1
|
Zou J, Wang D, Yin G, Lu K, Chang K, Li H. Prognostic significance of p27 in colorectal cancer: a meta-analysis and bioinformatics analysis. Front Oncol 2024; 14:1495476. [PMID: 39845325 PMCID: PMC11751620 DOI: 10.3389/fonc.2024.1495476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
Background In the past, numerous investigations have delved into the influence of p27 (p27kip) on the prognosis and clinicopathological characteristics of colorectal cancer (CRC), yielding conclusions that are not universally statistically significant, thus rendering the discourse rather contentious. Methods We collected available articles published before August 2024 and extracted data to analyze the association between the expression of p27 and the prognosis and clinicopathological features of CRC. In addition, we used Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham's Cancer Data Analysis Portal (UALCAN), and the Human Protein Atlas (HPA) to validate our results. Results Through an extensive examination of four prominent databases, a total of 21 original articles encompassing a cohort of 3,378 patients were identified. The findings indicated that a low expression of p27 could lead to shorter overall survival (OS) [hazard ratio (HR) = 0.44, 95% confidence interval (95%CI) = 0.31-0.61, Z = 4.89, p = 0.000] and disease-free survival (DFS) (HR = 0.40, 95%CI = 0.28-0.59, Z = 4.75, p = 0.000). In addition, a low expression of p27 predisposed tumors to the right colon [odds ratio (OR) = 0.61, 95%CI = 0.46-0.82, Z = 3.32, p = 0.001] and limited tumor differentiation (OR = 0.56, 95%CI = 0.41-0.77, Z = 3.62, p = 0.000), but had no effect on TNM staging (OR = 0.80, 95%CI = 0.52-1.22, Z = 1.05, p = 0.295), lymph node metastasis (OR = 0.90, 95%CI = 0.25-3.28, Z = 0.16, p = 0.876), and tumor size (OR = 0.94, 95%CI = 0.54-1.65, Z = 0.21, p = 0.835). The results from GEPIA and UALCAN showed that p27 had no effect on TNM staging, lymph node metastasis, DFS, and OS; moreover, there was no expression difference between tumor tissues and normal tissues. The findings from the HPA indicated that there was lower expression of p27 in tumor tissues compared with normal tissues. Conclusion Although inconsistent results were reached with the bioinformatics analysis from this meta-analysis, it was confirmed that a low expression of p27 can adversely affect the prognosis of patients with CRC and make a meaningful impact on a part of the clinicopathological features in the meta-analysis with abundant data. In the future, predicting the prognosis of patients with CRC and guiding treatment might emerge as a significant objective.
Collapse
Affiliation(s)
- Jing Zou
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Dong Wang
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Gaoping Yin
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kexiang Lu
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Kaibin Chang
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - He Li
- Department of Stomach and Intestine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
3
|
Li W, Hu JK, Hu MG. CDK6: an attractive therapeutic target for T-ALL/LBL. Expert Opin Ther Targets 2023; 27:1087-1096. [PMID: 37975616 DOI: 10.1080/14728222.2023.2285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Human T-cell acute lymphoblastic leukemia/T-cell lymphoblastic lymphoma (T-ALL/LBL) is a type of cancer that originates from the bone marrow and spreads quickly to other organs. Long-term survival rate with current available chemotherapy is less than 20%. Despite the potentially huge market, a truly effective and safe therapy for T-ALL/LBL is elusive. Thus, it is imperative to identify new therapeutic ways to target essential pathways in T-ALL that regulate the proliferation and survival of these cancer cells. AREAS COVERED The role of the Cyclin-dependent kinase 6 (CDK6) pathway in human T-ALL is of significant interest with major clinical/translational relevance. This review covers the recent advances in elucidating the essential roles of CDK6 and its closely regulated networks in proliferation, survival, and metabolism of T-ALL cells, with new insight into its mechanisms of action which hopefully could trigger the identification of new therapeutic avenues. EXPERT OPINION Animal models showed that inhibition of CDK6 and its related networks blocked initiation, growth, and survival of T-ALL in vivo. Numerous clinical trials of CDK4/6 inhibitors are ongoing in T-ALL. Specific CDK6 inhibitors alone or novel combination regimens may hopefully delay the progression, or even reverse the symptoms of T-ALL, leading to disease eradication and cure.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, USA
| | - Jamie Katy Hu
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, USA
| |
Collapse
|
4
|
Crystal structure of active CDK4-cyclin D and mechanistic basis for abemaciclib efficacy. NPJ Breast Cancer 2022; 8:126. [PMID: 36446794 PMCID: PMC9709041 DOI: 10.1038/s41523-022-00494-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the biological and therapeutic relevance of CDK4/6 for the treatment of HR+, HER2- advanced breast cancer, the detailed mode of action of CDK4/6 inhibitors is not completely understood. Of particular interest, phosphorylation of CDK4 at T172 (pT172) is critical for generating the active conformation, yet no such crystal structure has been reported to date. We describe here the x-ray structure of active CDK4-cyclin D3 bound to the CDK4/6 inhibitor abemaciclib and discuss the key aspects of the catalytically-competent complex. Furthermore, the effect of CDK4/6 inhibitors on CDK4 T172 phosphorylation has not been explored, despite its role as a potential biomarker of CDK4/6 inhibitor response. We show mechanistically that CDK4/6i stabilize primed (pT172) CDK4-cyclin D complex and selectively displace p21 in responsive tumor cells. Stabilization of active CDK4-cyclin D1 complex can lead to pathway reactivation following alternate dosing regimen. Consequently, sustained binding of abemaciclib to CDK4 leads to potent cell cycle inhibition in breast cancer cell lines and prevents rebound activation of downstream signaling. Overall, our study provides key insights demonstrating that prolonged treatment with CDK4/6 inhibitors and composition of the CDK4/6-cyclin D complex are both critical determinants of abemaciclib efficacy, with implications for this class of anticancer therapy.
Collapse
|
5
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
6
|
Macheroni C, Gameiro Lucas TF, Souza DS, Vicente CM, Pereira GJDS, Junior IDSV, Juliano MA, Porto CS. Activation of estrogen receptor ESR1 and ESR2 induces proliferation of the human testicular embryonal carcinoma NT2/D1 cells. Mol Cell Endocrinol 2022; 554:111708. [PMID: 35792284 DOI: 10.1016/j.mce.2022.111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
The aims of the present study were to investigate the expression of the classic estrogen receptors ESR1 and ESR2, the splicing variant ESR1-36 and GPER in human testicular embryonal carcinoma NT2/D1 cells, and the effects of the activation of the ESR1 and ESR2 on cell proliferation. Immunostaining of ESR1, ESR2, and GPER were predominantly found in the nuclei, and less abundant in the cytoplasm. ESR1-36 isoform was predominantly expressed in the perinuclear region and cytoplasm, and some weakly immunostained in the nuclei. In nonstimulated NT2/D1 cells (control), proteins of the cell cycle CCND1, CCND2, CCNE1 and CDKN1B are present. Activation of ESR1 and ESR2 increases, respectively, CCND2 and CCNE1 expression, but not CCND1. Activation of ESR2 also mediates upregulation of the cell cycle inhibitor CDKN1B. This protein co-immunoprecipitated with CCND2. Also, E2 induces an increase in the number and viability of the NT2/D1 cells. These effects are blocked by simultaneous pretreatment with ESR1-and ESR2-selective antagonists, confirming that both estrogen receptors regulate NT2/D1 cell proliferation. In addition, E2 increases SRC phosphorylation, and SRC mediates cell proliferation. Our study provides novel insights into the signatures and molecular mechanisms of estrogen receptor in NT2/D1 cells.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Thaís Fabiana Gameiro Lucas
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Gustavo José da Silva Pereira
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
7
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
8
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
9
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
10
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
11
|
Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics 2022; 14:pharmaceutics14040802. [PMID: 35456636 PMCID: PMC9029106 DOI: 10.3390/pharmaceutics14040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27 (Kip1) is an important regulator of the G1/S checkpoint. It is degraded by the SCF-SKP2 complex in late G1 thereby allowing cells to progress to the S phase. Here we investigated the role of the E3 ubiquitin ligase RNF6 (Ring Finger Protein 6) in cell cycle progression in prostate cancer cells. Our data demonstrate that RNF6 can promote cell cycle progression by reducing the levels of p27. Knockdown of RNF6 led to an increase in the stability of p27 and to the arrest of cells in the G1 phase. RNF6 interacted with p27 via its KIL domain and this interaction was found to be phosphorylation independent. RNF6 enhanced ubiquitination and subsequent degradation of p27 in the early G0/G1 phase of the cell cycle. Knockdown of RNF6 expression by short hairpin RNA led to inhibition of the CDK2/Cyclin E complex thereby reducing phosphorylation of Retinoblastoma protein (Rb) and to a subsequent decrease in cell cycle progression and proliferation. Our data suggest that RNF6 acts as a negative regulator for p27kip1 leading to its proteasome-dependent degradation in the early G0/G1 phase of the cell cycle.
Collapse
|
12
|
p27, The Cell Cycle and Alzheimer´s Disease. Int J Mol Sci 2022; 23:ijms23031211. [PMID: 35163135 PMCID: PMC8835212 DOI: 10.3390/ijms23031211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer’s disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aβ42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.
Collapse
|
13
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
15
|
Jilishitz I, Quiñones JL, Patel P, Chen G, Pasetsky J, VanInwegen A, Schoninger S, Jogalekar MP, Tsiperson V, Yan L, Wu Y, Gottesman SRS, Somma J, Blain SW. NP-ALT, a Liposomal:Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Mol Cancer Res 2021; 19:1929-1945. [PMID: 34446542 DOI: 10.1158/1541-7786.mcr-21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Resistance to cyclin D-CDK4/6 inhibitors (CDK4/6i) represents an unmet clinical need and is frequently caused by compensatory CDK2 activity. Here we describe a novel strategy to prevent CDK4i resistance by using a therapeutic liposomal:peptide formulation, NP-ALT, to inhibit the tyrosine phosphorylation of p27Kip1(CDKN1B), which in turn inhibits both CDK4/6 and CDK2. We find that NP-ALT blocks proliferation in HR+ breast cancer cells, as well as CDK4i-resistant cell types, including triple negative breast cancer (TNBC). The peptide ALT is not as stable in primary mammary epithelium, suggesting that NP-ALT has little effect in nontumor tissues. In HR+ breast cancer cells specifically, NP-ALT treatment induces ROS and RIPK1-dependent necroptosis. Estrogen signaling and ERα appear required. Significantly, NP-ALT induces necroptosis in MCF7 ESRY537S cells, which contain an ER gain of function mutation frequently detected in metastatic patients, which renders them resistant to endocrine therapy. Here we show that NP-ALT causes necroptosis and tumor regression in treatment naïve, palbociclib-resistant, and endocrine-resistant BC cells and xenograft models, demonstrating that p27 is a viable therapeutic target to combat drug resistance. IMPLICATIONS: This study reveals that blocking p27 tyrosine phosphorylation inhibits CDK4 and CDK2 activity and induces ROS-dependent necroptosis, suggesting a novel therapeutic option for endocrine and CDK4 inhibitor-resistant HR+ tumors.
Collapse
Affiliation(s)
- Irina Jilishitz
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jason Luis Quiñones
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Priyank Patel
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Grace Chen
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Jared Pasetsky
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Allison VanInwegen
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Scott Schoninger
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Manasi P Jogalekar
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vladislav Tsiperson
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Susan R S Gottesman
- Department of Pathology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jonathan Somma
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Stacy W Blain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
16
|
Molecular control of cell density-mediated exit to quiescence. Cell Rep 2021; 36:109436. [PMID: 34320337 PMCID: PMC8924979 DOI: 10.1016/j.celrep.2021.109436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Contact inhibition of cell proliferation regulates tissue size and prevents uncontrolled cell expansion. When cell density increases, contact inhibition can force proliferating cells into quiescence. Here we show that the variable memory of local cell density experienced by a mother cell controls the levels of the cyclin-dependent kinase (CDK) activator cyclin D1 and inhibitor p27 in newborn daughters, which direct cells to proliferation or quiescence. Much of this regulation can be explained by rapid suppression of ERK activity by high cell density in mothers, which leads to lower cyclin D1 and higher p27 levels in daughters. Strikingly, cell density and mitogen signals compete by shifting the ratio of cyclin D1/p27 levels below or above a single sharp threshold that controls the proliferation decision. Thus, the history of competing cell density and mitogen signals experienced by mothers is funneled into a precise activator-inhibitor balance that decides the fate of daughter cells. Using live single-cell microscopy, Fan and Meyer show that the decision of newborn daughter cells to proliferate or become quiescent is controlled by the memory of local cell density inherited from mother cells. This memory is mediated by an ultrasensitive activator-inhibitor balance between cyclin D1 and p27.
Collapse
|
17
|
Walter B, Canjuga D, Yüz SG, Ghosh M, Bozko P, Przystal JM, Govindarajan P, Anderle N, Keller A, Tatagiba M, Schenke‐Layland K, Rammensee H, Stevanovic S, Malek NP, Schmees C, Tabatabai G. Argyrin F Treatment‐Induced Vulnerabilities Lead to a Novel Combination Therapy in Experimental Glioma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bianca Walter
- Department of Neurology and Interdisciplinary Neuro‐Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
| | - Denis Canjuga
- Department of Neurology and Interdisciplinary Neuro‐Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
| | - Simge G. Yüz
- NMI Natural and Medical Sciences Institute at the University Tübingen Markwiesenstraße 55 72770 Reutlingen Germany
| | - Michael Ghosh
- Department of Immunology, Interfaculty Institute for Cell Biology Eberhard Karls University Tübingen Auf der Morgenstelle 15/3 72076 Tübingen Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I University Hospital Tübingen, Eberhard Karls University Tübingen Otfried‐Müller‐Str. 10 72076 Tübingen Germany
| | - Justyna M. Przystal
- Department of Neurology and Interdisciplinary Neuro‐Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
- German Cancer Consortium (DKTK) DKFZ Partner Site Tübingen 69117 Heidelberg Germany
| | - Parameswari Govindarajan
- Department of Neurology and Interdisciplinary Neuro‐Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
| | - Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University Tübingen Markwiesenstraße 55 72770 Reutlingen Germany
| | - Anna‐Lena Keller
- NMI Natural and Medical Sciences Institute at the University Tübingen Markwiesenstraße 55 72770 Reutlingen Germany
| | - Marcos Tatagiba
- Department of Neurosurgery University Hospital Tübingen, Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
| | - Katja Schenke‐Layland
- NMI Natural and Medical Sciences Institute at the University Tübingen Markwiesenstraße 55 72770 Reutlingen Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
- Department of Biomedical Engineering Eberhard Karls University Tübingen Calwerstraße 7 72076 Tübingen Germany
- Department of Medicine/Cardiology University of California Los Angeles 100 UCLA Medical Plaza, Suite 630 Los Angeles CA 90095 USA
| | - Hans‐Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology Eberhard Karls University Tübingen Auf der Morgenstelle 15/3 72076 Tübingen Germany
- German Cancer Consortium (DKTK) DKFZ Partner Site Tübingen 69117 Heidelberg Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology Eberhard Karls University Tübingen Auf der Morgenstelle 15/3 72076 Tübingen Germany
- German Cancer Consortium (DKTK) DKFZ Partner Site Tübingen 69117 Heidelberg Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
| | - Nisar P. Malek
- Department of Internal Medicine I University Hospital Tübingen, Eberhard Karls University Tübingen Otfried‐Müller‐Str. 10 72076 Tübingen Germany
- German Cancer Consortium (DKTK) DKFZ Partner Site Tübingen 69117 Heidelberg Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University Tübingen Markwiesenstraße 55 72770 Reutlingen Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro‐Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Hoppe‐Seyler‐Strasse 3 72076 Tübingen Germany
- German Cancer Consortium (DKTK) DKFZ Partner Site Tübingen 69117 Heidelberg Germany
- Cluster of excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen 72076 Tübingen Germany
| |
Collapse
|
18
|
Nataraj SE, Blain SW. A cyclin D-CDK6 dimer helps to reshuffle cyclin-dependent kinase inhibitors (CKI) to overcome TGF-beta-mediated arrest and maintain CDK2 activity. Cell Cycle 2021; 20:808-818. [PMID: 33794722 DOI: 10.1080/15384101.2021.1909261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The cyclin D-CDK4/6 complex has two distinct functions. Its kinase-dependent role involves its ability to act as serine/threonine kinase, responsible for phosphorylation of substrates required for cell cycle transitions, while its kinase-independent function involves its ability to act as a reservoir for p27Kip1. This association sequesters p27 from cyclin E-CDK2 complexes, allowing them to remain active. The aim of this current study is two-fold: to understand the contribution of the kinase-dependent and kinase-independent functions of CDK4 and CDK6 in epithelial cells and to directly compare CDK4 and CDK6 in a simple model system, TGF-β treatment, where arrest is initiated by the expression of p15Ink4b. Cells that overexpressed a catalytically inactive, p15-insensitive CDK6 variant (p27 sequestration only mutant) were able to overcome TGF-β-mediated arrest by maintaining CDK2 activity, while cells expressing the identical mutations in CDK4 were not. This result can be partially explained by the presence of a previously unidentified cyclin D-CDK6 dimer, which serves as a sink for free p27 during TGF-β treatment, enabling CDK2 to remain inhibitor free. The use of the TGF-β model system and the characterization of CDK pool dynamics and p27 switching is relevant to the CDK4/6 specific inhibitors, such as palbociclib, whose mechanism of action may resemble that of p15.
Collapse
Affiliation(s)
- Sarah E Nataraj
- Program in Molecular and Cellular Biology, School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York
| | - Stacy W Blain
- Program in Molecular and Cellular Biology, School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York.,Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
19
|
Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, Cheng R, Demeter J, Swaney DL, Chen SH, Newton BW, Johnson JR, Drainas AP, Shue YT, Seoane JA, Srinivasan P, He A, Yoshida A, Hipkins SQ, McCrea E, Poltorack CD, Krogan NJ, Diehl JA, Kong C, Jackson PK, Curtis C, Petrov DA, Bassik MC, Winslow MM, Sage J. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 2021; 592:794-798. [PMID: 33854239 PMCID: PMC8246597 DOI: 10.1038/s41586-021-03474-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication1. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell proliferation and cancer2,3. However, the mechanisms that regulate levels of cyclin D are incompletely understood4,5. Here we show that autophagy and beclin 1 regulator 1 (AMBRA1) is the main regulator of the degradation of cyclin D. We identified AMBRA1 in a genome-wide screen to investigate the genetic basis of the response to CDK4/6 inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to CDK4/6 inhibition. Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRA1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of AMBRA1 correlate with worse survival in patients with lung adenocarcinoma. Thus, AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development and the response of cancer cells to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Andrea C Chaikovsky
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Edwin E Jeng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Samuel Loebell
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher W Murray
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ran Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jose A Seoane
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Preethi Srinivasan
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Akihiro Yoshida
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Susan Q Hipkins
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Edel McCrea
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - J Alan Diehl
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Monte M Winslow
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Siddiqui ZI, Azam SA, Khan WH, Afroz M, Farooqui SR, Amir F, Azmi MI, Anwer A, Khan S, Mehmankhah M, Parveen S, Kazim SN. An in vitro Study on the Role of Hepatitis B Virus X Protein C-Terminal Truncation in Liver Disease Development. Front Genet 2021; 12:633341. [PMID: 33777103 PMCID: PMC7994528 DOI: 10.3389/fgene.2021.633341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus X protein C-terminal 127 amino acid truncation is often found expressed in hepatocellular carcinoma (HCC) tissue samples. The present in vitro study tried to determine the role of this truncation mutant in the hepatitis B-related liver diseases such as fibrosis, cirrhosis, HCC, and metastasis. HBx gene and its 127 amino acid truncation mutant were cloned in mammalian expression vectors and transfected in human hepatoma cell line. Changes in cell growth/proliferation, cell cycle phase distribution, expression of cell cycle regulatory genes, mitochondrial depolarization, and intracellular reactive oxygen species (ROS) level were analyzed. Green fluorescent protein (GFP)-tagged version of HBx and the truncation mutant were also created and the effects of truncation on HBx intracellular expression pattern and localization were studied. Effect of time lapse on protein expression pattern was also analyzed. The truncation mutant of HBx is more efficient in inducing cell proliferation, and causes more ROS production and less mitochondrial depolarization as compared with wild type (wt) HBx. In addition, gene expression is altered in favor of carcinogenesis in the presence of the truncation mutant. Furthermore, mitochondrial perinuclear aggregation is achieved earlier in the presence of the truncation mutant. Therefore, HBx C-terminal 127 amino acid truncation might be playing important roles in the development of hepatitis B-related liver diseases by inducing cell proliferation, altering gene expression, altering mitochondrial potential, inducing mitochondrial clustering and oxidative stress, and changing HBx expression pattern.
Collapse
Affiliation(s)
- Zaheenul Islam Siddiqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Ali Azam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Wajihul Hasan Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Masarrat Afroz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sabihur Rahman Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Fatima Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Iqbal Azmi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mahboubeh Mehmankhah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Hume S, Dianov GL, Ramadan K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res 2020; 48:12483-12501. [PMID: 33166394 PMCID: PMC7736809 DOI: 10.1093/nar/gkaa1002] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.
Collapse
Affiliation(s)
- Samuel Hume
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Grigory L Dianov
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
22
|
Lu X, Jiang M, Tian J, Liu W, Wu F, Yu L, Feng G, Zhong S, Xiang Y, Wen H. Growth Arrest-Specific Transcript 5 (GAS5) Exerts Important Roles on the Treatment of BM45 Cells of Liver Cirrhosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1154-1163. [PMID: 33312752 PMCID: PMC7701024 DOI: 10.1016/j.omtn.2020.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow (BM)-derived CD45 (BM45) cells were demonstrated to exhibit an improved antifibrotic effect on the treatment of CCL4-induced liver fibrosis by significantly increasing the level of matrix metalloproteinase 9 (MMP-9). In this study, we aimed to validate the therapeutic effect of BM45 on the treatment of liver cirrhosis and to further investigate the molecular mechanism underlying the effect of growth arrest-specific transcript 5 (GAS5) on BM45. Accordingly, GAS5 significantly suppressed miR-222 and miR-21 expression but enhanced p27 and MMP-9 expression in HepG2 and LX2 cells. Additionally, GAS5 obstructed transforming growth factor (TGF)-β-induced dysregulation of miR-222, p27, and α-smooth muscle actin (α-SMA) in mice. GAS5 showed a considerable potential to enhance the capability of BM45 in restoring the normal expression of CCL4, miR-222, miR-21, MMP-9, p27, and α-SMA that was dysregulated by alanine aminotransferase (ALT), albumin, and fibrosis. In summary, our study validated the regulatory relationship between miR-21 and MMP-9, as well as between miR-222 and p27. The overexpression of GAS5 upregulated the expression of MMP-9 and p27 via respectively reducing the miR-222 and miR-21 expression, resulting in higher BM45-induced activation of hepatic stellate cells (HSCs). Accordingly, same results were obtained in an animal model, indicating that GAS5 may exert a positive effect on the treatment of BM45 of liver cirrhosis.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| | - Guohui Feng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China
| | - Ying Xiang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China
| |
Collapse
|
23
|
Choi SH, Barker EC, Gerber KJ, Letterio JJ, Kim BG. Loss of p27Kip1 leads to expansion of CD4+ effector memory T cells and accelerates colitis-associated colon cancer in mice with a T cell lineage restricted deletion of Smad4. Oncoimmunology 2020; 9:1847832. [PMID: 33329939 PMCID: PMC7722707 DOI: 10.1080/2162402x.2020.1847832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 is a tumor suppressor whose intrinsic activity in cancer cells correlates with tumor aggressiveness, invasiveness, and impaired tumor cell differentiation. Here we explore whether p27Kip1 indirectly influences tumor progression by restricting expansion and survival of effector memory T cell (TEM) populations in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show mRNA and protein expression of p27Kip1 to be significantly decreased in the colons of mice with a T cell-restricted deletion of the TGF-β intermediate, SMAD4 (Smad4TKO). Loss of p27Kip1 expression in T cells correlates with the onset of spontaneous CAC in Smad4TKO mice by 8 months of age. This phenotype is greatly accelerated by the introduction of a germline deletion of CDKN1b (the gene encoding p27Kip1) in Smad4TKO mice (Smad4TKO/p27Kip1-/-, DKO). DKO mice display colon carcinoma by 3 months of age and increased mortality compared to Smad4TKO. Importantly, the phenotype in DKO mice is associated with a significant increase in the frequency of effector CD4 T cells expressing abundant IFN-γ and with a concomitant decrease in Foxp3+ regulatory T cells, both in the intestinal mucosa and in the periphery. In addition, induction of inflammatory mediators (IFN-γ, TNF-γ, IL-6, IL-1β, iNOS) and activation of Stat1, Stat3, and IκB is also observed in the colon as early as 1–2 months of age. Our data suggest that genomic alterations known to influence p27Kip1 abundance in gastrointestinal cancers may indirectly promote epithelial malignancy by augmenting the production of inflammatory mediators from a spontaneously expanding pool of TEM cells.
Collapse
Affiliation(s)
- Sung Hee Choi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily C Barker
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Kyle J Gerber
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - John J Letterio
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.,The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Byung-Gyu Kim
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
25
|
Trotter EW, Hagan IM. Release from cell cycle arrest with Cdk4/6 inhibitors generates highly synchronized cell cycle progression in human cell culture. Open Biol 2020; 10:200200. [PMID: 33052073 PMCID: PMC7653349 DOI: 10.1098/rsob.200200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Each approach used to synchronize cell cycle progression of human cell lines presents a unique set of challenges. Induction synchrony with agents that transiently block progression through key cell cycle stages are popular, but change stoichiometries of cell cycle regulators, invoke compensatory changes in growth rate and, for DNA replication inhibitors, damage DNA. The production, replacement or manipulation of a target molecule must be exceptionally rapid if the interpretation of phenotypes in the cycle under study is to remain independent of impacts upon progression through the preceding cycle. We show how these challenges are avoided by exploiting the ability of the Cdk4/6 inhibitors, palbociclib, ribociclib and abemaciclib to arrest cell cycle progression at the natural control point for cell cycle commitment: the restriction point. After previous work found no change in the coupling of growth and division during recovery from CDK4/6 inhibition, we find high degrees of synchrony in cell cycle progression. Although we validate CDK4/6 induction synchronization with hTERT-RPE-1, A549, THP1 and H1299, it is effective in other lines and avoids the DNA damage that accompanies synchronization by thymidine block/release. Competence to return to cycle after 72 h arrest enables out of cycle target induction/manipulation, without impacting upon preceding cycles.
Collapse
Affiliation(s)
| | - Iain Michael Hagan
- Cell Division Group, CRUK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| |
Collapse
|
26
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
27
|
Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer. Int J Cancer 2020; 147:2988-2995. [PMID: 32406095 PMCID: PMC7586846 DOI: 10.1002/ijc.33054] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The regulation and function of cyclin‐dependent kinase 6 (CDK6)‐ and cyclin‐dependent kinase 4 (CDK4)‐cyclin complexes are commonly altered with enhanced kinase activity found in hematopoietic malignancies, breast cancer and melanoma making CDK4 and CDK6 attractive targets for therapeutic interference. Although dual CDK4/6 inhibitors have revolutionized treatment of breast cancer patients and reveal promising results in several solid tumors and hematological malignancies, there is a need for novel compounds targeting the versatile kinase‐independent functions of CDK6 to improve cancer treatment. The following review summarizes the latest findings on CDK6 in cancer development and discusses novel therapeutic approaches to selectively inhibit CDK6s function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
28
|
Razavipour SF, Harikumar KB, Slingerland JM. p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Res 2020; 80:3451-3458. [PMID: 32341036 DOI: 10.1158/0008-5472.can-19-3663] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including cell migration and development independent of its cyclin-dependent kinase (CDK) inhibitory action. p27 is an atypical tumor suppressor-deletion or mutational inactivation of the gene encoding p27, CDKN1B, is rare in human cancers. p27 is rarely fully lost in cancers because it can play both tumor suppressive and oncogenic roles. Until recently, the paradigm was that oncogenic deregulation results from either loss of growth restraint due to excess p27 proteolysis or from an oncogenic gain of function through PI3K-mediated C-terminal p27 phosphorylation, which disrupts the cytoskeleton to increase cell motility and metastasis. In cancers, C-terminal phosphorylation alters p27 protein-protein interactions and shifts p27 from CDK inhibitor to oncogene. Recent data indicate p27 regulates transcription and acts as a transcriptional coregulator of cJun. C-terminal p27 phosphorylation increases p27-cJun recruitment to and action on target genes to drive oncogenic pathways and repress differentiation programs. This review focuses on noncanonical, CDK-independent functions of p27 in migration, invasion, development, and gene expression, with emphasis on how transcriptional regulation by p27 illuminates its actions in cancer. A better understanding of how p27-associated transcriptional complexes are regulated might identify new therapeutic targets at the interface between differentiation and growth control.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Razavipour
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Joyce M Slingerland
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC.
| |
Collapse
|
29
|
Luo Y, Fu Z, Wu P, Zheng D, Zhang X. The clinicopathological and prognostic significance of P27 kip in hepatocellular carcinoma patients: A systemic review and meta-analysis. Gene 2020; 734:144351. [PMID: 31982553 DOI: 10.1016/j.gene.2020.144351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVES P27kip is a cyclin-dependent kinase inhibitor that has gained importance as a biomarker in human malignant tumors. However, the potential role of P27kip in hepatocellular carcinoma remains unclear. The aim of this meta-analysis was to explore whether P27kip acts as prognostic and clinicopathological roles in hepatocellular carcinoma patients. METHODS/MATERIALS An electronic search based on three databases, PubMed, Embase, and Web of Science, was performed to select a sufficient number of studies. Pooled hazard ratio (HR) and odds ratio (OR) were used as estimates to investigate the association among P27kip expression, prognosis and clinicopathological features. RESULTS In total, we identified 18 studies with 1774 hepatocellular carcinoma patients. The result derived from four studies revealed a significant positive association between lower P27kip levels and shorter overall survival (HR = 0.550, 95% CI: 0.464-0.652, P < 0001) and disease-free survival (HR = 0.420, 95% CI: 0.308-0.571, P < 0.0001). Analyses of the clinicopathological features and P27kip expression also showed that a positive rate of P27kip was significantly lower in a larger sized tumor (OR = 0.538, 95% CI: 0.315-0.919, P = 0.023). The results also revealed that lower P27kip levels were correlated with poorer differentiation (0.416, 95% CI: 0.178-0.971, P = 0.043). Additionally, the pooled OR of 0.389 also presented a significant correlation between P27kip underexpression and the metastasis of HCCs (95% CI: 0.155-0.975, P = 0.044). CONCLUSIONS This analysis suggests a strong association among P27kip underexpression, poorer prognosis and aggressive progression of hepatocellular carcinoma in patients. P27kip may be a tumor suppressor for predicting the progression and survival outcome in patients with hepatocellular carcinomas.
Collapse
Affiliation(s)
- Yongxiang Luo
- Department of General Surgery Second Ward, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region 535000, People's Republic of China
| | - Zhaoyin Fu
- Department of Intensive Care Unit, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region 535000, People's Republic of China
| | - Peisheng Wu
- Department of General Surgery Second Ward, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region 535000, People's Republic of China
| | - Dawu Zheng
- Department of General Surgery Second Ward, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region 535000, People's Republic of China.
| | - Xiumei Zhang
- Department of General Surgery Second Ward, The First People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region 535000, People's Republic of China
| |
Collapse
|
30
|
Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, Bunch KL, Tripathi S, Knudsen ES, Witkiewicz AK, Shokat KM, Rubin SM. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 2019; 366:eaaw2106. [PMID: 31831640 PMCID: PMC7592119 DOI: 10.1126/science.aaw2106] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The p27 protein is a canonical negative regulator of cell proliferation and acts primarily by inhibiting cyclin-dependent kinases (CDKs). Under some circumstances, p27 is associated with active CDK4, but no mechanism for activation has been described. We found that p27, when phosphorylated by tyrosine kinases, allosterically activated CDK4 in complex with cyclin D1 (CDK4-CycD1). Structural and biochemical data revealed that binding of phosphorylated p27 (phosp27) to CDK4 altered the kinase adenosine triphosphate site to promote phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and other substrates. Surprisingly, purified and endogenous phosp27-CDK4-CycD1 complexes were insensitive to the CDK4-targeting drug palbociclib. Palbociclib instead primarily targeted monomeric CDK4 and CDK6 (CDK4/6) in breast tumor cells. Our data characterize phosp27-CDK4-CycD1 as an active Rb kinase that is refractory to clinically relevant CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Jack W Stevenson
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Kevin Lou
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Krister J Barkovich
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Katharine L Bunch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| | | | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
31
|
Shao ZQ, Zhang X, Fan HH, Wang XS, Wu HM, Zhang L, Cheng WH, Zhu JH. Selenoprotein T Promotes Proliferation and G1-to-S Transition in SK-N-SH Cells: Implications in Parkinson's Disease. J Nutr 2019; 149:2110-2119. [PMID: 31504723 DOI: 10.1093/jn/nxz199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). OBJECTIVE We hypothesized a proliferative role of SELENOT in neural cells. METHODS To assess SELENOT status in PD, sedated male C57BL/6 mice at 10-12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor-like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. RESULTS SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase-positive dopaminergic neurons of 6-hydroxydopamine-injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2'-deoxyuridine incorporation but induced (17-47%; P < 0.05) annexin V-positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88-120%; P < 0.05) and reduced (37-42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. CONCLUSIONS These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.
Collapse
Affiliation(s)
- Zi-Qiang Shao
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Shuang Wang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.,Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Kawauchi T, Nabeshima YI. Growth Arrest Triggers Extra-Cell Cycle Regulatory Function in Neurons: Possible Involvement of p27 kip1 in Membrane Trafficking as Well as Cytoskeletal Regulation. Front Cell Dev Biol 2019; 7:64. [PMID: 31080801 PMCID: PMC6497764 DOI: 10.3389/fcell.2019.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Cell cycle regulation is essential for the development of multicellular organisms, but many cells in adulthood, including neurons, exit from cell cycle. Although cell cycle-related proteins are suppressed after cell cycle exit in general, recent studies have revealed that growth arrest triggers extra-cell cycle regulatory function (EXCERF) in some cell cycle proteins, such as p27(kip1), p57(kip2), anaphase-promoting complex/cyclosome (APC/C), and cyclin E. While p27 is known to control G1 length and cell cycle exit via inhibition of cyclin-dependent kinase (CDK) activities, p27 acquires additional cytoplasmic functions in growth-arrested neurons. Here, we introduce the EXCERFs of p27 in post-mitotic neurons, mainly focusing on its actin and microtubule regulatory functions. We also show that a small amount of p27 is associated with the Golgi apparatus positive for Rab6, p115, and GM130, but not endosomes positive for Rab5, Rab7, Rab8, Rab11, SNX6, or LAMTOR1. p27 is also colocalized with Dcx, a microtubule-associated protein. Based on these results, we discuss here the possible role of p27 in membrane trafficking and microtubule-dependent transport in post-mitotic cortical neurons. Collectively, we propose that growth arrest leads to two different fates in cell cycle proteins; either suppressing their expression or activating their EXCERFs. The latter group of proteins, including p27, play various roles in neuronal migration, morphological changes and axonal transport, whereas the re-activation of the former group of proteins in post-mitotic neurons primes for cell death.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
33
|
Liu J, Min L, Zhu S, Guo Q, Li H, Zhang Z, Zhao Y, Xu C, Zhang S. Cyclin-Dependent Kinase Inhibitor 3 Promoted Cell Proliferation by Driving Cell Cycle from G1 to S Phase in Esophageal Squamous Cell Carcinoma. J Cancer 2019; 10:1915-1922. [PMID: 31205550 PMCID: PMC6547974 DOI: 10.7150/jca.27053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background and aims. Cyclin-dependent kinase inhibitor 3 (CDKN3) has been found playing a varying role in carcinogenesis, but its biological function in esophageal squamous cell carcinoma (ESCC) is unclear. The aim of this study was to demonstrate the role of CDKN3 in ESCC. Materials and Methods: Real-time PCR and Western blot was performed in 15 pairs of ESCC tissues and adjacent normal esophageal tissues. Then cell proliferation ability, cloning ability, cell cycle status and migration and invasion ability were explored in CDKN3 overexpressed TE1 cell line and CDKN3 siRNA transfected TE1 and KYSE70 cell lines. Finally, cell cycle related proteins CyclinD1, CDK4, pAKT, P53, P21, and P27 were tested by Western blot. Results: mRNA level was higher in 11 ESCC tissues compared to adjacent normal tissues, and an increased protein expression was further detected in 8 of those 11 ESCC tissues. Functional assays showed that CDKN3 overexpression promoted ESCC cell proliferation, colony formation, migration and invasion, and facilitated G1/S transition. Opposite results were also got after transfected with CDKN3 siRNA. Cell cycle associated protein pAKT, CyclinD1, CDK4 and P27 were upregulated and P53, P21 and were downregulated under CDKN3 overexpression. All the protein levels were found changed in the opposite direction when CDKN3 expression was disturbed by siRNA. Conclusions: Our study suggested that CDKN3 acted as an oncogene in human ESCC and may accelerate the G1/S transition by affecting CyclinD-CDK4 complex via regulating pAKT-p53-p21 axis and p27 independent of AKT.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Changqin Xu
- Shandong Provincial Hospital affiliated to Shandong university
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| |
Collapse
|
34
|
Currier AW, Kolb EA, Gorlick RG, Roth ME, Gopalakrishnan V, Sampson VB. p27/Kip1 functions as a tumor suppressor and oncoprotein in osteosarcoma. Sci Rep 2019; 9:6161. [PMID: 30992462 PMCID: PMC6467888 DOI: 10.1038/s41598-019-42450-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/26/2019] [Indexed: 02/03/2023] Open
Abstract
The p27/kip1 (p27) tumor suppressor inhibits cyclin/cyclin-dependent kinase (CDK) complexes and halts cell cycle progression. p27 further regulates invasion and migration in cancer cells, suggesting p27 also functions as an oncoprotein. Using a human osteosarcoma tissue microarray we identified high expression of cytoplasmic p27 in metastatic tumors. We demonstrated a positive correlation between mRNA and protein expression of p27 and expression of key metastatic markers, vimentin, snail-2, β-catenin and stathmin-1 (STMN1) in patient tumors. Our results show that T198 phosphorylation of p27 controls the interaction between p27 and STMN1 that regulates microtubule stabilization and the invasion and migration of osteosarcoma cells. We found that anti-tumoral activity of gemcitabine and the Wee1 kinase inhibitor AZD1775 in osteosarcoma cells, was dependent on drug sequencing that relied on p27 stabilization. Gemcitabine activated caspase-3 and synergized with AZD1775 through caspase-mediated cleavage of p27, that dissociated from STMN1 and effectively induced apoptosis. Further, blockage of nuclear export of p27 by inhibition of Exportin-1 (XPO1) promoted growth arrest, demonstrating that the biological effects of agents relied on the expression and localization of p27. Together, these data provide a rationale for combining chemotherapy with agents that promote p27 tumor suppressor activity for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Arthur W Currier
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,University of Delaware, Department of Biological Sciences, Newark, DE, 19716, USA
| | - E A Kolb
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Richard G Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael E Roth
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Valerie B Sampson
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.
| |
Collapse
|
35
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
36
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
37
|
Abstract
PI3K is activated in over 60% of human cancers, mediating C-terminal p27 phosphorylation. This work reveals cooperation between PI3K and cJun pathways: p27 phosphorylation by PI3K-activated kinases stimulates p27/cJun corecruitment to chromatin and activation of transcription programs of cell adhesion, motility, TGFB2, and epithelial–mesenchymal transformation to drive tumor progression. Prior analysis showed that high p27pT157 strongly associates with activated AKTpS273 and p90RSKpT359 in human breast cancers. These cancers also differentially express p27/cJun target genes and identify a poor prognostic group. In cancers, the cell cycle-restraining effects of p27 are lost through increased proteolysis and decreased translation. We reveal a previously unknown oncogenic action of p27, in which p27 acts as a cJun coactivator to drive oncogenic gene expression programs. p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK−DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates TGFB2 to drive metastasis in vivo. Global analysis of p27 and cJun chromatin binding and gene expression shows that cJun recruitment to many target genes is p27 dependent, increased by p27 phosphorylation, and activates programs of epithelial–mesenchymal transformation and metastasis. Finally, human breast cancers with high p27pT157 differentially express p27/cJun-regulated genes of prognostic relevance, supporting the biological significance of the work.
Collapse
|
38
|
Chen J, Guo H, Jiang H, Namusamba M, Wang C, Lan T, Wang T, Wang B. A BAP31 intrabody induces gastric cancer cell death by inhibiting p27
kip1
proteasome degradation. Int J Cancer 2019; 144:2051-2062. [DOI: 10.1002/ijc.31930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Chen
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Haotian Guo
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Haitao Jiang
- Dasan Medichem (Shenyang) R&D center Shenyang Liaoning Province People's Republic of China
| | - Mwichie Namusamba
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Changli Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Tian Lan
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Tianyi Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Bing Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| |
Collapse
|
39
|
Calvayrac O, Nowosad A, Cabantous S, Lin LP, Figarol S, Jeannot P, Serres MP, Callot C, Perchey RT, Creff J, Taranchon-Clermont E, Rouquette I, Favre G, Pradines A, Manenti S, Mazieres J, Lee H, Besson A. Cytoplasmic p27 Kip1 promotes tumorigenesis via suppression of RhoB activity. J Pathol 2018; 247:60-71. [PMID: 30206932 DOI: 10.1002/path.5167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023]
Abstract
The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Calvayrac
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Lin-Po Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sarah Figarol
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Taranchon-Clermont
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Isabelle Rouquette
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Anne Pradines
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stephane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
40
|
Narita Y, Tsutiya A, Nakano Y, Ashitomi M, Sato K, Hosono K, Kaneko T, Chen RD, Lee JR, Tseng YC, Hwang PP, Ohtani-Kaneko R. Androgen induced cellular proliferation, neurogenesis, and generation of GnRH3 neurons in the brain of mature female Mozambique tilapia. Sci Rep 2018; 8:16855. [PMID: 30442908 PMCID: PMC6237963 DOI: 10.1038/s41598-018-35303-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023] Open
Abstract
The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17β-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.
Collapse
Affiliation(s)
- Yasuto Narita
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Atsuhiro Tsutiya
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Yui Nakano
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Moe Ashitomi
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kenjiro Sato
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Ritsuko Ohtani-Kaneko
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
41
|
Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst) 2018; 69:63-72. [PMID: 30075372 DOI: 10.1016/j.dnarep.2018.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kheyrollah
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
42
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
43
|
Patel P, Tsiperson V, Gottesman SRS, Somma J, Blain SW. Dual Inhibition of CDK4 and CDK2 via Targeting p27 Tyrosine Phosphorylation Induces a Potent and Durable Response in Breast Cancer Cells. Mol Cancer Res 2018; 16:361-377. [PMID: 29330290 DOI: 10.1158/1541-7786.mcr-17-0602] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6)-specific inhibitors, such as palbociclib, have shown clinical efficacy, but primary or secondary resistance has emerged as a problem. To develop more effective therapeutic approaches, investigation is needed into the mechanisms of resistance or adaption. Here, it is demonstrated that CDK2 compensates for loss of CDK4 activity to rescue palbociclib-arrested breast cancer cells, suggesting that inhibition of both kinases is required to achieve durable response. In addition, a novel strategy is described to inhibit tyrosine phosphorylation of p27Kip1 (CDKN1B) and simultaneously inhibit both CDK2 and CDK4. p27Kip1 is a required assembly factor for cyclin-CDK4 complexes, but it must be phosphorylated on residue Y88 to open or activate the complex. The Brk-SH3 peptide, ALT, blocks p27 Y88 phosphorylation, inhibiting CDK4. Nonphosphorylated p27 is no longer a target for ubiquitin-mediated degradation and this stabilized p27 now also inhibits CDK2 activity. Thus, ALT induction inhibits both the kinase that drives proliferation (CDK4) and the kinase that mediates resistance (CDK2), causing a potent and long-lasting cell-cycle arrest. ALT arrests growth of all breast cancer subgroups and synergizes with palbociclib to increase cellular senescence and to cause tumor regression in breast cancer xenograft models. The use of ALT demonstrates that both CDK4 and CDK2 need to be inhibited if long-term efficacy is to be achieved and represents a novel modality to inhibit breast cancer cells.Implications: Modulating tyrosine phosphorylation of p27 impacts both proliferative (CDK4) and resistance (CDK2) mechanisms in breast cancer and suggests that phospho-p27 status may serve as a biomarker for patients that are responsive to CDK4/6 inhibition. Mol Cancer Res; 16(3); 361-77. ©2018 AACR.
Collapse
Affiliation(s)
- Priyank Patel
- School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vladislav Tsiperson
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| | | | - Jonathan Somma
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Stacy W Blain
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
44
|
Meyer RD, Zou X, Ali M, Ersoy E, Bondzie PA, Lavaei M, Alexandrov I, Henderson J, Rahimi N. TMIGD1 acts as a tumor suppressor through regulation of p21Cip1/p27Kip1 in renal cancer. Oncotarget 2017. [PMID: 29515762 PMCID: PMC5839393 DOI: 10.18632/oncotarget.23822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is a high-risk metastasizing tumor with a poor prognosis and poorly understood mechanism. In this study, we demonstrate that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) is a novel tumor suppressor that is highly expressed in normal renal tubular epithelial cells, but it is downregulated in human renal cancer. We have identified CCAAT/enhancer-binding proteinβ (C/EBPβ, also called LAP) as a key transcriptional regulator of TMIGD1, whose loss of expression is responsible for downregulation of TMIGD1 in RCC. Transcriptionally active C/EBPβ/LAP physically interacted with and increased TMIGD1 promoter activity and expression of TMIGD1. Re-introduction of TMIGD1 into renal tumor cells significantly inhibited tumor growth and metastatic behaviors such as morphogenic branching and cell migration. Restoring TMIGD1 expression in renal tumor cells stimulated phosphorylation of p38MAK, induced expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in regulation of the cell cycle. The present study identifies TMIGD1 as a novel candidate tumor suppressor gene and provides important insight into pathobiology of RCC that could lead to a better diagnosis and possible novel therapy for RCC.
Collapse
Affiliation(s)
- Rosana D Meyer
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xueqing Zou
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Marwa Ali
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Esma Ersoy
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Philip Apraku Bondzie
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mehrdad Lavaei
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Joel Henderson
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nader Rahimi
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
45
|
Abstract
The ability to sustain unscheduled proliferation is a hallmark of cancer. The normal process of cell division occurs via the cell cycle, a series of highly regulated steps that are orchestrated at the molecular level by specific cyclins that act in association with cyclin-dependent kinases (CDKs). Cyclin D and CDK4/6 play a key role in cell-cycle progression by phosphorylating and inactivating the retinoblastoma protein, a tumor suppressor that restrains G1- to S-phase progression. The first-generation CDK inhibitors demonstrated broad activity upon several CDKs, which likely explains their considerable toxicities and limited efficacy. Palbociclib, ribociclib, and abemaciclib represent a new class of highly specific ATP-competitive CDK4/6 inhibitors that induce reversible G1-phase cell-cycle arrest in retinoblastoma-positive tumor models. Both palbociclib and ribociclib have been approved in combination with hormone-based therapy for the treatment of naïve hormone receptor-positive advanced breast cancer on the basis of an improvement in progression-free survival. In general, CDK4/6 inhibitors are cytostatic as monotherapy but demonstrate favorable tolerability, which has prompted interest in combination approaches. Combinations with phosphatidylinositol 3-kinase and mammalian target of rapamycin inhibitors in breast cancer, and inhibitors of the RAS/RAF/mitogen-activated protein kinase pathway in RAS-mutant cancers are particularly promising approaches that are currently being evaluated. Although the subject of intense preclinical study, predictive biomarkers for response and resistance to these drugs remain largely undefined. CDK4/6 inhibitors have emerged as the most promising of the cell-cycle therapeutics and intense efforts are now underway to expand the reach of this paradigm.
Collapse
Affiliation(s)
- Matthew Ingham
- All authors: Columbia University School of Medicine, New York, NY
| | - Gary K. Schwartz
- All authors: Columbia University School of Medicine, New York, NY
| |
Collapse
|
46
|
Peschel I, Podmirseg SR, Taschler M, Duyster J, Götze KS, Sill H, Nachbaur D, Jäkel H, Hengst L. FLT3 and FLT3-ITD phosphorylate and inactivate the cyclin-dependent kinase inhibitor p27 Kip1 in acute myeloid leukemia. Haematologica 2017; 102:1378-1389. [PMID: 28522571 PMCID: PMC5541872 DOI: 10.3324/haematol.2016.160101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/08/2017] [Indexed: 02/01/2023] Open
Abstract
P27 Kip1 (p27) can prevent cell proliferation by inactivating cyclin-dependent kinases. This function is impaired upon phosphorylation of p27 at tyrosine residue 88. We observed that FLT3 and FLT3-ITD can directly bind and selectively phosphorylate p27 on this residue. Inhibition of FLT3-ITD in cell lines strongly reduced p27 tyrosine 88 phosphorylation and resulted in increased p27 levels and cell cycle arrest. Subsequent analysis revealed the presence of tyrosine 88 phosphorylated p27 in primary patient samples. Inhibition of FLT3 kinase activity with AC220 significantly reduced p27 tyrosine 88 phosphorylation in cells isolated from FLT3 wild type expressing acute myeloid leukemia (AML) patients. In FLT3-ITD positive AML patients, p27 tyrosine 88 phosphorylation was reduced in 5 out of 9 subjects, but, surprisingly, was increased in 4 patients. This indicated that other tyrosine kinases such as Src family kinases might contribute to p27 tyrosine 88 phosphorylation in FLT3-ITD positive AML cells. In fact, incubation with the Src family kinase inhibitor dasatinib could decrease p27 tyrosine 88 phosphorylation in these patient samples, indicating that p27 phosphorylated on tyrosine 88 may be a therapeutic marker for the treatment of AML patients with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Ines Peschel
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Silvio R Podmirseg
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Martin Taschler
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Germany
| | - Katharina S Götze
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Heinz Sill
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Austria
| | - David Nachbaur
- Department of Internal Medicine V, Medical University of Innsbruck, Austria
| | - Heidelinde Jäkel
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
47
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
48
|
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S, Wang L. Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv 2017. [DOI: 10.1039/c7ra02113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proposed model elucidating the role of MT in regulating the proliferation of hepatocellular carcinoma (HCC) cells treated with sorafenib.
Collapse
|
49
|
Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 2016; 36:652-666. [PMID: 27452523 DOI: 10.1038/onc.2016.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most frequent thyroid cancer, is characterized by low proliferation but no apoptosis, presenting frequent lymph-node metastasis. Papillary thyroid carcinoma overexpress transforming growth factor-beta (TGF-β). In human cells, TGF-β has two opposing actions: antitumoral through pro-apoptotic and cytostatic activities, and pro-tumoral promoting growth and metastasis. The switch converting TGF-β from a tumor-suppressor to tumor-promoter has not been identified. In the current study, we have quantified a parallel upregulation of TGF-β and nuclear p27, a CDK2 inhibitor, in samples from PTC. We established primary cultures from follicular epithelium in human homeostatic conditions (h7H medium). TGF-β-dependent cytostasis occurred in normal and cancer cells through p15/CDKN2B induction. However, TGF-β induced apoptosis in normal and benign but not in carcinoma cultures. In normal thyroid cells, TGF-β/SMAD repressed the p27/CDKN1B gene, activating CDK2-dependent SMAD3 phosphorylation to induce p50 NFκB-dependent BAX upregulation and apoptosis. In thyroid cancer cells, oncogene activation prevented TGF-β/SMAD-dependent p27 repression, and CDK2/SMAD3 phosphorylation, leading to p65 NFκB upregulation which repressed BAX, induced cyclin D1 and promoted TGF-β-dependent growth. In PTC samples from patients, upregulation of TGF-β, p27, p65 and cyclin D1 mRNA were significantly correlated, while the expression of the isoform BAX-β, exclusively transcribed in apoptotic cells, was negatively correlated. Additionally, combined ERK and p65 NFκB inhibitors reduced p27 expression and potentiated apoptosis in thyroid cancer cells while not affecting survival in normal thyroid cells. Our results therefore suggest that the oncoprotein p27 reorganizes the effects of TGF-β in thyroid cancer, explaining the slow proliferation but lack of apoptosis and metastatic behavior of PTC.
Collapse
|
50
|
Baldassarre G, Belletti B. Meet me in the cytoplasm: A role for p27(Kip1) in the control of H-Ras. Small GTPases 2016; 7:71-5. [PMID: 27057815 DOI: 10.1080/21541248.2016.1171279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPases of the Ras family play a pivotal role in the regulation of cell proliferation and motility, both in normal and transformed cells. In particular, the 3 genes encoding for the N-, H- and K-Ras are frequently mutated in human cancer and their inappropriate regulation, expression and subcellular localization can drive tumor onset and progression. Activation of the Ras-MAPK pathway directly signals on the cell cycle machinery by regulating the expression and/or localization of 2 key cell cycle player, Cyclin D1 and p27(Kip1). We recently reported that in normal fibroblasts, following mitogenic stimuli, p27(Kip1) translocates to the cytoplasm where it regulates H-Ras localization and activity. This regulatory mechanism ensures that cells pass beyond the restriction point of the cell cycle only when the proper level of stimulation is reached. Here, we comment on this new evidence that possibly represents one of the ways that cells have developed during evolution to ensure that the cell decision to divide is taken only when time and context are appropriate.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- a Division of Experimental Oncology 2, Department of Translational Research, C.R.O. Aviano IRCCS, National Cancer Institute , Aviano , Italy
| | - Barbara Belletti
- a Division of Experimental Oncology 2, Department of Translational Research, C.R.O. Aviano IRCCS, National Cancer Institute , Aviano , Italy
| |
Collapse
|