1
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
2
|
He L, Wang Y, Zhu H, Han K, Wei S, Quan T, Li P, Yang B, Sun K, Jin Y, Wang A, Xue X, Zhang L, Liu C, Gao Y, Xu Y. Insoluble proteomics analysis of acute intracranial large vessel occlusive thrombus. J Thromb Haemost 2025; 23:565-576. [PMID: 39454879 DOI: 10.1016/j.jtha.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Acute large vessel occlusion (LVO) stroke is highly prevalent and severe. Despite thrombolytic therapy, many patients experience substantial complications. Understanding the origins, constituents, and pathologic processes involved in thrombus formation in acute intracranial large artery occlusion is crucial. OBJECTIVES To identify the characteristics of insoluble proteins from different sources of cerebral thrombus. METHODS This study included 13 patients with cardiogenic embolic (CE) thrombus and 15 with large artery atherosclerotic (LAA) thrombus. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry were used to analyze insoluble proteins in thrombi. Bioinformatics analyses explored differential proteins and associated functional pathways. Least absolute shrinkage and selection operator and random forest identified biomarkers for diagnosing thrombus sources, validated by parallel reaction monitoring. RESULTS We constructed an insoluble protein atlas of cerebral thrombi, identifying 6975 insoluble proteins, including 143 extracellular matrix (ECM)-related proteins. The enrichment pathways considerably varied between thrombi from different sources. Inflammation-related pathways, such as acute inflammatory response, along with ECM-related pathways such as laminin interactions, were notably upregulated in LAA compared with CE. Additionally, 2 biomarkers (IDH2 and HSPG2) exhibited strong diagnostic performance (area under the curve = 1) and robustness. CONCLUSION In the insoluble proteomics of thrombus, we highlighted the crucial roles of immune responses and ECM proteins in thrombus formation, providing new insights into its mechanisms and potential drug development. Additionally, we identified 2 biomarkers that offer new methods for determining thrombus sources in patients with LVO.
Collapse
Affiliation(s)
- Liuchang He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yunchao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Hanghang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Kaihao Han
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Wei
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Quan
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Panxing Li
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Yang
- The Neurology Intensive Care Unit, Jiaozuo Second People's Hospital, Jiaozuo, Henan, China
| | - Ke Sun
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, China
| | - Yazhou Jin
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anran Wang
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinli Xue
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Conghui Liu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Duong VT, Ha M, Kim J, Kim JY, Park S, Reshma KM, Han ME, Lee D, Kim YH, Oh SO. Recycling machinery of integrin coupled with focal adhesion turnover via RAB11-UNC13D-FAK axis for migration of pancreatic cancer cells. J Transl Med 2024; 22:800. [PMID: 39210440 PMCID: PMC11360766 DOI: 10.1186/s12967-024-05630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mihyang Ha
- Department of Nuclear Medicine and Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Siyoung Park
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Khatun Mst Reshma
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
4
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
5
|
Al-Ghabkari A, Huang B, Park M. Aberrant MET Receptor Tyrosine Kinase Signaling in Glioblastoma: Targeted Therapy and Future Directions. Cells 2024; 13:218. [PMID: 38334610 PMCID: PMC10854665 DOI: 10.3390/cells13030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
| | - Bruce Huang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
An In Vitro Analysis of TKI-Based Sequence Therapy in Renal Cell Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24065648. [PMID: 36982721 PMCID: PMC10058472 DOI: 10.3390/ijms24065648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) cabozantinib might impede the growth of the sunitinib-resistant cell lines by targeting MET and AXL overexpression in metastatic renal cell carcinoma (mRCC). We studied the role of MET and AXL in the response to cabozantinib, particularly following long-term administration with sunitinib. Two sunitinib-resistant cell lines, 786-O/S and Caki-2/S, and the matching 786-O/WT and Caki-2/WT cells were exposed to cabozantinib. The drug response was cell-line-specific. The 786-O/S cells were less growth-inhibited by cabozantinib than 786-O/WT cells (p-value = 0.02). In 786-O/S cells, the high level of phosphorylation of MET and AXL was not affected by cabozantinib. Despite cabozantinib hampering the high constitutive phosphorylation of MET, the Caki-2 cells showed low sensitivity to cabozantinib, and this was independent of sunitinib pretreatment. In both sunitinib-resistant cell lines, cabozantinib increased Src-FAK activation and impeded mTOR expression. The modulation of ERK and AKT was cell-line-specific, mirroring the heterogeneity among the patients. Overall, the MET- and AXL-driven status did not affect cell responsiveness to cabozantinib in the second-line treatment. The activation of Src-FAK might counteract cabozantinib activity and contribute to tumor survival and may be considered an early indicator of therapy response.
Collapse
|
8
|
Rivas S, Marín A, Samtani S, González-Feliú E, Armisén R. MET Signaling Pathways, Resistance Mechanisms, and Opportunities for Target Therapies. Int J Mol Sci 2022; 23:ijms232213898. [PMID: 36430388 PMCID: PMC9697723 DOI: 10.3390/ijms232213898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The MET gene, known as MET proto-oncogene receptor tyrosine kinase, was first identified to induce tumor cell migration, invasion, and proliferation/survival through canonical RAS-CDC42-PAK-Rho kinase, RAS-MAPK, PI3K-AKT-mTOR, and β-catenin signaling pathways, and its driver mutations, such as MET gene amplification (METamp) and the exon 14 skipping alterations (METex14), activate cell transformation, cancer progression, and worse patient prognosis, principally in lung cancer through the overactivation of their own oncogenic and MET parallel signaling pathways. Because of this, MET driver alterations have become of interest in lung adenocarcinomas since the FDA approval of target therapies for METamp and METex14 in 2020. However, after using MET target therapies, tumor cells develop adaptative changes, favoring tumor resistance to drugs, the main current challenge to precision medicine. Here, we review a link between the resistance mechanism and MET signaling pathways, which is not only limited to MET. The resistance impacts MET parallel tyrosine kinase receptors and signals shared hubs. Therefore, this information could be relevant in the patient's mutational profile evaluation before the first target therapy prescription and follow-up to reduce the risk of drug resistance. However, to develop a resistance mechanism to a MET inhibitor, patients must have access to the drugs. For instance, none of the FDA approved MET inhibitors are registered as such in Chile and other developing countries. Constant cross-feeding between basic and clinical research will thus be required to meet future challenges imposed by the acquired resistance to targeted therapies.
Collapse
Affiliation(s)
- Solange Rivas
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Arnaldo Marín
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Suraj Samtani
- Departamento de Oncología Médica, Clínica Las Condes, Santiago 7550000, Chile
- Hospital Félix Bulnes, Santiago 9080000, Chile
| | - Evelin González-Feliú
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
- Correspondence:
| |
Collapse
|
9
|
Glykofridis IE, Henneman AA, Balk JA, Goeij-de Haas R, Westland D, Piersma SR, Knol JC, Pham TV, Boekhout M, Zwartkruis FJT, Wolthuis RMF, Jimenez CR. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics 2022; 21:100263. [PMID: 35863698 PMCID: PMC9421328 DOI: 10.1016/j.mcpro.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/26/2022] Open
Abstract
In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114 and Ser122, which may be caused by fact that FLCNNEG cells experience oxidative stress. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alex A Henneman
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Richard Goeij-de Haas
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Michiel Boekhout
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Chadelle L, Liu J, Choesmel-Cadamuro V, Karginov AV, Froment C, Burlet-Schiltz O, Gandarillas S, Barreira Y, Segura C, Van Den Berghe L, Czaplicki G, Van Acker N, Dalenc F, Franchet C, Hahn KM, Wang X, Belguise K. PKCθ-mediated serine/threonine phosphorylations of FAK govern adhesion and protrusion dynamics within the lamellipodia of migrating breast cancer cells. Cancer Lett 2022; 526:112-130. [PMID: 34826547 PMCID: PMC9019305 DOI: 10.1016/j.canlet.2021.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.
Collapse
Affiliation(s)
- Lucie Chadelle
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiaying Liu
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Valérie Choesmel-Cadamuro
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Andrei V. Karginov
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Gandarillas
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Yara Barreira
- Service d’Expérimentation Animale, UMS 006/CREFRE Inserm/UPS, 31059, Toulouse, France
| | - Christele Segura
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Loïc Van Den Berghe
- Pole Technologique UMR1037, CRCT (Cancer Research Center of Toulouse), INSERM, UPS, F-31037, Toulouse, France
| | - Georges Czaplicki
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Van Acker
- CHU Toulouse, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse – Oncopole ; Département d’oncologie médicale,1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Camille Franchet
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse - Oncopole ; Département d’Anatomie Pathologique, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Klaus M. Hahn
- Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| | - Karine Belguise
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Correspondence should be addressed to K.B () and X.W. ()
| |
Collapse
|
11
|
Rashmi, More SK, Wang Q, Vomhof‐DeKrey EE, Porter JE, Basson MD. ZINC40099027 activates human focal adhesion kinase by accelerating the enzymatic activity of the FAK kinase domain. Pharmacol Res Perspect 2021; 9:e00737. [PMID: 33715263 PMCID: PMC7955952 DOI: 10.1002/prp2.737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates gastrointestinal epithelial restitution and healing. ZINC40099027 (Zn27) activates cellular FAK and promotes intestinal epithelial wound closure in vitro and in mice. However, whether Zn27 activates FAK directly or indirectly remains unknown. We evaluated Zn27 potential modulation of the key phosphatases, PTP-PEST, PTP1B, and SHP2, that inactivate FAK, and performed in vitro kinase assays with purified FAK to assess direct Zn27-FAK interaction. In human Caco-2 cells, Zn27-stimulated FAK-Tyr-397 phosphorylation despite PTP-PEST inhibition and did not affect PTP1B-FAK interaction or SHP2 activity. Conversely, in vitro kinase assays demonstrated that Zn27 directly activates both full-length 125 kDa FAK and its 35 kDa kinase domain. The ATP-competitive FAK inhibitor PF573228 reduced basal and ZN27-stimulated FAK phosphorylation in Caco-2 cells, but Zn27 increased FAK phosphorylation even in cells treated with PF573228. Increasing PF573228 concentrations completely prevented activation of 35 kDa FAK in vitro by a normally effective Zn27 concentration. Conversely, increasing Zn27 concentrations dose-dependently activated kinase activity and overcame PF573228 inhibition of FAK, suggesting the direct interactions of Zn27 with FAK may be competitive. Zn27 increased the maximal activity (Vmax ) of FAK. The apparent Km of the substrate also increased under laboratory conditions less relevant to intracellular ATP concentrations. These results suggest that Zn27 is highly potent and enhances FAK activity via allosteric interaction with the FAK kinase domain to increase the Vmax of FAK for ATP. Understanding Zn27 enhancement of FAK activity will be important to redesign and develop a clinical drug that can promote mucosal wound healing.
Collapse
Affiliation(s)
- Rashmi
- Department of SurgeryUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| | - Shyam K. More
- Department of SurgeryUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| | - Qinggang Wang
- Department of SurgeryUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| | - Emilie E. Vomhof‐DeKrey
- Department of SurgeryUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| | - James E. Porter
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| | - Marc D. Basson
- Department of SurgeryUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
- Department of PathologyUniversity of North Dakota School of Medicine & Health SciencesGrand ForksNDUSA
| |
Collapse
|
12
|
FAK Signaling in Rhabdomyosarcoma. Int J Mol Sci 2020; 21:ijms21228422. [PMID: 33182556 PMCID: PMC7697003 DOI: 10.3390/ijms21228422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of children and adolescents. The fusion-positive (FP)-RMS variant expressing chimeric oncoproteins such as PAX3-FOXO1 and PAX7-FOXO1 is at high risk. The fusion negative subgroup, FN-RMS, has a good prognosis when non-metastatic. Despite a multimodal therapeutic approach, FP-RMS and metastatic FN-RMS often show a dismal prognosis with 5-year survival of less than 30%. Therefore, novel targets need to be discovered to develop therapies that halt tumor progression, reducing long-term side effects in young patients. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates focal contacts at the cellular edges. It plays a role in cell motility, survival, and proliferation in response to integrin and growth factor receptors’ activation. FAK is often dysregulated in cancer, being upregulated and/or overactivated in several adult and pediatric tumor types. In RMS, both in vitro and preclinical studies point to a role of FAK in tumor cell motility/invasion and proliferation, which is inhibited by FAK inhibitors. In this review, we summarize the data on FAK expression and modulation in RMS. Moreover, we give an overview of the approaches to inhibit FAK in both preclinical and clinical cancer settings.
Collapse
|
13
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
14
|
Zhang Y, Sun X. Role of Focal Adhesion Kinase in Head and Neck Squamous Cell Carcinoma and Its Therapeutic Prospect. Onco Targets Ther 2020; 13:10207-10220. [PMID: 33116602 PMCID: PMC7553669 DOI: 10.2147/ott.s270342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers are one of the most prevalent cancers globally. Among them, head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers, which occurs in the oral cavity, oral pharynx, hypopharynx and larynx. The 5-year survival rate of HNSCC patients is only 63%, mainly because about 80–90% of patients with advanced HNSCC tend to suffer from local recurrence or even distant metastasis. Despite the more in-depth understanding of the molecular mechanisms underlying the occurrence and progression of HNSCC in recent years, effective targeted therapies are unavailable for HNSCC, which emphasize the urgent demand for studies in this area. Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase that contributes to oncogenesis and tumor progression by its significant function in cell survival, proliferation, adhesion, invasion and migration. In addition, FAK exerts an effect on the tumor microenvironment, epithelial–mesenchymal transition, radiation (chemotherapy) resistance, tumor stem cells and regulation of inflammatory factors. Moreover, the overexpression and activation of FAK are detected in multiple types of tumors, including HNSCC. FAK inhibition can induce cell cycle arrest and apoptosis, significantly decrease cell growth, invasion and migration in HNSCC cell lines. In this article, we mainly review the research progress of FAK in the occurrence, development and metastasis of HNSCC, and put forward the prospects for the therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules 2020; 10:biom10020179. [PMID: 31991559 PMCID: PMC7072507 DOI: 10.3390/biom10020179] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase with key roles in the regulation of cell adhesion migration, proliferation and survival. In cancer FAK is a major driver of invasion and metastasis and its upregulation is associated with poor patient prognosis. FAK is autoinhibited in the cytosol, but activated upon localisation into a protein complex, known as focal adhesion complex. This complex forms upon cell adhesion to the extracellular matrix (ECM) at the cytoplasmic side of the plasma membrane at sites of ECM attachment. FAK is anchored to the complex via multiple sites, including direct interactions with specific membrane lipids and connector proteins that attach focal adhesions to the actin cytoskeleton. In migrating cells, the contraction of actomyosin stress fibres attached to the focal adhesion complex apply a force to the complex, which is likely transmitted to the FAK protein, causing stretching of the FAK molecule. In this review we discuss the current knowledge of the FAK structure and how specific structural features are involved in the regulation of FAK signalling. We focus on two major regulatory mechanisms known to contribute to FAK activation, namely interactions with membrane lipids and stretching forces applied to FAK, and discuss how they might induce structural changes that facilitate FAK activation.
Collapse
|
16
|
Huang X, Ye Q, Chen M, Li A, Mi W, Fang Y, Zaytseva YY, O'Connor KL, Vander Kooi CW, Liu S, She QB. N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nat Commun 2019; 10:3708. [PMID: 31420553 PMCID: PMC6697747 DOI: 10.1038/s41467-019-11580-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropilin-1 (NRP1) is an essential transmembrane receptor with a variety of cellular functions. Here, we identify two human NRP1 splice variants resulting from the skipping of exon 4 and 5, respectively, in colorectal cancer (CRC). Both NRP1 variants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes. This increased endocytic trafficking of the two NRP1 variants, upon HGF stimulation, is due to loss of N-glycosylation at the Asn150 or Asn261 site, respectively. Moreover, these NRP1 variants enhance interactions with the Met and β1-integrin receptors, resulting in Met/β1-integrin co-internalization and co-accumulation on endosomes. This provides persistent signals to activate the FAK/p130Cas pathway, thereby promoting CRC cell migration, invasion and metastasis. Blocking endocytosis or endosomal Met/β1-integrin/FAK signaling profoundly inhibits the oncogenic effects of both NRP1 variants. These findings reveal an important role for these NRP1 splice variants in the regulation of endocytic trafficking for cancer cell dissemination.
Collapse
Affiliation(s)
- Xiuping Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Mi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Craig W Vander Kooi
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
17
|
Loving HS, Underbakke ES. Conformational Dynamics of FERM-Mediated Autoinhibition in Pyk2 Tyrosine Kinase. Biochemistry 2019; 58:3767-3776. [DOI: 10.1021/acs.biochem.9b00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hanna S. Loving
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Eric S. Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Noriega-Guerra H, Freitas VM. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 2018; 19:ijms19113300. [PMID: 30352967 PMCID: PMC6274944 DOI: 10.3390/ijms19113300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the tumor microenvironment involved in numerous cellular processes that contribute to cancer progression. It is acknowledged that tumor–stromal cell communication is driven by a complex and dynamic network of cytokines, growth factors and proteases. Thus, the ECM works as a reservoir for bioactive molecules that modulate tumor cell behavior. The hepatocyte growth factor (HGF) produced by tumor and stromal cells acts as a multifunctional cytokine and activates the c-MET receptor, which is expressed in different tumor cell types. The HGF/c-MET signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion and metastasis. Moreover, c-MET activation can be promoted by several ECM components, including proteoglycans and glycoproteins that act as bridging molecules and/or signal co-receptors. In contrast, c-MET activation can be inhibited by proteoglycans, matricellular proteins and/or proteases that bind and sequester HGF away from the cell surface. Therefore, understanding the effects of ECM components on HGF and c-MET may provide opportunities for novel therapeutic strategies. Here, we give a short overview of how certain ECM components regulate the distribution and activation of HGF and c-MET.
Collapse
Affiliation(s)
- Heydi Noriega-Guerra
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| | - Vanessa Morais Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
20
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
21
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
22
|
Park J, Jang JH, Oh S, Kim M, Shin C, Jeong M, Heo K, Park JB, Kim SR, Oh YS. LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA 1 and LPA 2. Cell Signal 2018; 44:138-147. [PMID: 29329782 DOI: 10.1016/j.cellsig.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Seojin Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minhye Kim
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Changhoon Shin
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Minseok Jeong
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea.
| |
Collapse
|
23
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma. Cancers (Basel) 2017; 9:cancers9070087. [PMID: 28696366 PMCID: PMC5532623 DOI: 10.3390/cancers9070087] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described.
Collapse
|
25
|
Hall JE, Schaller MD. Phospholipid binding to the FAK catalytic domain impacts function. PLoS One 2017; 12:e0172136. [PMID: 28222177 PMCID: PMC5319746 DOI: 10.1371/journal.pone.0172136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak-/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function.
Collapse
Affiliation(s)
- Jessica E. Hall
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Michael D. Schaller
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Herzog FA, Braun L, Schoen I, Vogel V. Structural Insights How PIP2 Imposes Preferred Binding Orientations of FAK at Lipid Membranes. J Phys Chem B 2017; 121:3523-3535. [DOI: 10.1021/acs.jpcb.6b09349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Florian A. Herzog
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Lukas Braun
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Viola Vogel
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Jeon HM, Lee J. MET: roles in epithelial-mesenchymal transition and cancer stemness. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:5. [PMID: 28164090 DOI: 10.21037/atm.2016.12.67] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Antoniades I, Stylianou P, Christodoulou N, Skourides PA. Addressing the Functional Determinants of FAK during Ciliogenesis in Multiciliated Cells. J Biol Chem 2016; 292:488-504. [PMID: 27895123 DOI: 10.1074/jbc.m116.767111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets and form complexes named ciliary adhesions (CAs). CAs display similarities with FAs but are established in an integrin independent fashion and are responsible for anchoring basal bodies to the actin cytoskeleton during ciliogenesis as well as in mature multiciliated cells. FAK down-regulation leads to aberrant ciliogenesis due to impaired association between the basal bodies and the actin cytoskeleton, suggesting that FAK is an important regulator of the CA complex. However, the mechanism through which FAK functions in the complex is not clear, and in this study we examined the role of this protein in both ciliogenesis and ciliary function. We show that localization of FAK at CAs depends on interactions taking place at the amino-terminal (FERM) and carboxyl-terminal (FAT) domains and that both domains are required for proper ciliogenesis and ciliary function. Furthermore, we show that an interaction with another CA protein, paxillin, is essential for correct localization of FAK in multiciliated cells. This interaction is indispensable for both ciliogenesis and ciliary function. Finally, we provide evidence that despite the fact that FAK is in the active, open conformation at CAs, its kinase activity is dispensable for ciliogenesis and ciliary function revealing that FAK plays a scaffolding role in multiciliated cells. Overall these data show that the role of FAK at CAs displays similarities but also important differences compared with its role at FAs.
Collapse
Affiliation(s)
- Ioanna Antoniades
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Panayiota Stylianou
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Neophytos Christodoulou
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| | - Paris A Skourides
- From the Laboratory of Cell Biology and Molecular Embryology, Department of Biological Sciences, University of Cyprus, 1 University Avenue, Nicosia 2109, Cyprus
| |
Collapse
|
29
|
FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy. Sci Rep 2016; 6:34316. [PMID: 27677358 PMCID: PMC5039626 DOI: 10.1038/srep34316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation.
Collapse
|
30
|
Chung IH, Chen CY, Lin YH, Chi HC, Huang YH, Tai PJ, Liao CJ, Tsai CY, Lin SL, Wu MH, Chen CY, Lin KH. Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 2016; 6:15050-64. [PMID: 25940797 PMCID: PMC4558135 DOI: 10.18632/oncotarget.3670] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
The thyroid hormone, 3,3′,5-triiodo-L-thyronine (T3), regulates cell growth, development and differentiation via interactions with thyroid hormone receptors (TR), but the mechanisms underlying T3-mediated modulation of cancer progression are currently unclear. Lipocalin 2 (LCN2), a tumor-associated protein, is overexpressed in a variety of cancer types. Oligonucleotide microarray, coupled with proteomic analysis, has revealed that LCN2 is positively regulated by T3/TR. However, the physiological role and pathway of T3-mediated regulation of LCN2 in hepatocellular carcinogenesis remain to be characterized. Upregulation of LCN2 after T3 stimulation was observed in a time- and dose-dependent manner. Additionally, TRE on the LCN2 promoter was identified at positions −1444/−1427. Overexpression of LCN2 enhanced tumor cell migration and invasion, and conversely, its knockdown suppressed migration and invasion, both in vitro and in vivo. LCN2-induced migration occurred through activation of the Met/FAK cascade. LCN2 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively correlated with TRα levels. Both TRα and LCN2 showed similar expression patterns in relation to survival rate, tumor grade, tumor stage and vascular invasion. Our findings collectively support a potential role of T3/TR in cancer progression through regulation of LCN2 via the Met/FAK cascade. LCN2 may thus be effectively utilized as a novel marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- I-Hsiao Chung
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Pei-Ju Tai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Syuan-Ling Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Bennett CG, Riemondy K, Chapnick DA, Bunker E, Liu X, Kuersten S, Yi R. Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration. Nucleic Acids Res 2016; 44:3788-800. [PMID: 27034466 PMCID: PMC4857000 DOI: 10.1093/nar/gkw207] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022] Open
Abstract
The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3′UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration.
Collapse
Affiliation(s)
- Christopher G Bennett
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Douglas A Chapnick
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Eric Bunker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Scott Kuersten
- Illumina Inc., 5602 Research Park Blvd. Suite 200, Madison, WI 53719, USA
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
32
|
Endosomes: Emerging Platforms for Integrin-Mediated FAK Signalling. Trends Cell Biol 2016; 26:391-398. [PMID: 26944773 DOI: 10.1016/j.tcb.2016.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
Abstract
Integrins are vital cell adhesion receptors with the ability to transmit extracellular matrix (ECM) cues to intracellular signalling pathways. ECM-integrin signalling regulates various cellular functions such as cell survival and movement. Integrin signalling has been considered to occur exclusively from adhesion sites at the plasma membrane (PM). However, recent data demonstrates integrin signalling also from endosomes. Integrin-mediated focal adhesion kinase (FAK) signalling is strongly dependent on integrin endocytosis, and endosomal FAK signalling facilitates cancer metastasis by supporting anchorage-independent growth and anoikis resistance. Here we discuss the possible mechanisms and functions of endosomal FAK signalling compared with its previously known roles in other cellular locations and discuss the potential of endosomal FAK as novel target for future cancer therapies.
Collapse
|
33
|
Cho O, Hwang HS, Lee BS, Oh YT, Kim CH, Chun M. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor. Radiat Oncol J 2015; 33:328-36. [PMID: 26756033 PMCID: PMC4707216 DOI: 10.3857/roj.2015.33.4.328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/09/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023] Open
Abstract
Purpose Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Materials and Methods Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). Results This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. Conclusion These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.
Collapse
Affiliation(s)
- Oyeon Cho
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Hye-Sook Hwang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Taek Oh
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| | - Mison Chun
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
34
|
Zhou J, Aponte-Santamaría C, Sturm S, Bullerjahn JT, Bronowska A, Gräter F. Mechanism of Focal Adhesion Kinase Mechanosensing. PLoS Comput Biol 2015; 11:e1004593. [PMID: 26544178 PMCID: PMC4636223 DOI: 10.1371/journal.pcbi.1004593] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 01/31/2023] Open
Abstract
Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. Focal adhesions integrate external mechanical signals into biochemical circuits allowing cellular mechanosensing. Although the zoo of mechanosensing proteins at focal adhesions is steadily growing, force-induced enzymatic mechanisms, as those uncovered for autoinhibited kinases in muscle, remain to be identified for focal adhesion downstream signaling. Here, we provide evidence that focal adhesion kinase (FAK) can act as a direct mechano-enzyme at focal adhesions, using molecular dynamics simulations and kinetic modelling. We show that anchorage of FAK to the membrane via PIP-2 is critical for this mechanical activation. Our results suggest similar mechanisms to be at play for other membrane-bound autoinhibited kinases.
Collapse
Affiliation(s)
- Jing Zhou
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Sebastian Sturm
- Leipzig University, Institute for Theoretical Physics, Leipzig, Germany
| | | | | | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Zhao Z, Sun Y, Yang S, Cui Q, Li Z. FAK activity is required for HGF to suppress TGF-β1-induced cellular proliferation. In Vitro Cell Dev Biol Anim 2015; 51:941-949. [PMID: 25898827 DOI: 10.1007/s11626-015-9914-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Due to the complex nature of the tendon architecture, the regeneration of these tissues results in the formation of scars. As a direct result of scar formation, the ability of the tendon tissues to function is impaired and often results in further damage that has been afflicted to the tendon architecture. The growth and proliferation of tendon fibroblasts involve a complex network of signalling molecules. To understand and aid in the proper repair of this complex tissue network, a more in-depth understanding is required in the events that induce the growth of tendon cells. Several studies have shown the apoptotic mechanisms induced by the mitogen, hepatocyte growth factor, in multiple biological and pathological systems. In our recent research, we have described a mechanism where hepatocyte growth factor (HGF) is able to inhibit the proliferative effects of transforming growth factor-β1 (TGF-β1) and induce apoptosis in rat tendon fibroblasts. Transforming growth factor-β1 is able to induce the proliferation of fibroblast cells by increasing both the gene expression and protein levels of α-smooth muscle actin (α-SMA) and c-MET. We have also shown that inhibition of extracellular signal-regulated kinase 1/2 does not block hepatocyte growth factor-induced growth arrest. However, we have shown that blocking the activity of focal adhesion kinase can prevent the growth inhibition ability of hepatocyte growth factor in tendon fibroblasts. Collectively, our studies show growth inhibitory pathway in tendon fibroblasts induced by hepatocyte growth factor and mediated focal adhesion kinase.
Collapse
Affiliation(s)
- Zheng Zhao
- Pediatric Orthopedics Unit, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Yu Sun
- Pediatric Orthopedics Unit, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Sulong Yang
- Pediatric Orthopedics Unit, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Qingbo Cui
- Pediatric Orthopedics Unit, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Zhaozhu Li
- Pediatric Orthopedics Unit, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
36
|
Lee JW. Transmembrane 4 L Six Family Member 5 (TM4SF5)-Mediated Epithelial-Mesenchymal Transition in Liver Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:141-63. [PMID: 26404468 DOI: 10.1016/bs.ircmb.2015.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The membrane protein TM4SF5, a member of the transmembrane 4L six family, forms a tetraspanin-enriched microdomain (TEM) on the cell surface, where many different membrane proteins and receptors form a massive protein-protein complex to regulate cellular functions including transdifferentiation, migration, and invasion. We recently reported that TM4SF5 causes epithelial-mesenchymal transition (EMT), eventually contributing to aberrant multilayer cellular growth, drug resistance, enhanced migration, invasion, its circulation in the blood, tumor initiation for successful metastasis, and muscle development in zebrafish. In this review, I summarize the information on the role of TM4SF5 in EMT-related functions at TM4SF5-enriched microdomain (T5EM) on cell surface, where proteins such as TM4SF5, CD151, CD44, integrins, and epidermal growth factor receptor (EGFR) can form numerous protein complexes. TM4SF5-mediated EMT contributes to diverse cellular functions, leading to fibrotic phenotypes and initiating and maintaining tumors in primary and/or metastatic regions, in addition to its role in muscle development in zebrafish. Anti-TM4SF5 strategies for addressing the protein networks can lead to regulation of the fibrotic, tumorigenic, and tumor-maintaining functions of TM4SF5-positive hepatic cells. This review is for us to (re)consider the antifibrotic or antitumorigenic (i.e., anti-EMT-related diseases) strategies of dealing with protein networks that would be involved in cross-talks to regulate various cellular functions during TM4SF5-dependent progression from fibrotic to cancerous hepatic cells.
Collapse
Affiliation(s)
- Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Tumor Microenvironment Global Core Research Center, Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
37
|
Walkiewicz KW, Girault JA, Arold ST. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:60-71. [PMID: 26093249 DOI: 10.1016/j.pbiomolbio.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/07/2015] [Accepted: 06/14/2015] [Indexed: 01/12/2023]
Abstract
The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner.
Collapse
Affiliation(s)
- Katarzyna W Walkiewicz
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, F-75005 Paris, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia.
| |
Collapse
|
38
|
Wala SJ, Karamchandani JR, Saleeb R, Evans A, Ding Q, Ibrahim R, Jewett M, Pasic M, Finelli A, Pace K, Lianidou E, Yousef GM. An integrated genomic analysis of papillary renal cell carcinoma type 1 uncovers the role of focal adhesion and extracellular matrix pathways. Mol Oncol 2015; 9:1667-77. [PMID: 26051997 DOI: 10.1016/j.molonc.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 02/03/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common RCC subtype and can be further classified as type 1 (pRCC1) or 2 (pRCC2). There is currently minimal understanding of pRCC1 pathogenesis, and treatment decisions are mostly empirical. The aim of this study was to identify biological pathways that are involved in pRCC1 pathogenesis using an integrated genomic approach. By microarray analysis, we identified a number of significantly dysregulated genes and microRNAs (miRNAs) that were unique to pRCC1. Integrated bioinformatics analyses showed enrichment of the focal adhesion and extracellular matrix (ECM) pathways. We experimentally validated that many members of these pathways are dysregulated in pRCC1. We identified and experimentally validated the downregulation of miR-199a-3p in pRCC1. Using cell line models, we showed that miR-199a-3p plays an important role in pRCC1 pathogenesis. Gain of function experiments showed that miR-199a-3p overexpression significantly decreased cell proliferation (p = 0.013). We also provide evidence that miR-199a-3p regulates the expression of genes linked to the focal adhesion and ECM pathways, such as caveolin 2 (CAV2), integrin beta 8 (ITGB8), MET proto-oncogene and mammalian target of rapamycin (MTOR). Using a luciferase reporter assay, we further provide evidence that miR-199a-3p overexpression decreases the expression of MET and MTOR. Using an integrated gene/miRNA approach, we provide evidence linking miRNAs to the focal adhesion and ECM pathways in pRCC1 pathogenesis. This novel information can contribute to the development of effective targeted therapies for pRCC1, for which there is none currently available in the clinic.
Collapse
Affiliation(s)
- Samantha Jane Wala
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Jason Raj Karamchandani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Andrew Evans
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Qiang Ding
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Rania Ibrahim
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Michael Jewett
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Maria Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Laboratory Medicine, St. Joseph's Health Centre, 30 Queensway, Ontario M6R 1B5, Canada.
| | - Antonio Finelli
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Kenneth Pace
- Department of Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - George Makram Yousef
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
39
|
Zhou J, Bronowska A, Le Coq J, Lietha D, Gräter F. Allosteric regulation of focal adhesion kinase by PIP₂ and ATP. Biophys J 2015; 108:698-705. [PMID: 25650936 PMCID: PMC4317530 DOI: 10.1016/j.bpj.2014.11.3454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that regulates cell signaling, proliferation, migration, and development. A major mechanism of regulation of FAK activity is an intramolecular autoinhibitory interaction between two of its domains--the catalytic and FERM domains. Upon cell adhesion to the extracellular matrix, FAK is being translocated toward focal adhesion sites and activated. Interactions of FAK with phosphoinositide phosphatidylinsositol-4,5-bis-phosphate (PIP₂) are required to activate FAK. However, the molecular mechanism of the activation remains poorly understood. Recent fluorescence resonance energy transfer experiments revealed a closure of the FERM-kinase interface upon ATP binding, which is reversed upon additional binding of PIP₂. Here, we addressed the allosteric regulation of FAK by performing all-atom molecular-dynamics simulations of a FAK fragment containing the catalytic and FERM domains, and comparing the dynamics in the absence or presence of ATP and PIP₂. As a major conformational change, we observe a closing and opening motion upon ATP and additional PIP₂ binding, respectively, in good agreement with the fluorescence resonance energy transfer experiments. To reveal how the binding of the regulatory PIP₂ to the FERM F2 lobe is transduced to the very distant F1/N-lobe interface, we employed force distribution analysis. We identified a network of mainly charged residue-residue interactions spanning from the PIP₂ binding site to the distant interface between the kinase and FERM domains, comprising candidate residues for mutagenesis to validate the predicted mechanism of FAK activation.
Collapse
Affiliation(s)
- Jing Zhou
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | | | - Daniel Lietha
- Spanish National Cancer Research Centre, Madrid, Spain
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg, Germany.
| |
Collapse
|
40
|
Spina A, De Pasquale V, Cerulo G, Cocchiaro P, Della Morte R, Avallone L, Pavone LM. HGF/c-MET Axis in Tumor Microenvironment and Metastasis Formation. Biomedicines 2015; 3:71-88. [PMID: 28536400 PMCID: PMC5344235 DOI: 10.3390/biomedicines3010071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Metastasis formation is a multistep process that requires acquisition by tumor cells of a malignant phenotype that allows them to escape from the primary tumor site and invade other organs. Each step of this mechanism involves a deep crosstalk between tumor cells and their microenvironment where the host cells play a key role in influencing metastatic behavior through the release of many secreted factors. Among these signaling molecules, Hepatocyte Growth Factor (HGF) is released by many cell types of the tumor microenvironment to target its receptor c-MET within the cells of the primary tumor. Many studies reveal that HGF/c-MET axis is implicated in various human cancers, and genetic and epigenetic gain of functions of this signaling contributes to cancer development through a variety of mechanisms. In this review, we describe the specific types of cells in the tumor microenvironment that release HGF in order to promote the metastatic outgrowth through the activation of extracellular matrix remodeling, inflammation, migration, angiogenesis, and invasion. We dissect the potential use of new molecules that interfere with the HGF/c-MET axis as therapeutic targets for future clinical trials in cancer disease.
Collapse
Affiliation(s)
- Anna Spina
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
41
|
Shang N, Arteaga M, Zaidi A, Stauffer J, Cotler SJ, Zeleznik-Le NJ, Zhang J, Qiu W. FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology 2015; 61:214-26. [PMID: 25163657 PMCID: PMC4280291 DOI: 10.1002/hep.27402] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/23/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide and most patients with HCC have limited treatment options. Focal adhesion kinase (FAK) is overexpressed in many HCC specimens, offering a potential target for HCC treatment. However, the role of FAK in hepatocarcinogenesis remains elusive. Establishing whether FAK expression plays a role in HCC development is necessary to determine whether it is a viable therapeutic target. In this study, we generated mice with hepatocyte-specific deletion of Fak and investigated the role of Fak in an oncogenic (c-MET/β-catenin, MET/CAT)-driven HCC model. We found that deletion of Fak in hepatocytes did not affect morphology, proliferation, or apoptosis. However, Fak deficiency significantly repressed MET/CAT-induced tumor development and prolonged survival of animals with MET/CAT-induced HCC. In mouse livers and HCC cell lines, Fak was activated by MET, which induced the activation of Akt/Erk and up-regulated cyclin D1 and tumor cell proliferation. CAT enhanced MET-stimulated FAK activation and synergistically induced the activation of the AKT/ERK-cyclin D1 signaling pathway in a FAK kinase-dependent manner. In addition, FAK was required for CAT-induced cyclin D1 expression in a kinase-independent fashion. CONCLUSION Fak is required for c-Met/β-catenin-driven hepatocarcinogenesis. Inhibition of FAK provides a potential strategy to treat HCC.
Collapse
Affiliation(s)
- Na Shang
- Department of Surgery and Oncology Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Stewart JE, Ma X, Megison M, Nabers H, Cance WG, Kurenova EV, Beierle EA. Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma. Mol Carcinog 2015; 54:9-23. [PMID: 23868727 PMCID: PMC4370318 DOI: 10.1002/mc.22070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/01/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK-VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK-VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK-VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood.
Collapse
Affiliation(s)
- Jerry E Stewart
- University of Alabama, Birmingham, 1600 7th Ave. S., Lowder Building, Room 300, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
43
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
44
|
Fang X, Liu X, Yao L, Chen C, Lin J, Ni P, Zheng X, Fan Q. New insights into FAK phosphorylation based on a FAT domain-defective mutation. PLoS One 2014; 9:e107134. [PMID: 25226367 PMCID: PMC4166415 DOI: 10.1371/journal.pone.0107134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/27/2023] Open
Abstract
Mounting evidence suggests that the FAK N-terminal (FERM) domain controls FAK phosphorylation and function; however, little is known regarding the role of the C terminal (FAT) domain in FAK regulation. We identified a patient-derived FAK mutant, in which a 27-amino acid segment was deleted from the C-terminal FAT domain (named FAK-Del33). When FAK-Del33 was overexpressed in specific tumor cell lines, Y397 phosphorylation increased compared with that observed in cells expressing FAK-WT. Here, we attempt to unveil the mechanism of this increased phosphorylation. Using cell biology experiments, we show that FAK-Del33 is incapable of co-localizing with paxillin, and has constitutively high Y397 phosphorylation. With a kinase-dead mutation, it showed phosphorylation of FAK-Del33 has enhanced through auto-phosphorylation. It was also demonstrated that phosphorylation of FAK-Del33 is not Src dependent or enhanced intermolecular interactions, and that the hyperphosphorylation can be lowered using increasing amounts of transfected FERM domain. This result suggests that Del33 mutation disrupting of FAT's structural integrity and paxillin binding capacity leads to incapable of targeting Focal adhesions, but has gained the capacity for auto-phosphorylation in cis.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xiangfan Liu
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Ling Yao
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Jiafei Lin
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xinmin Zheng
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qishi Fan
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
45
|
Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM, Huang MC. C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One 2014; 9:e94995. [PMID: 25089569 PMCID: PMC4121071 DOI: 10.1371/journal.pone.0094995] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer cell invasion and metastasis are the primary causes of treatment failure and death in hepatocellular carcinoma (HCC). We previously reported that core 1 β1,3-galactosyltransferase (C1GALT1) is frequently overexpressed in HCC tumors and its expression is associated with advanced tumor stage, metastasis, and poor survival. However, the underlying mechanisms of C1GALT1 in HCC malignancy remain unclear. In this study, we found that overexpression of C1GALT1 enhanced HCC cell adhesion to extracellular matrix (ECM) proteins, migration, and invasion, whereas RNAi-mediated knockdown of C1GALT1 suppressed these phenotypes. The promoting effect of C1GALT1 on the metastasis of HCC cells was demonstrated in a mouse xenograft model. Mechanistic investigations showed that the C1GALT1-enhanced phenotypic changes in HCC cells were significantly suppressed by anti-integrin β1 blocking antibody. Moreover, C1GALT1 was able to modify O-glycans on integrin β1 and regulate integrin β1 activity as well as its downstream signaling. These results suggest that C1GALT1 could enhance HCC invasiveness through integrin β1 and provide novel insights into the roles of O-glycosylation in HCC metastasis.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/secondary
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Galactosyltransferases/antagonists & inhibitors
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Expression Regulation, Neoplastic
- Glycosylation
- Humans
- Integrin beta1/genetics
- Integrin beta1/metabolism
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice
- Mice, SCID
- Neoplasm Invasiveness
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Miao-Juei Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hua Chen
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (M-CH); (Y-MW)
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (M-CH); (Y-MW)
| |
Collapse
|
46
|
Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proc Natl Acad Sci U S A 2014; 111:E3177-86. [PMID: 25049397 DOI: 10.1073/pnas.1317022111] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the players involved are known; however, mechanistically, FAK activation is not understood. Here, using a multidisciplinary approach, including biochemical, biophysical, structural, computational, and cell biology approaches, we provide a detailed view of a multistep activation mechanism of FAK initiated by phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Interestingly, the mechanism differs from canonical NRTK activation and is tailored to the dual catalytic and scaffolding function of FAK. We find PI(4,5)P2 induces clustering of FAK on the lipid bilayer by binding a basic region in the regulatory 4.1, ezrin, radixin, moesin homology (FERM) domain. In these clusters, PI(4,5)P2 induces a partially open FAK conformation where the autophosphorylation site is exposed, facilitating efficient autophosphorylation and subsequent Src recruitment. However, PI(4,5)P2 does not release autoinhibitory interactions; rather, Src phosphorylation of the activation loop in FAK results in release of the FERM/kinase tether and full catalytic activation. We propose that PI(4,5)P2 and its generation in focal adhesions by the enzyme phosphatidylinositol 4-phosphate 5-kinase type Iγ are important in linking integrin signaling to FAK activation.
Collapse
|
47
|
Fang JD, Lee SL. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1285-94. [DOI: 10.1016/j.bbamcr.2014.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/19/2014] [Accepted: 03/23/2014] [Indexed: 12/31/2022]
|
48
|
Mouradian M, Kikawa K, Johnson E, Beck K, Pardini R. Key roles for GRB2-associated-binding protein 1, phosphatidylinositol-3-kinase, cyclooxygenase 2, prostaglandin E2 and transforming growth factor alpha in linoleic acid-induced upregulation of lung and breast cancer cell growth. Prostaglandins Leukot Essent Fatty Acids 2014; 90:105-115. [PMID: 24374147 PMCID: PMC4138981 DOI: 10.1016/j.plefa.2013.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 01/09/2023]
Abstract
The distribution of omega-6 and omega-3 polyunsaturated fatty acid (PUFA) intake in Western diets is disproportionate, containing an overabundance of the omega-6 PUFA, linoleic acid (LA; C18:2). Increased enrichment with LA has been shown to contribute to the enhancement of tumorigenesis in several cancer models. Previous work has indicated that phosphatidylinositol 3-kinase (PI3K) may play a key role in LA-induced tumorigenesis. However, the modes by which LA affects carcinogenesis have not been fully elucidated. In this study, a mechanism for LA-induced upregulation of cancer cell growth is defined. LA treatment enhanced cellular proliferation in BT-474 human breast ductal carcinoma and A549 human lung adenocarcinoma cell lines. Enrichment of LA increased cyclooxygenase (COX) activity and led to increases in prostaglandin E2 (PGE2), followed by increases in matrix metalloproteinase (MMP) and transforming growth factor alpha (TGF-α) levels, which are all key elements involved in the enhancement of cancer cell growth. Further investigation revealed that LA supplementation in both BT-474 breast and A549 lung cancer cell lines greatly increased the association between the scaffolding protein GRB2-associated-binding protein 1 (Gab1) and epidermal growth factor receptor (EGFR), although Gab1 protein levels were significantly decreased. These LA-induced changes were associated with increases in activated Akt (pAkt), a downstream signaling component in the PI3K pathway. Treatment with inhibitors of EGFR, PI3K and Gab1-specific siRNAs reversed the upregulation of pAkt, as well as the observed increases in cell proliferation by LA in both cell lines. A549 xenograft assessment in athymic nude mice fed high levels of LA exhibited similar increases in EGFR-Gab1 association and increased levels of pAkt, while mice fed with high levels of the omega-3 PUFA, docosahexaenoic acid (DHA; C22:6), demonstrated an opposite response. The involvement of Gab1 in LA-induced tumorigenesis was further defined utilizing murine cell lines that express high levels of Gab1. Significant increases in cell proliferation were observed with the addition of increasing concentrations of LA. However, no changes in cell proliferation were detected in the murine paired cell lines expressing little or no Gab1 protein, establishing Gab1 as major target in LA-induced enhancement of tumorigenesis.
Collapse
Affiliation(s)
- M. Mouradian
- Corresponding Author: Michael Mouradian University of Nevada, Reno 1664 N. Virginia St. MS330 Reno, NV 89557 775-784-6237 (Phone) 775-784-1419 (FAX)
| | | | | | | | | |
Collapse
|
49
|
Macagno JP, Diaz Vera J, Yu Y, MacPherson I, Sandilands E, Palmer R, Norman JC, Frame M, Vidal M. FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells. PLoS Genet 2014; 10:e1004262. [PMID: 24676055 PMCID: PMC3967952 DOI: 10.1371/journal.pgen.1004262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours.
Collapse
Affiliation(s)
- Juan Pablo Macagno
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Jesica Diaz Vera
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Yachuan Yu
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Iain MacPherson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ruth Palmer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Margaret Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Marcos Vidal
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
50
|
Brami-Cherrier K, Gervasi N, Arsenieva D, Walkiewicz K, Boutterin MC, Ortega A, Leonard PG, Seantier B, Gasmi L, Bouceba T, Kadaré G, Girault JA, Arold ST. FAK dimerization controls its kinase-dependent functions at focal adhesions. EMBO J 2014; 33:356-70. [PMID: 24480479 DOI: 10.1002/embj.201386399] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions--autophosphorylation of tyrosine-397--requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation.
Collapse
|