1
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Polara R, Ganesan R, Pitson SM, Robinson N. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ 2024; 31:1255-1266. [PMID: 39039207 PMCID: PMC11445524 DOI: 10.1038/s41418-024-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
CD47 is a ubiquitously expressed cell surface receptor, which is widely known for preventing macrophage-mediated phagocytosis by interacting with signal regulatory protein α (SIRPα) on the surface of macrophages. In addition to its role in phagocytosis, emerging studies have reported numerous noncanonical functions of CD47 that include regulation of various cellular processes such as proliferation, migration, apoptosis, differentiation, stress responses, and metabolism. Despite lacking an extensive cytoplasmic signaling domain, CD47 binds to several cytoplasmic proteins, particularly upon engaging with its secreted matricellular ligand, thrombospondin 1. Indeed, the regulatory functions of CD47 are greatly influenced by its interacting partners. These interactions are often cell- and context-specific, adding a further level of complexity. This review addresses the downstream cell-intrinsic signaling pathways regulated by CD47 in various cell types and environments. Some of the key pathways modulated by this receptor include the PI3K/AKT, MAPK/ERK, and nitric oxide signaling pathways, as well as those implicated in glucose, lipid, and mitochondrial metabolism. These pathways play vital roles in maintaining tissue homeostasis, highlighting the importance of understanding the phagocytosis-independent functions of CD47. Given that CD47 expression is dysregulated in a variety of cancers, improving our understanding of the cell-intrinsic signals regulated by this molecule will help advance the development of CD47-targeted therapies.
Collapse
Affiliation(s)
- Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Institute for Molecular Immunology, CECAD Research Center, University Hospital Cologne, Cologne, Germany
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Rabiablok A, Hanboonkunupakarn B, Tuentam K, Fongsodsri K, Kanjanapruthipong T, Ampawong S. High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation. TOXICS 2023; 11:146. [PMID: 36851021 PMCID: PMC9962680 DOI: 10.3390/toxics11020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Primaquine (PQ) is the only antimalarial medication used to eradicate many species of Plasmodium gametocytes and prevent relapse in vivax and ovale malarias. PQ metabolites induce oxidative stress and impair parasitic mitochondria, leading to protozoal growth retardation and death. Collateral damage is also presented in mammalian host cells, particularly erythrocytes, resulting in hemolysis and tissue destruction. However, the underlying mechanisms of these complications, particularly the mitochondria-mediated cell death of the host, are poorly understood. In the present study, toxicopathological studies were conducted on a rat model to determine the effect of PQ on affected tissues and mitochondrial toxicity. The results indicated that the LD50 for PQ is 200 mg/kg. A high dose of PQ induced hemolytic anemia, elevated a hepatic enzyme (SGPT), and induced proximal tubular degeneration, ventricular cardiomyopathy, and mitochondrial dysregulation. In addition, PQ induced the upregulation of apoptosis-related proteins Drp-1 and caspase-3, with a positive correlation, as well as the pro-apoptotic mitochondrial gene expression of Bax, reflecting the toxic effect of high doses of PQ on cellular damage and mitochondrial apoptosis in terms of hepatotoxicity, nephrotoxicity, and cardiotoxicity. Regarding the risk/benefit ratio of drug administration, our research provides caution for the use of PQ in the treatment of malaria based on its toxicopathological effects.
Collapse
Affiliation(s)
- Atthasit Rabiablok
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Khwanchanok Tuentam
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Rosdah AA, Abbott BM, Langendorf CG, Deng Y, Truong JQ, Waddell HMM, Ling NXY, Smiles WJ, Delbridge LMD, Liu GS, Oakhill JS, Lim SY, Holien JK. A novel small molecule inhibitor of human Drp1. Sci Rep 2022; 12:21531. [PMID: 36513726 PMCID: PMC9747717 DOI: 10.1038/s41598-022-25464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1.
Collapse
Affiliation(s)
- Ayeshah A. Rosdah
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.108126.c0000 0001 0557 0975Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Belinda M. Abbott
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | | | - Yali Deng
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Jia Q. Truong
- grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| | - Helen M. M. Waddell
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Naomi X. Y. Ling
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - William J. Smiles
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Lea M. D. Delbridge
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Guei-Sheung Liu
- grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.410670.40000 0004 0625 8539Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Jonathan S. Oakhill
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.411958.00000 0001 2194 1270Australian Catholic University, Fitzroy, VIC Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.419385.20000 0004 0620 9905National Heart Centre, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jessica K. Holien
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| |
Collapse
|
5
|
Hong GL, Kim KH, Kim YJ, Lee HJ, Kim HT, Jung JY. Decreased mitophagy aggravates benign prostatic hyperplasia in aged mice through DRP1 and estrogen receptor α. Life Sci 2022; 309:120980. [PMID: 36152678 DOI: 10.1016/j.lfs.2022.120980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease, whose etiology largely remains unclear. The regulation of mitophagy plays a key role in aging and associated diseases, however, its function in BPH has not been studied. Although the expression of the androgen receptor is primarily implicated in BPH, the estrogen receptor (ER) has been reported to be involved in the development of BPH by mediating the proliferation of prostate cells. Here, we studied the involvement of mitophagy and ERs in spontaneous BPH in aging mice and investigated their functions. To identify the activation of mitophagy and expression of ERs, 8-week, 12-month, and 24-month-old mice were used. Mice were treated with mitochondrial division inhibitor mdivi-1, a dynamin-related protein 1 (Drp1) inhibitor, to examine the expression of mitophagy-related proteins and the development of BPH. In addition, prostate stromal cells were treated with an ER antagonist to investigate the regulation of mitophagy following the expression of ERs. With aging, the Drp1 and phosphorylation of parkin reduce. Electron microscopy revealed reduced mitochondrial fission and mitophagy. In addition, the expression of androgen receptor was decreased and that of ERα was increased in aged mice with BPH. Treatment with mdivi-1 exacerbated BPH and increased cell proliferation. In addition, blockade of ERα increased mitophagy and decreased cell proliferation. In conclusion, mitophagy is reduced with aging during the development of BPH. We speculate that spontaneous BPH progresses through the reduction in the expression of ERα in aged mice by downregulating mitophagy.
Collapse
Affiliation(s)
- Geum-Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Tae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Nath PR, Pal-Nath D, Kaur S, Gangaplara A, Meyer TJ, Cam MC, Roberts DD. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022; 11:2111909. [PMID: 36105746 PMCID: PMC9467551 DOI: 10.1080/2162402x.2022.2111909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.
Collapse
Affiliation(s)
- Pulak R. Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical and Translational Immunology Unit, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arunkumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Bian HT, Shen YW, Zhou YD, Nagle DG, Guan YY, Zhang WD, Luan X. CD47: Beyond an immune checkpoint in cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188771. [PMID: 35931392 DOI: 10.1016/j.bbcan.2022.188771] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
The transmembrane protein, CD47, is recognized as an important innate immune checkpoint, and CD47-targeted drugs have been in development with the aim of inhibiting the interaction between CD47 and the regulatory glycoprotein SIRPα, for antitumor immunotherapy. Further, CD47 mediates other essential functions such as cell proliferation, caspase-independent cell death (CICD), angiogenesis and other integrin-activation-dependent cell phenotypic responses when bound to thrombospondin-1 (TSP-1) or other ligands. Mounting strategies that target CD47 have been developed in pre-clinical and clinical trials, including antibodies, small molecules, siRNAs, and peptides, and some of them have shown great promise in cancer treatment. Herein, the authors endeavor to provide a retrospective of ligand-mediated CD47 regulatory mechanisms, their roles in controlling antitumor intercellular and intracellular signal transduction, and an overview of CD47-targetd drug design.
Collapse
Affiliation(s)
- Hui-Ting Bian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Wen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Dong Zhou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, MS, 38677-1848, USA
| | - Dale G Nagle
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
PDK1 Inhibitor BX795 Improves Cisplatin and Radio-Efficacy in Oral Squamous Cell Carcinoma by Downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111492. [PMID: 34768921 PMCID: PMC8584253 DOI: 10.3390/ijms222111492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell’s epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.
Collapse
|
9
|
Peluso MO, Adam A, Armet CM, Zhang L, O'Connor RW, Lee BH, Lake AC, Normant E, Chappel SC, Hill JA, Palombella VJ, Holland PM, Paterson AM. The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer 2021; 8:jitc-2019-000413. [PMID: 32345627 PMCID: PMC7213910 DOI: 10.1136/jitc-2019-000413] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 02/04/2023] Open
Abstract
Background CD47 is a broadly expressed cell surface glycoprotein associated with immune evasion. Interaction with the inhibitory receptor signal regulatory protein alpha (SIRPα), primarily expressed on myeloid cells, normally serves to restrict effector function (eg, phagocytosis and immune cell homeostasis). CD47/SIRPα antagonists, commonly referred to as ‘macrophage checkpoint’ inhibitors, are being developed as cancer interventions. SRF231 is an investigational fully human IgG4 anti-CD47 antibody that is currently under evaluation in a phase 1 clinical trial. The development and preclinical characterization of SRF231 are reported here. Methods SRF231 was characterized in assays designed to probe CD47/SIRPα blocking potential and effects on red blood cell (RBC) phagocytosis and agglutination. Additionally, SRF231-mediated phagocytosis and cell death were assessed in macrophage:tumor cell in vitro coculture systems. Further mechanistic studies were conducted within these coculture systems to ascertain the dependency of SRF231-mediated antitumor activity on Fc receptor engagement vs CD47/SIRPα blockade. In vivo, SRF231 was evaluated in a variety of hematologic xenograft models, and the mechanism of antitumor activity was assessed using cytokine and macrophage infiltration analyses following SRF231 treatment. Results SRF231 binds CD47 and disrupts the CD47/SIRPα interaction without causing hemagglutination or RBC phagocytosis. SRF231 exerts antitumor activity in vitro through both phagocytosis and cell death in a manner dependent on the activating Fc-gamma receptor (FcγR), CD32a. Through its Fc domain, SRF231 engagement with macrophage-derived CD32a serves dual purposes by eliciting FcγR-mediated phagocytosis of cancer cells and acting as a scaffold to drive CD47-mediated death signaling into tumor cells. Robust antitumor activity occurs across multiple hematologic xenograft models either as a single agent or in combination with rituximab. In tumor-bearing mice, SRF231 increases tumor macrophage infiltration and induction of the macrophage cytokines, mouse chemoattractant protein 1 and macrophage inflammatory protein 1 alpha. Macrophage depletion results in diminished SRF231 antitumor activity, underscoring a mechanistic role for macrophage engagement by SRF231. Conclusion SRF231 elicits antitumor activity via apoptosis and phagocytosis involving macrophage engagement in a manner dependent on the FcγR, CD32a.
Collapse
Affiliation(s)
| | - Ammar Adam
- Surface Oncology, Inc, Cambridge, Massachusetts, USA
| | | | - Li Zhang
- Surface Oncology, Inc, Cambridge, Massachusetts, USA
| | | | | | - Andrew C Lake
- Surface Oncology, Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
11
|
Yan S, Li Q, Zhang D, Wang X, Xu Y, Zhang C, Guo D, Bao Y. Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. Am J Cancer Res 2021; 11:2062-2080. [PMID: 34094669 PMCID: PMC8167677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023] Open
Abstract
Cancer cells prone to utilize aerobic glycolysis other than oxidative phosphorylation to sustain its continuous cell activity in the stress microenvironment. Meanwhile, cancer cells generally suffer from genome instability, and both radiotherapy and chemotherapy may arouse DNA strand break, a common phenotype of genome instability. Glycolytic enzyme PFKFB3 (6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3), plays essential roles in variety physiology and pathology processes, and generally maintain high level in cancer cells. Although this protein has been reported to involve in genome instability, its role remains unclear and controversial. Here, we showed that PFK-15, a PFKFB3 inhibitor, obviously induced apoptosis, cell viability loss, and inhibited cell proliferation/migration. Besides, PFK-15 was also found to induce necroptosis, as it not only up-regulated the phosphorylated RIP1, RIP3 and MLKL, but also enhanced the interaction between RIP3 and RIP1/MLKL, all of which are characterization of necroptosis induction. Both genetically and pharmacologically deprivation of necroptosis attenuated the cytotoxic effect of PFK-15. Besides, PFK-15 increased the γ-H2AX level and micronuclei formation, markers for genome instability, and inhibition of necroptosis attenuated these phenotypes. Collectively, the presented data demonstrated that PFK-15 induced genome instability and necroptosis, and deprivation of necroptosis attenuated cytotoxicity and genotoxicity of PFK-15 in colorectal cancer cells, thereby revealing a more intimate relationship among PFKFB3, necroptosis and genome instability.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Qianqian Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Deru Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Xiaowen Wang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Yang Xu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Cong Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Dongli Guo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Yonghua Bao
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| |
Collapse
|
12
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
13
|
Gao QY, Zhang HF, Tao J, Chen ZT, Liu CY, Liu WH, Wu MX, Yin WY, Gao GH, Xie Y, Yang Y, Liu PM, Wang JF, Chen YX. Mitochondrial Fission and Mitophagy Reciprocally Orchestrate Cardiac Fibroblasts Activation. Front Cell Dev Biol 2021; 8:629397. [PMID: 33585469 PMCID: PMC7874126 DOI: 10.3389/fcell.2020.629397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Although mitochondrial fission has been reported to increase proliferative capacity and collagen production, it can also contribute to mitochondrial impairment, which is detrimental to cell survival. The aim of the present study was to investigate the role of mitochondrial fission in cardiac fibroblasts (CF) activation and explore the mechanisms involved in the maintenance of mitochondrial health under this condition. For this, changes in the levels of mitochondrial fission/fusion-related proteins were assessed in transforming growth factor beta 1 (TGF-β1)-activated CF, whereas the role of mitochondrial fission during this process was also elucidated, as were the underlying mechanisms. The interaction between mitochondrial fission and mitophagy, the main defense mechanism against mitochondrial impairment, was also explored. The results showed that the mitochondria in TGF-β1-treated CF were noticeably more fragmented than those of controls. The expression of several mitochondrial fission-related proteins was markedly upregulated, and the levels of fusion-related proteins were also altered, but to a lesser extent. Inhibiting mitochondrial fission resulted in a marked attenuation of TGF-β1-induced CF activation. The TGF-β1-induced increase in glycolysis was greatly suppressed in the presence of a mitochondrial inhibitor, whereas a glycolysis-specific antagonist exerted little additional antifibrotic effects. TGF-β1 treatment increased cellular levels of reactive oxygen species (ROS) and triggered mitophagy, but this effect was reversed following the application of ROS scavengers. For the signals mediating mitophagy, the expression of Pink1, but not Bnip3l/Nix or Fundc1, exhibited the most significant changes, which could be counteracted by treatment with a mitochondrial fission inhibitor. Pink1 knockdown suppressed CF activation and mitochondrial fission, which was accompanied by increased CF apoptosis. In conclusion, mitochondrial fission resulted in increased glycolysis and played a crucial role in CF activation. Moreover, mitochondrial fission promoted reactive oxygen species (ROS) production, leading to mitophagy and the consequent degradation of the impaired mitochondria, thus promoting CF survival and maintaining their activation.
Collapse
Affiliation(s)
- Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Chi-Yu Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Wen-Hao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Wen-Yao Yin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Guang-Hao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Pin-Ming Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| |
Collapse
|
14
|
Norman-Burgdolf H, Li D, Sullivan P, Wang S. CD47 differentially regulates white and brown fat function. Biol Open 2020; 9:bio056747. [PMID: 33328190 PMCID: PMC7758621 DOI: 10.1242/bio.056747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023] Open
Abstract
Mechanisms that enhance energy expenditure are attractive therapeutic targets for obesity. Previously we have demonstrated that mice lacking cd47 are leaner, exhibit increased energy expenditure, and are protected against diet-induced obesity. In this study, we further defined the physiological role of cd47 deficiency in regulating mitochondrial function and energy expenditure in both white and brown adipose tissue. We observed that cd47 deficient mice (under normal chow diet) had comparable amount of white fat mass but reduced white adipocyte size as compared to wild-type mice. Subsequent ex vivo and in vitro studies suggest enhanced lipolysis, and not impaired lipogenesis or energy utilization, contributes to this phenotype. In contrast to white adipose tissue, there were no obvious morphological differences in brown adipose tissue between wild-type and knockout mice. However, mitochondria isolated from brown fat of cd47 deficient mice had significantly higher rates of free fatty acid-mediated uncoupling. This suggests that enhanced fuel availability via white adipose tissue lipolysis may perpetuate elevated brown adipose tissue energy expenditure and contributes to the lean phenotype observed in cd47 deficient mice.
Collapse
Affiliation(s)
- Heather Norman-Burgdolf
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY 40536, USA
| | - Dong Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Research and Development, Lexington VA Medical Center, Lexington KY 40502, USA
| | - Patrick Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Research and Development, Lexington VA Medical Center, Lexington KY 40502, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Research and Development, Lexington VA Medical Center, Lexington KY 40502, USA
| |
Collapse
|
15
|
Leclair P, Lim CJ. CD47 (Cluster of differentiation 47): an anti-phagocytic receptor with a multitude of signaling functions. Anim Cells Syst (Seoul) 2020; 24:243-252. [PMID: 33224442 PMCID: PMC7654641 DOI: 10.1080/19768354.2020.1818618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD47 is a tumor-associated antigen best known for its ability to bind counter-receptors on the surface of professional phagocytes as an immune-evasion strategy. Recently, CD47 has been shown to play a role as a signaling receptor, involving a number of cell physiological processes. This review provides a comprehensive survey of the signaling pathways triggered by CD47 ligand-mediated cell death in tumor cells. Such an understanding should lead to improvement of CD47-targeted anti-tumor therapeutics able to both neutralize the anti-phagocytic role and trigger autonomous tumor cell death.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, and, Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, and, Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
16
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Chen Z, Liu J, Tian L, Zhang Q, Guan Y, Chen L, Liu G, Yu HQ, Tian Y, Huang Q. Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress. Analyst 2020; 145:3922-3930. [PMID: 32307505 DOI: 10.1039/d0an00507j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress may result in different modes of cell death, such as necrosis, apoptosis and necroptosis. Currently, researchers are still striving to develop efficient tools/methods to distinguish the cell death modes in direct and label-free ways. In this study, we attempted to employ Raman micro-spectroscopy to observe the molecular changes in Candida utilis cells under oxidative stress induced by low-temperature plasma (LTP) and explore the spectroscopic biomarkers for the modes of cell death under oxidative stress. In this research, we confirmed that LTP could impose oxidative stress on the yeast cells, and recorded the changes of Raman signals of cytochrome c in the cells under LTP oxidative stress. Subsequently, we identified the biochemical and morphological characteristic features corresponding to different modes of cell death. Interestingly, we found that LTP under certain conditions could induce oxidative stress which caused the yeast cell death mainly by means of necroptosis, which was verified by Annexin V/PI, HMGB1 location assay and immunoprecipitation assay of the RIP1/RIP3 necrosome. Correspondingly, we also showed that the LTP induced necroptosis, associated with the increase of cytoplasmic Ca2+ and mitochondrial ROS, the decrease of mitochondrial membrane potential, the release of oxidized cytochrome c from the mitochondrion to the cytoplasm, and the destruction of mitochondria in yeast cells. This work has therefore demonstrated that monitoring the redox state of cytochrome c using Raman micro-spectroscopy is very useful for distinguishing the modes of cell death and particularly may unveil the unique necroptosis process of cells under extrinsic oxidative stress.
Collapse
Affiliation(s)
- Zhu Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wen Y, Chen J, Liu L, Guo G, Zeng Y, Zhang Y, Zeng Z, Wang Z, Peng X, Liang J. Cabin1 involves in renal tubular epithelial cells mitochondrial dysfunction through SIRT1/p53 pathway. J Recept Signal Transduct Res 2020; 40:141-147. [PMID: 32000560 DOI: 10.1080/10799893.2020.1719518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Angiotensin II (AngII) induced Calcineurin binding protein 1 (Cabin1) protein expression significantly increased during Renal tubular epithelial cells (RTEC) injury. However, the detailed function of Cabin1 protein in RTEC was not characterized well. In this study, we aimed to explore the downstream target of Cabin1 in vitro model.Methods: Rat kidney epithelial cells were cultured and stimulated with AngII. Electron microscopy was performed to observe mitochondrial morphology change. Immunofluorescence staining was detected to observe the distribution of cytoskeleton and Cabin1. Mitochondrial morphology change and protein expression were detected by electrical microscopy and western blot.Results: AngII induced the disruption of cytoskeleton at 24 and 48 h. Western blot analysis showed AngII significantly induced the overexpression of Cabin1. AngII induced a great deal of small, long and irregular mitochondria in RTEC, aspect ratio which reflects the length-to-width ratio of mitochondria remarkably increased at 12 and 24 h. Knocking down Cabin1 aggravated mitochondrial morphological abnormality in AngII treated RTEC. In comparison with control, Cabin1, p53 and cyto C level were significantly increased in AngII treated cells, while SIRT1 level was obviously decreased. Knocked down Cabin1 plus AngII stimulated, SIRT1 was further decreased, while p53 and cyto C were significantly increased.Conclusions: Cabin1 involves in RTEC mitochondrial dysfunction through SIRT1/p53 pathway. Cabin1 may be used as a new marker for the mechanisms of RTEC injury.
Collapse
Affiliation(s)
- Yueqiang Wen
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jieru Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingling Liu
- Department of General Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanhua Guo
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yinsi Zeng
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujing Zhang
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhili Zeng
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zebin Wang
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Peng
- Department of Intensive Care Unit, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianbo Liang
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Rochford G, Molphy Z, Kavanagh K, McCann M, Devereux M, Kellett A, Howe O. Cu(ii) phenanthroline–phenazine complexes dysregulate mitochondrial function and stimulate apoptosis. Metallomics 2020; 12:65-78. [DOI: 10.1039/c9mt00187e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report the central role of the mitochondria in the cytotoxicity of four developmental cytotoxic copper(ii) complexes [Cu(phen)2]2+, [Cu(DPQ)(Phen)]2+, [Cu(DPPZ)(Phen)]2+and [Cu(DPPN)(Phen)]2+superior to cisplatin and independent of resistance in a range of cells.
Collapse
Affiliation(s)
- Garret Rochford
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Zara Molphy
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | | | - Malachy McCann
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Michael Devereux
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| | - Andrew Kellett
- School of Chemical Science and The National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Orla Howe
- FOCAS Research Institute and School of Biological & Health Sciences
- Technological University Dublin
- Dublin 8
- Ireland
| |
Collapse
|
20
|
Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:201-226. [PMID: 32185712 DOI: 10.1007/978-981-15-3266-5_9] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune checkpoint molecules, including inhibitory and stimulatory immune checkpoint molecules, are defined as ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. Most of the immune checkpoint molecules that have been described so far are expressed on cells of the adaptive immune system, particularly on T cells, and of the innate immune system. They are crucial for maintaining the self-tolerance and modulating the length and magnitude of immune responses of effectors in different tissues to minimize the tissue damage. More and more evidences have shown that inhibitory or stimulatory immune checkpoint molecules are expressed on a sizeable fraction of tumor types. Although the main function of tumor cell-associated immune checkpoint molecules is considered to mediate the immune evasion, it has been reported that the immune checkpoint molecules expressed on tumor cells also play important roles in the maintenance of many malignant behaviors, including self-renewal, epithelial-mesenchymal transition, metastasis, drug resistance, anti-apoptosis, angiogenesis, or enhanced energy metabolisms. In this section, we mainly focus on delineating the roles of the tumor cell-associated immune checkpoint molecules beyond immune evasion, such as PD-L1, PD-1, B7-H3, B7-H4, LILRB1, LILRB2, TIM3, CD47, CD137, and CD70.
Collapse
Affiliation(s)
- Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 2020; 151:104553. [DOI: 10.1016/j.phrs.2019.104553] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/14/2023]
|
22
|
Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunol Res 2019; 7:1547-1561. [PMID: 31362997 DOI: 10.1158/2326-6066.cir-18-0367] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
Abstract
Elevated CD47 expression in some cancers is associated with decreased survival and limited clearance by phagocytes expressing the CD47 counterreceptor SIRPα. In contrast, elevated CD47 mRNA expression in human melanomas was associated with improved survival. Gene-expression data were analyzed to determine a potential mechanism for this apparent protective function and suggested that high CD47 expression increases recruitment of natural killer (NK) cells into the tumor microenvironment. The CD47 ligand thrombospondin-1 inhibited NK cell proliferation and CD69 expression in vitro Cd47 -/- NK cells correspondingly displayed augmented effector phenotypes, indicating an inhibitory function of CD47 on NK cells. Treating human NK cells with a CD47 antibody that blocks thrombospondin-1 binding abrogated its inhibitory effect on NK cell proliferation. Similarly, treating wild-type mice with a CD47 antibody that blocks thrombospondin-1 binding delayed B16 melanoma growth, associating with increased NK cell recruitment and increased granzyme B and interferon-γ levels in intratumoral NK but not CD8+ T cells. However, B16 melanomas grew faster in Cd47 -/- than in wild-type mice. Melanoma-bearing Cd47 -/- mice exhibited decreased splenic NK cell numbers, with impaired effector protein expression and elevated exhaustion markers. Proapoptotic gene expression in Cd47-/- NK cells was associated with stress-mediated increases in mitochondrial proton leak, reactive oxygen species, and apoptosis. Global gene-expression profiling in NK cells from tumor-bearing mice identified CD47-dependent transcriptional responses that regulate systemic NK activation and exhaustion. Therefore, CD47 positively and negatively regulates NK cell function, and therapeutic antibodies that block inhibitory CD47 signaling can enhance NK immune surveillance of melanomas.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, Maryland
| | - Anthony L Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
23
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
24
|
PKHB1 Tumor Cell Lysate Induces Antitumor Immune System Stimulation and Tumor Regression in Syngeneic Mice with Tumoral T Lymphoblasts. JOURNAL OF ONCOLOGY 2019; 2019:9852361. [PMID: 31275386 PMCID: PMC6582786 DOI: 10.1155/2019/9852361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
Acute lymphocytic leukemia (ALL) is the most common pediatric cancer. Currently, treatment options for patients with relapsed and refractory ALL mostly rely on immunotherapies. However, hematological cancers are commonly associated with a low immunogenicity and immune tolerance, which may contribute to leukemia relapse and the difficulties associated with the development of effective immunotherapies against this disease. We recently demonstrated that PKHB1, a TSP1-derived CD47 agonist peptide, induces immunogenic cell death (ICD) in T cell ALL (T-ALL). Cell death induced by PKHB1 on T-ALL cell lines and their homologous murine, L5178Y-R (T-murine tumor lymphoblast cell line), induced damage-associated molecular patterns (DAMPs) exposure and release. Additionally, a prophylactic vaccination with PKHB1-treated L5178Y-R cells prevented tumor establishment in vivo in all the cases. Due to the immunogenic potential of PKHB1-treated cells, in this study we assessed their ability to induce antitumor immune responses ex vivo and in vivo in an established tumor. We first confirmed the selectivity of cell death induced by PKBH1 in tumor L5178Y-R cells and observed that calreticulin exposure increased when cell death increased. Then, we found that the tumor cell lysate (TCL) obtained from PKHB1-treated L5178YR tumor cells (PKHB1-TCL) was able to induce, ex vivo, dendritic cells maturation, cytokine production, and T cell antitumor responses. Finally, our results show that in vivo, PKHB1-TCL treatment induces tumor regression in syngeneic mice transplanted with L5178Y-R cells, increasing their overall survival and protecting them from further tumor establishment after tumor rechallenge. Altogether our results highlight the immunogenicity of the cell death induced by PKHB1 activation of CD47 as a potential therapeutic tool to overcome the low immunogenicity and immune tolerance in T-ALL.
Collapse
|
25
|
Abstract
In this issue of Molecular Cell, Cho et al. (2019) identify a mechanism by which the mitochondrial division machinery provides selective pressure to identify dysfunctional organelles through the coordinated action of DRP1, Zip1, and Zn2+ transport into mitochondria.
Collapse
|
26
|
Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 2019; 13:120. [PMID: 31019453 PMCID: PMC6458285 DOI: 10.3389/fncel.2019.00120] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Marianna Castelli
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Matteo Giovarelli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, "Luigi Sacco" University Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
27
|
Drp1-Zip1 Interaction Regulates Mitochondrial Quality Surveillance System. Mol Cell 2018; 73:364-376.e8. [PMID: 30581142 DOI: 10.1016/j.molcel.2018.11.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023]
Abstract
Mitophagy, a mitochondrial quality control process for eliminating dysfunctional mitochondria, can be induced by a response of dynamin-related protein 1 (Drp1) to a reduction in mitochondrial membrane potential (MMP) and mitochondrial division. However, the coordination between MMP and mitochondrial division for selecting the damaged portion of the mitochondrial network is less understood. Here, we found that MMP is reduced focally at a fission site by the Drp1 recruitment, which is initiated by the interaction of Drp1 with mitochondrial zinc transporter Zip1 and Zn2+ entry through the Zip1-MCU complex. After division, healthy mitochondria restore MMP levels and participate in the fusion-fission cycle again, but mitochondria that fail to restore MMP undergo mitophagy. Thus, interfering with the interaction between Drp1 and Zip1 blocks the reduction of MMP and the subsequent mitophagic selection of damaged mitochondria. These results suggest that Drp1-dependent fission provides selective pressure for eliminating "bad sectors" in the mitochondrial network, serving as a mitochondrial quality surveillance system.
Collapse
|
28
|
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev 2018; 32:480-489. [PMID: 29709247 PMCID: PMC6186508 DOI: 10.1016/j.blre.2018.04.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Hematological malignancies express high levels of CD47 as a mechanism of immune evasion. CD47-SIRPα triggers a cascade of events that inhibit phagocytosis. Preclinical research supports several models of antibody-mediated blockade of CD47-SIRPα resulting in cell death signaling, phagocytosis of cells bearing stress signals, and priming of tumor-specific T cell responses. Four different antibody molecules designed to target the CD47-SIRPα interaction in malignancy are currently being studied in clinical trials: Hu5F9-G4, CC-90002, TTI-621, and ALX-148. Hu5F9-G4, a humanized anti-CD47 blocking antibody is currently being studied in four different Phase I trials. These studies may lay the groundwork for therapeutic bispecific antibodies. Bispecific antibody (CD20-CD47SL) fusion of anti-CD20 (Rituximab) and anti-CD47 also demonstrated a synergistic effect against lymphoma in preclinical models. This review summarizes the large body of preclinical evidence and emerging clinical data supporting the use of antibodies designed to target the CD47-SIRPα interaction in leukemia, lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Atlantis Russ
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Anh B Hua
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
| | | | - Bushra Rahman
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Irbaz Bin Riaz
- Department of Medicine, Hematology Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Muhammad Umar Khalid
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Jennifer S Carew
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Steffan T Nawrocki
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Daniel Persky
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Faiz Anwer
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
29
|
Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, Chen S, Sun W, Xu E. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. FASEB J 2018; 33:1313-1329. [PMID: 30148677 DOI: 10.1096/fj.201800111rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoxic preconditioning (HPC) alleviates the selective and delayed neuronal death in the hippocampal CA1 region induced by transient global cerebral ischemia (tGCI). This type of cell death may include different programmed cell death mechanisms, namely, apoptosis and necroptosis. Although apoptotic signaling is well defined, the mechanisms that underlie neuronal necroptosis are yet to be fully elucidated. In this study, we investigated whether HPC protects neurons from cerebral ischemia-induced necroptosis. We observed that tGCI up-regulated the expression of receptor-interacting protein (RIP) 3 and increased the interaction of RIP1-RIP3 in CA1 at the early stage of reperfusion. The pretreatment with HPC or necrostatin-1 decreased the expression of RIP3 and the formation of RIP1-RIP3 after tGCI. We also found that HPC decreased the expression and the activity of caspase-8 in CA1 after tGCI, and notably, the pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, did not trigger necroptosis but attenuated the tGCI-induced neuronal damage. Furthermore, we demonstrated that HPC decreased the activation of calcium-calmodulin kinase (CaMK) IIα and the interaction of RIP1 and CaMKIIα induced by tGCI. Intriguingly, the pretreatment with a CaMKs inhibitor KN-93 before tGCI resulted in significantly reduced RIP1-3 interaction and tGCI-induced neuronal damage. Finally, we ascertained that HPC prevented the dephosphorylation of dynamin-related protein 1 (Drp1)-Ser637 (serine 637) and inhibited the translocation of Drp1 to mitochondria induced by tGCI. Importantly, the treatment with a Drp1 inhibitor Mdivi-1 or necrostatin-1 before tGCI also abolished Drp1 dephosphorylation at Ser637 and mitochondrial translocation. Taken together, our results highlight that HPC attenuates necroptotic neuronal death induced by tGCI via Drp1-dependent mitochondrial signaling pathways mediated by CaMKIIα inactivation.-Zhan, L., Lu, Z., Zhu, X., Xu, W., Li, L., Li, X., Chen, S., Sun, W., Xu, E. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats.
Collapse
Affiliation(s)
- Lixuan Zhan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou Huai Hospital, Guangzhou, China
| | - Xinyong Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensheng Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luxi Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinyu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Siyuan Chen
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Leclair P, Liu CC, Monajemi M, Reid GS, Sly LM, Lim CJ. CD47-ligation induced cell death in T-acute lymphoblastic leukemia. Cell Death Dis 2018; 9:544. [PMID: 29748606 PMCID: PMC5945676 DOI: 10.1038/s41419-018-0601-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Chi-Chao Liu
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Mahdis Monajemi
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Gregor S Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
- Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Laura M Sly
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, V5Z 4H4.
- Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
31
|
Zhou H, Cheang T, Su F, Zheng Y, Chen S, Feng J, Pei Z, Chen L. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of Dynamin-Related Protein 1 expression. Eur J Pharmacol 2017; 819:58-67. [PMID: 29183837 DOI: 10.1016/j.ejphar.2017.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/02/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that melatonin can protect cells against rotenone-induced cell death. Yet, the mechanism involved in this protection requires further research. In this study, we aimed to further investigate the effects of melatonin on inhibiting rotenone-induced SH-SY5Y cells and the underlying molecular mechanisms. Human neuroblastoma SH-SY5Y cells were treated with 0.3 or 1μM rotenone for 6 or 12h. Cell viability was measured with an MTS assay, the mitochondrial membrane potential was determined with a Rhodamine 123 staining assay, and the protein expression levels of the markers of autophagy, including cytochrome C release (Cyt C), light chain 3B (LC3 B) and Dynamin-Related Protein 1 (Drp1) were analyzed by western blotting. The co-localization of Drp1 and TOM20 proteins in the mitochondria of SH-SY5Y cells was measured by immunofluorescence coupled with confocal microscopy and the overexpression of the Drp1 gene was then conducted. The viability and expression levels of Cyt C and LC3 B in rotenone and melatonin + rotenone-treated Drp1-overexpressed SH-SY5Y cells were analyzed with MTS and western blotting, respectively. We found that rotenone effectively induced SH-SY5Y cell death by causing mitochondrial dysfunction and increasing Cyt C expression. Drp1 expression and its regulation of mitochondrial translocation mediated the rotenone-induced cell death and melatonin inhibited this process. Overexpression of Drp1 protein attenuated melatonin's inhibition of rotenone-induced SH-SY5Y cell death. In conclusion, melatonin effectively inhibits rotenone-induced neuronal cell death via the regulation of Drp1 expression.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tuckyun Cheang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhen Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiezhen Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
32
|
Du J, Zhang X, Han J, Man K, Zhang Y, Chu ESH, Nan Y, Yu J. Pro-Inflammatory CXCR3 Impairs Mitochondrial Function in Experimental Non-Alcoholic Steatohepatitis. Theranostics 2017; 7:4192-4203. [PMID: 29158819 PMCID: PMC5695006 DOI: 10.7150/thno.21400] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.
Collapse
|
33
|
Zheng JY, Tan HL, Matsudaira PT, Choo A. Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis. Cell Death Differ 2017; 24:546-558. [PMID: 28106884 DOI: 10.1038/cdd.2016.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
Antibody-mediated cell killing has significantly facilitated the elimination of undesired cells in therapeutic applications. Besides the well-known Fc-dependent mechanisms, pathways of antibody-induced apoptosis were also extensively studied. However, with fewer studies reporting the ability of antibodies to evoke an alternative form of programmed cell death, oncosis, the molecular mechanism of antibody-mediated oncosis remains underinvestigated. In this study, a monoclonal antibody (mAb), TAG-A1 (A1), was generated to selectively kill residual undifferentiated human embryonic stem cells (hESC) so as to prevent teratoma formation upon transplantation of hESC-derived products. We revealed that A1 induces hESC death via oncosis. Aided with high-resolution scanning electron microscopy (SEM), we uncovered nanoscale morphological changes in A1-induced hESC oncosis, as well as A1 distribution on hESC surface. A1 induces hESC oncosis via binding-initiated signaling cascade, most likely by ligating receptors on surface microvilli. The ability to evoke excess reactive oxygen species (ROS) production via the Nox2 isoform of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is critical in the cell death pathway. Excess ROS production occurs downstream of microvilli degradation and homotypic adhesion, but upstream of actin reorganization, plasma membrane damage and mitochondrial membrane permeabilization. To our knowledge, this is the first mechanistic model of mAb-induced oncosis on hESC revealing a previously unrecognized role for NAPDH oxidase-derived ROS in mediating oncotic hESC death. These findings in the cell death pathway may potentially be exploited to improve the efficiency of A1 in eliminating undifferentiated hESC and to provide insights into the study of other mAb-induced cell death.
Collapse
Affiliation(s)
- Ji Yun Zheng
- Mechanobiology Institute (MBI), National University of Singapore (NUS), T-Lab, No. 10-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Heng Liang Tan
- Stem Cell 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, No. 06-01 Centros, Singapore 138668, Singapore
| | - Paul Thomas Matsudaira
- Mechanobiology Institute (MBI), National University of Singapore (NUS), T-Lab, No. 10-01, 5A Engineering Drive 1, Singapore 117411, Singapore.,Department of Biological Science, Faculty of Science, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore
| | - Andre Choo
- Stem Cell 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, No. 06-01 Centros, Singapore 138668, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
34
|
Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci 2017; 18:ijms18010144. [PMID: 28098754 PMCID: PMC5297777 DOI: 10.3390/ijms18010144] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases.
Collapse
|
35
|
Pascucci B, D'Errico M, Romagnoli A, De Nuccio C, Savino M, Pietraforte D, Lanzafame M, Calcagnile AS, Fortini P, Baccarini S, Orioli D, Degan P, Visentin S, Stefanini M, Isidoro C, Fimia GM, Dogliotti E. Overexpression of parkin rescues the defective mitochondrial phenotype and the increased apoptosis of Cockayne Syndrome A cells. Oncotarget 2016; 8:102852-102867. [PMID: 29262528 PMCID: PMC5732694 DOI: 10.18632/oncotarget.9913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.,Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Alessandra Romagnoli
- Department Epidemiology and Preclinical Research, INMI L. Spallanzani IRCCS, Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Donatella Pietraforte
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Manuela Lanzafame
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Angelo Salvatore Calcagnile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Paolo Degan
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genova, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Miria Stefanini
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gian Maria Fimia
- Department Epidemiology and Preclinical Research, INMI L. Spallanzani IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Lecce, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| |
Collapse
|
36
|
Cioffi M, Trabulo S, Hidalgo M, Costello E, Greenhalf W, Erkan M, Kleeff J, Sainz B, Heeschen C. Inhibition of CD47 Effectively Targets Pancreatic Cancer Stem Cells via Dual Mechanisms. Clin Cancer Res 2015; 21:2325-37. [PMID: 25717063 DOI: 10.1158/1078-0432.ccr-14-1399] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/10/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the exocrine pancreas with unmet medical need and is strongly promoted by tumor-associated macrophages (TAM). The presence of TAMs is associated with poor clinical outcome, and their overall role, therefore, appears to be protumorigenic. The "don't eat me" signal CD47 on cancer cells communicates to the signal regulatory protein-α on macrophages and prevents their phagocytosis. Thus, inhibition of CD47 may offer a new opportunity to turn TAMs against PDAC cells, including cancer stem cells (CSC), as the exclusively tumorigenic population. EXPERIMENTAL DESIGN We studied in vitro and in vivo the effects of CD47 inhibition on CSCs using a large set of primary pancreatic cancer (stem) cells as well as xenografts of primary human PDAC tissue. RESULTS CD47 was highly expressed on CSCs, but not on other nonmalignant cells in the pancreas. Targeting CD47 efficiently enhanced phagocytosis of a representative set of primary human pancreatic cancer (stem) cells and, even more intriguingly, also directly induced their apoptosis in the absence of macrophages during long-term inhibition of CD47. In patient-derived xenograft models, CD47 targeting alone did not result in relevant slowing of tumor growth, but the addition of gemcitabine or Abraxane resulted in sustained tumor regression and prevention of disease relapse long after discontinuation of treatment. CONCLUSIONS These data are consistent with efficient in vivo targeting of CSCs, and strongly suggest that CD47 inhibition could be a novel adjuvant treatment strategy for PDAC independent of underlying and highly variable driver mutations.
Collapse
Affiliation(s)
- Michele Cioffi
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Trabulo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, A CR-UK Centre of Excellence, Queen Mary University of London, United Kingdom
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, CNIO, Madrid, Spain
| | - Eithne Costello
- Liverpool Cancer Research UK Centre, University of Liverpool, Liverpool, United Kingdom
| | - William Greenhalf
- Liverpool Cancer Research UK Centre, University of Liverpool, Liverpool, United Kingdom
| | - Mert Erkan
- Department of Surgery, Technical University Munich, Munich, Germany. Koc University School of Medicine, Instanbul, Turkey
| | - Joerg Kleeff
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Bruno Sainz
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, A CR-UK Centre of Excellence, Queen Mary University of London, United Kingdom.
| |
Collapse
|
37
|
Martinez-Torres AC, Quiney C, Attout T, Boullet H, Herbi L, Vela L, Barbier S, Chateau D, Chapiro E, Nguyen-Khac F, Davi F, Le Garff-Tavernier M, Moumné R, Sarfati M, Karoyan P, Merle-Béral H, Launay P, Susin SA. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med 2015; 12:e1001796. [PMID: 25734483 PMCID: PMC4348493 DOI: 10.1371/journal.pmed.1001796] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides. METHODS AND FINDINGS In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1), a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD) pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47, which might be improved to reach the standard requirements in drug development, and the lack of a CLL animal model that fully mimics the human disease. CONCLUSIONS Our work provides substantial progress in (i) the development of serum-stable CD47 agonist peptides that are highly effective at inducing PCD in CLL, (ii) the understanding of the molecular events regulating a novel PCD pathway that overcomes CLL apoptotic avoidance, (iii) the identification of PLCγ1 as an over-expressed protein in CLL B cells, and (iv) the description of a novel peptide-based strategy against CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/drug effects
- B-Lymphocytes/metabolism
- CD47 Antigen/metabolism
- Drug Resistance, Neoplasm
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Mice
- Mice, Inbred NOD
- Middle Aged
- Peptides/pharmacology
- Peptides/therapeutic use
- Phospholipase C gamma/metabolism
- Thrombospondin 1/therapeutic use
Collapse
Affiliation(s)
- Ana-Carolina Martinez-Torres
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Claire Quiney
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Tarik Attout
- INSERM U1149, Paris, France
- Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Heloïse Boullet
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Linda Herbi
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sandrine Barbier
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Elise Chapiro
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Florence Nguyen-Khac
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Frédéric Davi
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Magali Le Garff-Tavernier
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Roba Moumné
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Philippe Karoyan
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Hélène Merle-Béral
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Pierre Launay
- INSERM U1149, Paris, France
- Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Santos A. Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
39
|
Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 2014; 63:196-206. [PMID: 23884159 DOI: 10.1097/01.fjc.0000432861.55968.a6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of heart failure (HF) has evolved during the past 30 years with the recognition of neurohormonal activation and the effectiveness of its inhibition in improving the quality of life and survival. Over the past 20 years, there has been a revolution in the investigation of the mitochondrion with the development of new techniques and the finding that mitochondria are connected in networks and undergo constant division (fission) and fusion, even in cardiac myocytes. This has led to new molecular and cellular discoveries in HF, which offer the potential for the development of new molecular-based therapies. Reactive oxygen species are an important cause of mitochondrial and cellular injury in HF, but there are other abnormalities, such as depressed mitochondrial fusion, that may eventually become the targets of at least episodic treatment. The overall need for mitochondrial fission/fusion balance may preclude sustained change in either fission or fusion. In this review, we will discuss the current HF therapy and its impact on the mitochondria. In addition, we will review some of the new drug targets under development. There is potential for effective, novel therapies for HF to arise from new molecular understanding.
Collapse
|
40
|
Singh V, Gupta D, Arora R, Tripathi RP, Almasan A, Macklis RM. Surface levels of CD20 determine anti-CD20 antibodies mediated cell death in vitro. PLoS One 2014; 9:e111113. [PMID: 25364827 PMCID: PMC4217761 DOI: 10.1371/journal.pone.0111113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/29/2014] [Indexed: 12/04/2022] Open
Abstract
Background The sensitivity of human Burkitt's lymphoma cells to rituximab (Rtx) and tositumomab (Tst) was assessed on cells expressing different levels of CD20 on surface. Cells that harbor low CD20 levels may resists against therapeutics response to CD20-specific antibodies. We postulated that, radiation-induced modulation of CD20 surface levels may play a crucial and central role in determining the relative efficacy of rituximab and tositumomab in treating Burkitt's lymphoma disease. Here, we examined the γ-radiation-induced CD20 expression in the Burkitt lymphoma cell line ‘Daudi’ and the relation of differential levels of CD20 with anti-CD20 mAbs mediated cell death. Methodology In this study we examined kinetics of CD20 expression following sub lethal doses ofγ-radiation to Daudi cells and thereafter anti-CD20 mAbs (rituximab and tositumomab) were added in cell suspensions. The correlation of kinetics of CD20 expression and cells treated with anti-CD20 mAbs/or corresponding isotype Abs with special reference to changes in mitochondrial membrane potential and reactive oxygen species generation was also examined. Further, we also investigated the efficacy of anti-CD20 mAbs and possible induction of cell death in relation to levels of CD20 cell surface expression. Conclusion This report provides evidence that CD20 expression can be induced by exposure of cells to γ-radiation. In addition, these findings demonstrated that the efficacy of anti-CD20 mAbs is dependent on the surface levels of CD20. Based on these findings, we hypothesized (i) irradiation just prior to immunotherapy may provide new treatment options even in aggressive B cell tumors, which are resistant to current therapies in vivo (ii) The efficacy of induction of apoptosis varies with type of monoclonal antibodies in vitro.
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
- * E-mail: (DG); (RMM)
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajendra Prashad Tripathi
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Roger M. Macklis
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (DG); (RMM)
| |
Collapse
|
41
|
Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J 2014; 461:137-46. [PMID: 24758576 DOI: 10.1042/bj20131438] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative-stress-induced necrosis is considered to be one of the main pathological mediators in various neurological disorders, such as brain ischaemia. However, little is known about the mechanism by which cells modulate necrosis in response to oxidative stress. In the present study, we showed that Drp1 (dynamin-related protein 1), a primary mitochondrial fission protein, stabilizes the well-known stress gene p53 and is required for p53 translocation to the mitochondria under conditions of oxidative stress. We found that Drp1 binding to p53 induced mitochondria-related necrosis. In contrast, inhibition of Drp1 hyperactivation by Drp1 siRNA reduced necrotic cell death in cell cultures exposed to oxidative stress. Most significantly, we demonstrated that inhibition of Drp1 by the Drp1 peptide inhibitor P110, which was developed recently by our group, abolished p53 association with the mitochondria and reduced brain infarction in rats subjected to brain ischaemia/reperfusion injury. Taken together, these findings reveal a novel mechanism of Drp1 hyperactivation in the induction of mitochondrial damage and subsequent cell death. We propose that a Drp1 inhibitor such as P110 is a possible therapeutic agent for diseases in which hyperactivated Drp1 contributes to the pathology.
Collapse
|
42
|
Yan J, Liu XH, Han MZ, Wang YM, Sun XL, Yu N, Li T, Su B, Chen ZY. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer's disease. Neurobiol Aging 2014; 36:211-27. [PMID: 25192600 DOI: 10.1016/j.neurobiolaging.2014.08.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
It is well established that mitochondrial fragmentation plays a key role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial fission is mediated by dynamin-related protein 1 (Drp1), which is highly expressed in nervous system and regulated by various posttranslational modifications including phosphorylation. We identified glycogen synthase kinase (GSK)3β-dependent Drp1 phosphorylation at Ser(40) and Ser(44), which increases Drp1 GTPase activity and its mitochondrial distribution and could induce mitochondrial fragmentation. Moreover, neurons transfected with Ser(40)Ser(44) phosphomimic Drp1 showed increased mitochondria fragmentation and were more vulnerable to amyloid-β (Aβ)-induced apoptosis. Therefore, blocking GSK3β-induced Drp1 phosphorylation may be an effective way to protect neurons from Aβ toxicity. To address this, we designed and synthesized an artificial polypeptide named TAT-Drp1-SpS, which could specifically block GSK3β-induced Drp1 phosphorylation. Our results demonstrated that TAT-Drp1-SpS treatment could significantly reduce Aβ-induced neuronal apoptosis in cultured neurons. Notably, TAT-Drp1-SpS administration in hippocampus Cornu Ammonis 1 (CA1) region significantly reduced Aβ burden and rescued the memory deficits in AD transgenic mice. Although Aβ has multiple targets to exert its neurotoxicity, our findings suggested that GSK3β-induced mitochondrial fragmentation was, at least partially, mediated by Aβ toxicity and contribute to the pathogenesis of AD. Taken together, GSK3β-induced Drp1 phosphorylation provides a novel mechanism for mitochondrial fragmentation in AD, and our findings suggested a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiang-Hua Liu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ming-Zhi Han
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu-Meng Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xu-Lu Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Nuo Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bo Su
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Moujalled DM, Cook WD, Murphy JM, Vaux DL. Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 2014; 5:e1086. [PMID: 24577084 PMCID: PMC3944236 DOI: 10.1038/cddis.2014.18] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 02/04/2023]
Abstract
Necroptosis is a mechanism by which cells can kill themselves that does not require caspase activity or the presence of the pro-apoptotic Bcl-2 family members Bax or Bak. It has been reported that RIPK3 (receptor interacting protein kinase 3) activates MLKL (mixed lineage kinase domain-like) to cause cell death that requires dynamin-related protein 1 (Drp1), because survival was increased in cells depleted of Drp1 or treated with the Drp1 inhibitor mdivi-1. To analyze necroptosis in a system that does not require addition of tumor necrosis factor (TNF), we used a construct that allows RIPK3 to be induced in cells, and then dimerized via an E. coli gyrase domain fused to its carboxyl-terminus, using the dimeric gyrase binding antibiotic coumermycin. We have previously shown elsewhere that RIPK3 dimerized in this manner not only induces necroptosis but also apoptosis, which can be inhibited by the broad-spectrum caspase inhibitor Q-VD-OPh (QVD). In response to RIPK3 dimerization, wild-type mouse embryonic fibroblasts (MEFs) underwent cell death that was reduced but not completely blocked by QVD. In contrast, death upon dimerization of RIPK3 in Mlkl−/− MEFs was completely inhibited with QVD, confirming that MLKL is required for necroptosis. Similar to wild-type MEFs, most Drp1−/− MEFs died when RIPK3 was activated, even in the presence of QVD. Furthermore, overexpression of wild-type MLKL or dominant active mutants of MLKL (Q343A or S345E/S347E) caused death of wild-type and Drp1−/− MEFs that was not inhibited with QVD. These results indicate that necroptosis caused by RIPK3 requires MLKL but not Drp1.
Collapse
Affiliation(s)
- D M Moujalled
- 1] Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - W D Cook
- La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3086, Australia
| | - J M Murphy
- 1] Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - D L Vaux
- 1] Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
44
|
Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep 2013; 3:1673. [PMID: 23591719 PMCID: PMC3628113 DOI: 10.1038/srep01673] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022] Open
Abstract
Signaling through the thrombospondin-1 receptor CD47 broadly limits cell and tissue survival of stress, but the molecular mechanisms are incompletely understood. We now show that loss of CD47 permits sustained proliferation of primary murine endothelial cells, increases asymmetric division, and enables these cells to spontaneously reprogram to form multipotent embryoid body-like clusters. c-Myc, Klf4, Oct4, and Sox2 expression is elevated in CD47-null endothelial cells, in several tissues of CD47- and thrombospondin-1-null mice, and in a human T cell line lacking CD47. CD47 knockdown acutely increases mRNA levels of c-Myc and other stem cell transcription factors in cells and in vivo, whereas CD47 ligation by thrombospondin-1 suppresses c-Myc expression. The inhibitory effects of increasing CD47 levels can be overcome by maintaining c-Myc expression and are absent in cells with dysregulated c-Myc. Thus, CD47 antagonists enable cell self-renewal and reprogramming by overcoming negative regulation of c-Myc and other stem cell transcription factors.
Collapse
|
45
|
Abstract
We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLO-induced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1- and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery.
Collapse
|
46
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
47
|
Farrand L, Byun S, Kim JY, Im-Aram A, Lee J, Lim S, Lee KW, Suh JY, Lee HJ, Tsang BK. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem 2013; 288:23740-50. [PMID: 23833193 DOI: 10.1074/jbc.m113.487686] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resistance to cisplatin (CDDP) in ovarian cancer (OVCA) arises from the dysregulation of tumor suppressors and survival signals. During genotoxic challenge, these factors can be influenced by secondary agents that facilitate the induction of apoptosis. Piceatannol is a natural metabolite of the stilbene resveratrol found in grapes and is converted from its parent compound by the enzyme CYP1BA1 p450. It has been hypothesized to exert specific effects against various cellular targets; however, its ability to influence CDDP resistance in cancer cells has not been investigated to date. Here, we show that piceatannol is a potent enhancer of CDDP sensitivity in OVCA, and this effect is achieved through the modulation of several major determinants of chemoresistance. Piceatannol enhances p53-mediated expression of the pro-apoptotic protein NOXA, increases XIAP degradation via the ubiquitin-proteasome pathway, and enhances caspase-3 activation. This response is associated with an increase in Drp1-dependent mitochondrial fission, leading to more effective induction of apoptosis. In vivo studies using a mouse model of OVCA reveal that a number of these changes occur in association with a greater overall reduction in tumor weight when mice are treated with both piceatannol and CDDP, in comparison to treatment with either agent alone. Taken together, these findings demonstrate the potential application of piceatannol to enhance CDDP sensitivity in OVCA, and it acts on p53, XIAP, and mitochondrial fission.
Collapse
Affiliation(s)
- Lee Farrand
- World Class University Major in Biomodulation, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci U S A 2013; 110:5969-74. [PMID: 23530233 DOI: 10.1073/pnas.1213294110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.
Collapse
|
49
|
Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 2013; 17:89-103. [PMID: 23101472 PMCID: PMC3564224 DOI: 10.1517/14728222.2013.733699] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CD47 is a ubiquitously expressed cell surface receptor that serves as a counter-receptor for SIRPα in recognition of self by the innate immune system. Independently, CD47 also functions as an important signaling receptor for regulating cell responses to stress. AREAS COVERED We review the expression, molecular interactions, and pathophysiological functions of CD47 in the cardiovascular and immune systems. CD47 was first identified as a potential tumor marker, and we examine recent evidence that its dysregulation contributes to cancer progression and evasion of anti-tumor immunity. We further discuss therapeutic strategies for enhancing or inhibiting CD47 signaling and applications of such agents in preclinical models of ischemia and ischemia/reperfusion injuries, organ transplantation, pulmonary hypertension, radioprotection, and cancer. EXPERT OPINION Ongoing studies are revealing a central role of CD47 for conveying signals from the extracellular microenvironment that limit cell and tissue survival upon exposure to various types of stress. Based on this key function, therapeutics targeting CD47 or its ligands thrombospondin-1 and SIRPα could have broad applications spanning reconstructive surgery, engineering of tissues and biocompatible surfaces, vascular diseases, diabetes, organ transplantation, radiation injuries, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
- David R. Soto-Pantoja
- Cancer Research Training Award Fellow, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500
| | - Erica V. Stein
- Predoctoral Cancer Research Training Award Fellow, Laboratoryof Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500 and Microbiology and Immunology Program of the Institute for Biomedical Sciences, Departments of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St., N.W., Ross Hall, Washington, D.C. 20037
| | - Natasha M. Rogers
- Visiting Research Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Maryam Sharifi-Sanjani
- Post-doctoral Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey S. Isenberg
- Associate Professor of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1258, 200 Lothrop Street, Pittsburgh, PA 15261
| | - David D. Roberts
- Chief, Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2A33, Bethesda, MD 20892-1500
| |
Collapse
|
50
|
RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. Int Immunopharmacol 2012; 14:674-82. [DOI: 10.1016/j.intimp.2012.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/21/2022]
|