominal aorta of atherosclerotic pigs induced by a high-fat, high-cholesterol, and high-fructose (HFCF) diet using lipidomics and RNA-Seq methods. The results showed that the content and composition of aortic lipid species, particularly ceramide, hexosyl ceramide, lysophosphatidylcholine, and triglyceride, were significantly altered in HFCF-fed pigs. Meanwhile, the genes governing sphingolipid metabolism, iron ion homeostasis, apoptosis, and the inflammatory response were significantly regulated by the HFCF diet. Furthermore, C16 ceramide could promote iron deposition in RAW264.7 cells, leading to increased intracellular reactive oxygen species (ROS) production, apoptosis, and activation of the toll-like receptor 4 (TLR4)/nuclear Factor-kappa B (NF-қB) inflammatory pathway, which could be mitigated by deferoxamine. Our study demonstrated that dysregulated ceramide metabolism could increase ROS production, apoptosis, and inflammatory pathway activation in macrophages by inducing iron overload, thus playing a vital role in the pathogenesis of atherosclerosis. This discovery could potentially provide a new target for pharmacological therapy of cardiovascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Liqun Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yingying Fan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yun Ling
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Yueqin Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Xiaoping Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| |
Collapse
|
5
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
Cui M, Göbel V, Zhang H. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 2021; 97:251-272. [PMID: 34585505 PMCID: PMC9292677 DOI: 10.1111/brv.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite, functioning as a signalling molecule in diverse cellular processes. Over the past few decades, studies of S1P signalling have revealed that the physiological activity of S1P largely depends on S1P metabolizing enzymes, transporters and receptors on the plasma membrane, as well as on the intracellular proteins that S1P binds directly to. In addition to its roles in cancer signalling, immunity and inflammation, a large body of evidence has identified a close link of S1P signalling with organ morphogenesis. Here we discuss the vital role of S1P signalling in orchestrating various cellular events during organ morphogenesis through analysing each component along the extracellular and intracellular S1P signalling axes. For each component, we review advances in our understanding of S1P signalling and function from the upstream regulators to the downstream effectors and from cellular behaviours to tissue organization, primarily in the context of morphogenetic mechanisms. S1P-mediated vesicular trafficking is also discussed as a function independent of its signalling function. A picture emerges that reveals a multifaceted role of S1P-dependent pathways in the development and maintenance of organ structure and function.
Collapse
Affiliation(s)
- Mengqiao Cui
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
8
|
D'Aprile C, Prioni S, Mauri L, Prinetti A, Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell Signal 2021; 80:109929. [PMID: 33493577 DOI: 10.1016/j.cellsig.2021.109929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Spontaneous segregation of cholesterol and sphingolipids as a liquid-ordered phase leads to their clustering in selected membrane areas, the lipid rafts. These specialized membrane domains enriched in gangliosides, sphingomyelin, cholesterol and selected proteins involved in signal transduction, organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating cell homeostasis. Sphingosine 1-phosphate, an important biologically active mediator, is involved in several signal transduction processes regulating a plethora of cell functions and, not only several of its downstream effectors tend to localize in lipid rafts, some of the enzymes involved in its pathway, of receptors involved in its signalling and its transporters have been often found in these membrane microdomains. Considering this, in this review we address what is currently known regarding the relationship between sphingosine 1-phosphate metabolism and signalling and plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Chiara D'Aprile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PAB, Pitman MR, Hewett DR, Zannettino ACW, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2018; 8:43602-43616. [PMID: 28467788 PMCID: PMC5546428 DOI: 10.18632/oncotarget.17115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Duncan R Hewett
- School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| |
Collapse
|
10
|
Di Pardo A, Maglione V. The S1P Axis: New Exciting Route for Treating Huntington's Disease. Trends Pharmacol Sci 2018; 39:468-480. [PMID: 29559169 DOI: 10.1016/j.tips.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Huntington's disease (HD) is a single-gene inheritable neurodegenerative disorder with an associated complex molecular pathogenic profile that renders it the most 'curable incurable' brain disorder. Continuous effort in the field has contributed to the recent discovery of novel potential pathogenic mechanisms. Findings in preclinical models of the disease as well as in human post-mortem brains from affected patients demonstrate that alteration of the sphingosine-1-phosphate (S1P) axis may represent a possible key player in the pathogenesis of the disease and may act as a potential actionable drug target for the development of more targeted and effective therapeutic approaches. The relevance of the path of this new 'therapeutic route' is underscored by the fact that some drugs targeting the S1P axis are currently in clinical trials for the treatment of other brain disorders.
Collapse
Affiliation(s)
- Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
11
|
Nuclear Translocation of SGPP-1 and Decrease of SGPL-1 Activity Contribute to Sphingolipid Rheostat Regulation of Inflammatory Dendritic Cells. Mediators Inflamm 2017; 2017:5187368. [PMID: 29375197 PMCID: PMC5742514 DOI: 10.1155/2017/5187368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 02/01/2023] Open
Abstract
A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation.
Collapse
|
12
|
Arish M, Alaidarous M, Ali R, Akhter Y, Rub A. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. J Recept Signal Transduct Res 2017; 37:437-446. [PMID: 28758826 DOI: 10.1080/10799893.2017.1358282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.
Collapse
Affiliation(s)
- Mohd Arish
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Mohammed Alaidarous
- b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| | - Rahat Ali
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Yusuf Akhter
- c Centre for Computational Biology & Bioinformatics, School of Life Sciences , Central University of Himachal Pradesh , Shahpur, Kangra , India
| | - Abdur Rub
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India.,b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| |
Collapse
|
13
|
Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). Int J Mol Med 2017; 39:243-252. [PMID: 28075451 PMCID: PMC5358714 DOI: 10.3892/ijmm.2017.2855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinase (SphK) is an important signalling enzyme that catalyses the phosphorylation of sphingosine (Sph) to form sphingosine‑1‑phosphate (S1P). The multifunctional lipid, S1P binds to a family of five G protein-coupled receptors (GPCRs). As an intracellular second messenger, S1P activates key signalling cascades responsible for the maintenance of sphingolipid metabolism, and has been implicated in the progression of cancer, and the development of other inflammatory and metabolic diseases. SphK and S1P are critical molecules involved in the regulation of various cellular metabolic processes, such as cell proliferation, survival, apoptosis, adhesion and migration. There is strong evidence supporting the critical roles of SphK and S1P in the progression of diabetes mellitus, including insulin sensitivity and insulin secretion, pancreatic β‑cell apoptosis, and the development of diabetic inflammatory state. In this review, we summarise the current state of knowledge for SphK/S1P signalling effects, associated with the development of insulin resistance, pancreatic β‑cell death and the vascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2050
- Sydney Medical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Advanced Medical and Dental Institute, University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031
| | - Olga A. Sukocheva
- School of Social Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
14
|
Huang WC, Liang J, Nagahashi M, Avni D, Yamada A, Maceyka M, Wolen AR, Kordula T, Milstien S, Takabe K, Oravecz T, Spiegel S. Sphingosine-1-phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans. FASEB J 2016; 30:2945-58. [PMID: 27130484 PMCID: PMC4970610 DOI: 10.1096/fj.201600394r] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/26/2016] [Indexed: 01/08/2023]
Abstract
The bioactive sphingolipid sphingosine-1-phosphate (S1P) and the kinase that produces it have been implicated in inflammatory bowel diseases in mice and humans; however, little is known about the role of the 2 S1P-specific phosphohydrolase isoforms, SGPP1 and SGPP2, which catalyze dephosphorylation of S1P to sphingosine. To elucidate their functions, we generated specific knockout mice. Deletion of Sgpp2, which is mainly expressed in the gastrointestinal tract, significantly reduced dextran sodium sulfate (DSS)-induced colitis severity, whereas deletion of ubiquitously expressed Sgpp1 slightly worsened colitis. Moreover, Sgpp1 deletion enhanced expression of multifunctional proinflammatory cytokines, IL-6, TNF-α, and IL-1β, activation of the transcription factor signal transducer and activator of transcription 3, and immune cell infiltration into the colon. Conversely, Sgpp2-null mice failed to mount a DSS-induced systemic inflammatory response. Of interest, Sgpp2 deficiency suppressed DSS-induced intestinal epithelial cell apoptosis and improved mucosal barrier integrity. Furthermore, down-regulation of Sgpp2 attenuated LPS-induced paracellular permeability in cultured cells and enhanced expression of the adherens junction protein E-cadherin. Finally, in patients with ulcerative colitis, SGPP2 expression was elevated in colitis tissues relative to that in uninvolved tissues. These results indicate that induction of SGPP2 expression contributes to the pathogenesis of colitis by promoting disruption of the mucosal barrier function. SGPP2 may represent a novel therapeutic target in inflammatory bowel disease.-Huang, W.-C., Liang, J., Nagahashi, M., Avni, D., Yamada, A., Maceyka, M., Wolen, A. R., Kordula, T., Milstien, S., Takabe, K., Oravecz, T., Spiegel, S. Sphingosine-1-phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans.
Collapse
Affiliation(s)
- Wei-Ching Huang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Jie Liang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Masayuki Nagahashi
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA; Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Akimitsu Yamada
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA; Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Aaron R Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | - Kazuaki Takabe
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA; Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, Virginia, USA;
| |
Collapse
|
15
|
Kim KP, Shin KO, Park K, Yun HJ, Mann S, Lee YM, Cho Y. Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes. Biomol Ther (Seoul) 2015; 23:525-30. [PMID: 26535077 PMCID: PMC4624068 DOI: 10.4062/biomolther.2015.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 12/03/2022] Open
Abstract
Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C (50 μg/ml) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolic-related enzymes, and as a result, could improve overall epidermal barrier function.
Collapse
Affiliation(s)
- Kun Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Kyong-Oh Shin
- College of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Kyungho Park
- Department of Dermatology, Northern California Institute for Research and Education (NCIRE)-VA Medical Center, University of California, San Francisco (UCSF), San Francisco, California 94158, USA
| | - Hye Jeong Yun
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Shivtaj Mann
- Nova Southeastern College of Medicine, Fort Lauderdale, Florida 33314, USA
| | - Yong Moon Lee
- College of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
16
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
17
|
Glucolipotoxicity impairs ceramide flow from the endoplasmic reticulum to the Golgi apparatus in INS-1 β-cells. PLoS One 2014; 9:e110875. [PMID: 25350564 PMCID: PMC4211692 DOI: 10.1371/journal.pone.0110875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to β-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of β-cells exposed to glucolipotoxicity.
Collapse
|
18
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
19
|
Boslem E, Weir JM, MacIntosh G, Sue N, Cantley J, Meikle PJ, Biden TJ. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic β-cells. J Biol Chem 2013; 288:26569-82. [PMID: 23897822 DOI: 10.1074/jbc.m113.489310] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic saturated fatty acid exposure causes β-cell apoptosis and, thus, contributes to type 2 diabetes. Although endoplasmic reticulum (ER) stress and reduced ER-to-Golgi protein trafficking have been implicated, the exact mechanisms whereby saturated fatty acids trigger β-cell death remain elusive. Using mass spectroscopic lipidomics and subcellular fractionation, we demonstrate that palmitate pretreatment of MIN6 β-cells promoted ER remodeling of both phospholipids and sphingolipids, but only the latter was causally linked to lipotoxic ER stress. Thus, overexpression of glucosylceramide synthase, previously shown to protect against defective protein trafficking and ER stress, partially reversed lipotoxic reductions in ER sphingomyelin (SM) content and aggregation of ER lipid rafts, as visualized using Erlin1-GFP. Using both lipidomics and a sterol response element reporter assay, we confirmed that free cholesterol in the ER was also reciprocally modulated by chronic palmitate and glucosylceramide synthase overexpression. This is consistent with the known coregulation and association of SM and free cholesterol in lipid rafts. Inhibition of SM hydrolysis partially protected against ATF4/C/EBP homology protein induction because of palmitate. Our results suggest that loss of SM in the ER is a key event for initiating β-cell lipotoxicity, which leads to disruption of ER lipid rafts, perturbation of protein trafficking, and initiation of ER stress.
Collapse
Affiliation(s)
- Ebru Boslem
- From the Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, New South Wales 2010, Australia and
| | | | | | | | | | | | | |
Collapse
|
20
|
Allende ML, Sipe LM, Tuymetova G, Wilson-Henjum KL, Chen W, Proia RL. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J Biol Chem 2013; 288:18381-91. [PMID: 23637227 DOI: 10.1074/jbc.m113.478420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Taouji S, Higa A, Delom F, Palcy S, Mahon FX, Pasquet JM, Bossé R, Ségui B, Chevet E. Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem 2013; 288:17190-201. [PMID: 23629659 DOI: 10.1074/jbc.m112.409185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In BCR-ABL-expressing cells, sphingolipid metabolism is altered. Because the first step of sphingolipid biosynthesis occurs in the endoplasmic reticulum (ER), our objective was to identify ABL targets in the ER. A phosphoproteomic analysis of canine pancreatic ER microsomes identified 49 high scoring phosphotyrosine-containing peptides. These were then categorized in silico and validated in vitro. We demonstrated that the ER-resident human protein serine palmitoyltransferase long chain-1 (SPTLC1), which is the first enzyme of sphingolipid biosynthesis, is phosphorylated at Tyr(164) by the tyrosine kinase ABL. Inhibition of BCR-ABL using either imatinib or shRNA-mediated silencing led to the activation of SPTLC1 and to increased apoptosis in both K562 and LAMA-84 cells. Finally, we demonstrated that mutation of Tyr(164) to Phe in SPTLC1 increased serine palmitoyltransferase activity. The Y164F mutation also promoted the remodeling of cellular sphingolipid content, thereby sensitizing K562 cells to apoptosis. Our observations provide a mechanistic explanation for imatinib-mediated cell death and a novel avenue for therapeutic strategies.
Collapse
|
22
|
Véret J, Coant N, Gorshkova IA, Giussani P, Fradet M, Riccitelli E, Skobeleva A, Goya J, Kassis N, Natarajan V, Portha B, Berdyshev EV, Le Stunff H. Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 β-cell survival. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:251-62. [PMID: 23085009 DOI: 10.1016/j.bbalip.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 01/09/2023]
Abstract
Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic β cells and what role they play in palmitate-induced β cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 β cells. This increase was associated with an increase in sphingosine kinase 1 (SphK1) mRNA and protein levels. Over-expression of SphK1 in INS-1 cells potentiated palmitate-induced accumulation of dihydrosphingosine-1-phosphate. N,N-dimethyl-sphingosine, a potent inhibitor of SphK, potentiated β-cell apoptosis induced by palmitate whereas over-expression of SphK1 significantly reduced apoptosis induced by palmitate with high glucose. Endoplasmic reticulum (ER)-targeted SphK1 also partially inhibited apoptosis induced by palmitate. Inhibition of INS-1 apoptosis by over-expressed SphK1 was independent of sphingosine-1-phosphate receptors but was associated with a decreased formation of pro-apoptotic ceramides induced by gluco-lipotoxicity. Moreover, over-expression of SphK1 counteracted the defect in the ER-to-Golgi transport of proteins that contribute to the ceramide-dependent ER stress observed during gluco-lipotoxicity. In conclusion, our results suggest that activation of palmitate-induced SphK1-mediated sphingoid base-1-phosphate formation in the ER of β cells plays a protective role against palmitate-induced ceramide-dependent apoptotic β cell death.
Collapse
Affiliation(s)
- Julien Véret
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité BFA, CNRS EAC 4413, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:193-202. [PMID: 22735358 DOI: 10.1016/j.bbalip.2012.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
24
|
Abstract
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.
Collapse
Affiliation(s)
- Ebru Boslem
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Trevor J. Biden
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
- Correspondence to: Trevor J. Biden,
| |
Collapse
|
25
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
26
|
Lépine S, Allegood JC, Park M, Dent P, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death Differ 2010; 18:350-61. [PMID: 20798685 DOI: 10.1038/cdd.2010.104] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) have recently been implicated in autophagy. In this study, we report that depletion of sphingosine-1-phosphate phosphohydrolase-1 (SPP1), an endoplasmic reticulum (ER)-resident enzyme that specifically dephosphorylates S1P, induced autophagy. Although the mammalian target of rapamycin and class III phosphoinositide 3-kinase/Beclin-1 pathways were not involved and this autophagy was p53 independent, C/EBP homologous protein, BiP, and phospho-eucaryotic translation initiation factor-2α, and cleavage of procaspases 2 and 4, downstream targets of ER stress, were increased after SPP1 depletion. Autophagy was suppressed by depletion of protein kinase regulated by RNA-like ER kinase (PERK), inositol-requiring transmembrane kinase/endonuclease-1α, or activating transcription factor 6, three sensors of the unfolded protein response (UPR) to ER stress. Autophagy triggered by downregulation of SPP1 did not lead to apoptosis but rather stimulated, in a PERK dependent manner, the survival signal Akt, whose inhibition then sensitized cells to apoptosis. Although depletion of SPP1 increased intracellular levels of S1P and its secretion, activation of cell surface S1P receptors did not induce autophagy. Nevertheless, increases in intracellular pools of S1P, but not dihydro-S1P, induced autophagy and ER stress. Thus, SPP1, by regulating intracellular S1P homeostasis, can control the UPR and ER stress-induced autophagy.
Collapse
Affiliation(s)
- S Lépine
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Collapse
Affiliation(s)
- Henrik Fyrst
- Center for Cancer Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Julie D. Saba
- Center for Cancer Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609
| |
Collapse
|
28
|
Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim E, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S, Spiegel S. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 2010; 465:1084-8. [PMID: 20577214 PMCID: PMC2946785 DOI: 10.1038/nature09128] [Citation(s) in RCA: 618] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/26/2010] [Indexed: 01/11/2023]
Abstract
Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.
Collapse
Affiliation(s)
- Sergio E. Alvarez
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Nitai C. Hait
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Graham M. Strub
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Stefanić S, Spycher C, Morf L, Fabriàs G, Casas J, Schraner E, Wild P, Hehl AB, Sonda S. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia. J Lipid Res 2010; 51:2527-45. [PMID: 20335568 DOI: 10.1194/jlr.m003392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes.
Collapse
Affiliation(s)
- Sasa Stefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc Natl Acad Sci U S A 2010; 107:5851-6. [PMID: 20212121 DOI: 10.1073/pnas.0911617107] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the first committed step in sphingolipid synthesis, further supports a role for the Orm proteins in regulating sphingolipid synthesis. Phospholipid homeostasis is also affected in orm1Delta orm2Delta cells: the cells are inositol auxotrophs with impaired transcriptional regulation of genes encoding phospholipid biosynthesis enzymes. Strikingly, impaired growth of orm1Delta orm2Delta cells is associated with constitutive unfolded protein response, sensitivity to stress, and slow ER-to-Golgi transport. Inhibition of sphingolipid synthesis suppresses orm1Delta orm2Delta phenotypes, including ER stress, suggesting that disrupted sphingolipid homeostasis accounts for pleiotropic phenotypes. Thus, the yeast Orm proteins control membrane biogenesis by coordinating lipid homeostasis with protein quality control.
Collapse
|
31
|
Riboni L, Giussani P, Viani P. Sphingolipid transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:24-45. [PMID: 20919644 DOI: 10.1007/978-1-4419-6741-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids are a family of ubiquitous membrane components that exhibit multiple functional properties fundamental to cell properties. Sphingolipid transport represents a crucial aspect in the metabolism, signaling and biological role of sphingolipids. Different mechanisms of sphingolipid movements contribute to their selective localization in different membranes but also in different portions and sides of the same membrane, thus ensuring and regulating their interaction with different enzymes and target molecules. In this chapter we will describe the knowledge of the different mechanisms ofsphingolipid movements within and between membranes, focusing on the recent advances in this field and considering the role played by selective sphingolipid molecules in the regulation of these mechanisms.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA.
| | | | | |
Collapse
|
32
|
Goldfinger M, Laviad EL, Hadar R, Shmuel M, Dagan A, Park H, Merrill AH, Ringel I, Futerman AH, Tirosh B. De novo ceramide synthesis is required for N-linked glycosylation in plasma cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7038-47. [PMID: 19454701 DOI: 10.4049/jimmunol.0802990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma cells (PCs) are terminally differentiated B lymphocytes responsible for the synthesis and secretion of Igs. The differentiation of B cells into PCs involves a remarkable expansion of both lipid and protein components of the endoplasmic reticulum. Despite their importance in many signal transduction pathways, the role of ceramides, and of complex sphingolipids that are derived from ceramide, in PC differentiation has never been directly studied. To assess their putative role in PC differentiation, we blocked ceramide synthesis with fumonisin B1, a specific inhibitor of ceramide synthase. Under fumonisin B1 treatment, N-linked glycosylation was severely impaired in LPS-activated, but not in naive, B cells. We also show that ceramide synthesis is strongly induced by XBP-1 (X box-binding protein-1). In the absence of ceramide synthesis, ER expansion was dramatically diminished. Our results underscore ceramide biosynthesis as a key metabolic pathway in the process of PC differentiation and reveal a previously unknown functional link between sphingolipids and N-linked glycosylation in PCs.
Collapse
Affiliation(s)
- Meidan Goldfinger
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gangoiti P, Granado MH, Alonso A, Goñi FM, Gómez-Muñoz A. Implication of ceramide, ceramide 1-phosphate and sphingosine 1-phosphate in tumorigenesis. TRANSLATIONAL ONCOGENOMICS 2008; 3:81-98. [PMID: 21566746 PMCID: PMC3022355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the last two decades there has been considerable progress in our understanding of the role of sphingolipids in controlling signal transduction processes, particularly in the mechanisms leading to regulation of cell growth and death. Ceramide is a well-characterized sphingolipid metabolite and second messenger that can be produced by cancer cells in response to a variety of stimuli, including therapeutic drugs, leading to cell cycle arrest and apoptosis. Although this is a promising aspect when thinking of treating cancer, it should be borne in mind that ceramide production may not always be a growth inhibitory or pro-apoptotic signal. In fact, ceramide can be readily converted to sphingosine 1-phosphate (S1P) by the concerted actions of ceramidases and sphingosine kinases, or to ceramide 1-phosphate (C1P) by the action of ceramide kinase. In general, S1P and C1P have opposing effects to ceramide, acting as pro-survival or mitogenic signals in most cell types. This review will address our current understanding of the many roles of ceramide, S1P and C1P in the regulation of cell growth and survival with special emphasis to the emerging role of these molecules and their metabolizing enzymes in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology. University of the Basque Country. P.O. Box 644. 48080 - Bilbao (Spain)
| | - Maria H. Granado
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology. University of the Basque Country. P.O. Box 644. 48080 - Bilbao (Spain)
| | - Alicia Alonso
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology. University of the Basque Country. P.O. Box 644. 48080 - Bilbao (Spain)
- Unidad de Biofísica (CSIC-UPV/EHU), Campus Universitario de Leioa. Barrio Sarriena s/n 48940 - Leioa (Spain)
| | - Félix M. Goñi
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology. University of the Basque Country. P.O. Box 644. 48080 - Bilbao (Spain)
- Unidad de Biofísica (CSIC-UPV/EHU), Campus Universitario de Leioa. Barrio Sarriena s/n 48940 - Leioa (Spain)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology. Faculty of Science and Technology. University of the Basque Country. P.O. Box 644. 48080 - Bilbao (Spain)
| |
Collapse
|
34
|
Merryman-Simpson AE, Wood SH, Fretwell N, Jones PG, McLaren WM, McEwan NA, Clements DN, Carter SD, Ollier WE, Nuttall T. Gene (mRNA) expression in canine atopic dermatitis: microarray analysis. Vet Dermatol 2008; 19:59-66. [DOI: 10.1111/j.1365-3164.2008.00653.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Abstract
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.
Collapse
Affiliation(s)
- Albert Morales
- Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital, Clínic i Provincial, Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Boath A, Graf C, Lidome E, Ullrich T, Nussbaumer P, Bornancin F. Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 2007; 283:8517-26. [PMID: 18086664 DOI: 10.1074/jbc.m707107200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ceramide 1-phosphate (C1P) has been characterized as a sphingolipid that participates in cell signaling. Although C1P synthesis is thought to occur via phosphorylation of ceramide by ceramide kinase (CerK), the processes that regulate C1P formation and fate remain largely unknown. In this study we analyzed bone marrow-derived macrophages (BMDM) from CerK-null mice (Cerk(-/-)) and found significant levels of C1P, suggesting that previously unrecognized pathways may also lead to C1P formation. After these experiments we used an overexpression system, BMDM from Cerk(-/-) mice, and short-chain fluorescent ceramides to trace CerK-dependent formation of C1P. Because the ceramide analogs can also be converted to glucosylceramide (GlcCer) and sphingomyelin (SM), they allowed us to directly compare all three metabolites. We found that C1P produced by CerK is turned over rapidly when serum is removed or upon calcium chelation, whereas GlcCer and SM are stable under these conditions. We further demonstrated that ceramide must be transported to the Golgi complex to be phosphorylated by CerK. Inhibition of the ceramide transfer protein slowed down SM formation without decreasing C1P, suggesting an alternate route of ceramide transport. Other experiments indicated that, like GlcCer and SM, C1P traffics along the secretory pathway to reach the plasma membrane. Furthermore, in BMDM C1P was secreted more readily than was GlcCer or SM. Altogether, our results indicate that CerK is essential to C1P formation via phosphorylation of Cer, providing the first insights into mechanisms underlying ceramide access to CerK and C1P trafficking as well as clarifying C1P as a signaling entity.
Collapse
Affiliation(s)
- Alistair Boath
- Novartis Institutes for BioMedical Research, Vienna, Brunnerstrasse 59, Wien, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Le Stunff H, Giussani P, Maceyka M, Lépine S, Milstien S, Spiegel S. Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 2007; 282:34372-80. [PMID: 17895250 DOI: 10.1074/jbc.m703329200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
39
|
De Matteis MA, Di Campli A, D'Angelo G. Lipid-transfer proteins in membrane trafficking at the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:761-8. [PMID: 17500031 DOI: 10.1016/j.bbalip.2007.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
The Golgi complex (GC) represents the central junction for membrane trafficking. Protein and lipid cargoes continuously move through the GC in both anterograde and retrograde directions, departing to and arriving from diverse destinations within the cell. Nevertheless, the GC is able to maintain its identity and strict compartmentalisation, having a different composition in terms of protein and lipid content compared to other organelles. The discovery of coat protein complexes and the elucidation of their role in sorting cargo proteins into specific transport carriers have provided a partial answer to this phenomenon. However, it is more difficult to understand how relatively small and diffusible molecules like lipids can be concentrated in or excluded from specific subcellular compartments. The discovery of lipid-transfer proteins operating in the secretory pathway and specifically at the GC has shed light on one possible way in which this lipid compartmentalisation can be accomplished. The correct lipid distribution along the secretory pathway is of crucial importance for cargo protein sorting and secretion. This review focuses on what is now known about the putative and effective lipid-transfer proteins at the GC, and on how they affect the function and structure of the GC itself.
Collapse
|
40
|
Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D, Watkins T, Brindley DN, Sun C, Bittman R, Garcia JGN, Berdyshev EV, Natarajan V. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 2007; 282:14165-77. [PMID: 17379599 PMCID: PMC2659598 DOI: 10.1074/jbc.m701279200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) regulates diverse cellular functions through extracellular ligation to S1P receptors, and it also functions as an intracellular second messenger. Human pulmonary artery endothelial cells (HPAECs) effectively utilized exogenous S1P to generate intracellular S1P. We, therefore, examined the role of lipid phosphate phosphatase (LPP)-1 and sphingosine kinase1 (SphK1) in converting exogenous S1P to intracellular S1P. Exposure of (32)P-labeled HPAECs to S1P or sphingosine (Sph) increased the intracellular accumulation of [(32)P]S1P in a dose- and time-dependent manner. The S1P formed in the cells was not released into the medium. The exogenously added S1P did not stimulate the sphingomyelinase pathway; however, added [(3)H]S1P was hydrolyzed to [(3)H]Sph in HPAECs, and this was blocked by XY-14, an inhibitor of LPPs. HPAECs expressed LPP1-3, and overexpression of LPP-1 enhanced the hydrolysis of exogenous [(3)H]S1P to [(3)H]Sph and increased intracellular S1P production by 2-3-fold compared with vector control cells. Down-regulation of LPP-1 by siRNA decreased intracellular S1P production from extracellular S1P but had no effect on the phosphorylation of Sph to S1P. Knockdown of SphK1, but not SphK2, by siRNA attenuated the intracellular generation of S1P. Overexpression of wild type SphK1, but not SphK2 wild type, increased the accumulation of intracellular S1P after exposure to extracellular S1P. These studies provide the first direct evidence for a novel pathway of intracellular S1P generation. This involves the conversion of extracellular S1P to Sph by LPP-1, which facilitates Sph uptake, followed by the intracellular conversion of Sph to S1P by SphK1.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bandhuvula P, Saba JD. Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 2007; 13:210-7. [PMID: 17416206 DOI: 10.1016/j.molmed.2007.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/26/2007] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that promotes cell survival, proliferation and migration, platelet aggregation, mediates ischemic preconditioning, and is essential for angiogenesis and lymphocyte trafficking. Sphingosine-1-phosphate lyase (SPL) is the enzyme responsible for the irreversible degradation of S1P and is, thus, in a strategic position to regulate these same processes by removing available S1P signaling pools, that is, silencing the siren. In fact, recent studies have implicated SPL in the regulation of immunity, cancer surveillance and other physiological processes. Here, we summarize the current understanding of SPL function and regulation, and discuss how SPL might facilitate cancer chemoprevention and serve as a target for modulation of immune responses in transplantation settings and in the treatment of autoimmune disease.
Collapse
|
42
|
Sillence DJ. New insights into glycosphingolipid functions--storage, lipid rafts, and translocators. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:151-89. [PMID: 17631188 DOI: 10.1016/s0074-7696(07)62003-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycosphingolipids are key components of eukaryotic cellular membranes. Through their propensity to form lipid rafts, they are important in membrane transport and signaling. At the cell surface, they are required for caveolar-mediated endocytosis, a process required for the action of many glycosphingolipid-binding toxins. Glycosphingolipids also exist intracellularly, on both leaflets of organelle membranes. It is expected that dissecting the mechanisms of cell pathology seen in the glycosphingolipid storage diseases, where lysosomal glycosphingolipid degradation is defective, will reveal their functions. Disrupted cation gradients in Mucolipidosis type IV disease are interlinked with glycosphingolipid storage, defective rab 7 function, and the activation of autophagy. Relationships between drug translocators and glycosphingolipid synthesis are also discussed. Mass spectrometry of cell lines defective in drug transporters reveal clear differences in glycosphingolipid mass and fatty acid composition. The potential roles of glycosphingolipids in lipid raft formation, endocytosis, and cationic gradients are discussed.
Collapse
Affiliation(s)
- Dan J Sillence
- Leicester School of Pharmacy, Hawthorne Building, De Montfort University, Leicester, LE1 9BH, United Kingdom
| |
Collapse
|
43
|
Maceyka M, Milstien S, Spiegel S. Measurement of mammalian sphingosine-1-phosphate phosphohydrolase activity in vitro and in vivo. Methods Enzymol 2007; 434:243-56. [PMID: 17954251 DOI: 10.1016/s0076-6879(07)34013-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipid metabolites have emerged as key players in diverse processes including cell migration, growth, and apoptosis. Ceramide and sphingosine typically inhibit cell growth and induce apoptosis, while sphingosine-1-phosphate (S1P) promotes cell growth, inhibits apoptosis, and induces cell migration. Thus, enzymes that regulate the levels of these sphingolipid metabolites are of critical importance to understanding cell fate. There are two known mammalian isoforms of S1P phosphohydrolases (SPP1 and SPP2) that reversibly degrade S1P to sphingosine. This chapter discusses the importance of SPPs and describes assays that can be used to measure the activity of these two specific S1P phosphohydrolases in cells and cell lysates.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | |
Collapse
|
44
|
Ogretmen B. Sphingolipids in cancer: Regulation of pathogenesis and therapy. FEBS Lett 2006; 580:5467-76. [PMID: 16970943 DOI: 10.1016/j.febslet.2006.08.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids are known to play important roles in the regulation of cell proliferation, response to chemotherapeutic agents, and/or prevention of cancer. Recently, significant progress has been made in the identification of the enzymes and their biochemical functions involved in sphingolipid metabolism. In addition, development of new techniques for the quantitative analysis of sphingolipids at their physiological levels has facilitated studies to examine distinct functions of these bioactive sphingolipids in cancer pathogenesis and therapy. This review will focus on the recent developments regarding the roles of bioactive sphingolipids in the regulation of cell growth/proliferation, and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, 29425, USA.
| |
Collapse
|