1
|
Wang X, Liu Y, Zhang S, Zhang J, Lin X, Liang Y, Zong M, Hanley KL, Lee J, Karin M, Feng GS. Genomic and transcriptomic analyses of chemical hepatocarcinogenesis aggravated by oncoprotein loss. Hepatology 2025; 81:1181-1196. [PMID: 39397357 DOI: 10.1097/hep.0000000000001037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS We generated mutant mouse lines with hepatocyte-specific deletions of Met , Ptpn11 / Shp2 , Ikkβ , or Ctnnb1/β-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Shuo Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jiemeng Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Xiaoxue Lin
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yan Liang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Min Zong
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Kaisa L Hanley
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Makrides N, Sun E, Mir H, Jiang Z, Wu Y, Serra C, Cardoso WV, Shah NH, Zhang X. Allosteric inhibition rescues hydrocephalus caused by catalytically inactive Shp2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635289. [PMID: 39974929 PMCID: PMC11838390 DOI: 10.1101/2025.01.28.635289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
SHP2, a protein tyrosine phosphatase (PTP) crucial in Ras-MAPK signaling, is associated with various human congenital diseases and cancers. Here, we show that the catalytically inactive Shp2 C459S mutation results in communicating hydrocephalus, similar to the catalytically activating Shp2 E76K and Mek1 DD mutants. Unlike previous mutants, however, Shp2 C459S/+ mutation uniquely affects ciliary development rather than neurogenesis, leading to reduced cilia density and impaired ciliary motility. Differential scanning fluorimetry revealed that SHP2 C459S , SHP2 E76K and SHP2 C459S/E76K mutations all induce an open SHP2 conformation, but only SHP2 C459S leads to aberrant GAB1 phosphorylation in cells expressing wild-type SHP2. This distinctive signaling pattern correlates with our observations in brain ventricular tissues of Shp2 C459S/+ mice, where Erk and Stat3 activities remain normal but Gab1 phosphorylation is elevated. Critically, we show that the hydrocephalus phenotype in Shp2 C459S mice can be mitigated by allosteric inhibition of Shp2. These findings suggest that Shp2-associated hydrocephalus is driven by conformational changes rather than altered catalytic activity. Our results underscore the therapeutic potential of conformation-specific allosteric inhibitors in targeting both catalytically active and inactive SHP2 mutants.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Emily Sun
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Hilal Mir
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Yihua Wu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Carlos Serra
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Kuser-Abali G, Ugurlu-Bayarslan A, Yilmaz Y, Ozcan F, Karaer F, Bugra K. SIK2: A Novel Negative Feedback Regulator of FGF2 Signaling. Adv Biol (Weinh) 2024; 8:e2400032. [PMID: 39267218 DOI: 10.1002/adbi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 09/17/2024]
Abstract
A wide range of cells respond to fibroblast growth factor 2 (FGF2) by proliferation via activation of the Ras/ERK1/2 pathway. In this study, the potential involvement of salt inducible kinase SIK2) in this cascade within retinal Müller glia is explored. It is found that SIK2 phosphorylation status and activity are modulated in an FGF2-dependent manner, possibly via ERK1/2. With SIK2 downregulation, enhanced ERK1/2 activation with delayed attenuation and increased cell proliferation is observed, while SIK2 overexpression hampers FGF2-dependent ERK1/2 activation. In vitro kinase and site-directed mutagenesis studies indicate that SIK2 targets the pathway element GRB2-associated-binding protein 1 (Gab1) on Ser266. This phosphorylation event weakens Gab1 interactions with its partners growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain containing phosphatase 2 (Shp2). Collectively, these results suggest that during FGF2-dependent proliferation process ERK1/2-mediated activation of SIK2 targets Gab1, resulting in downregulation of the Ras/ERK1/2 cascade in a feedback loop.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Faculty of Medicine Nursing & Health Sciences, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Asli Ugurlu-Bayarslan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Biology, Kastamonu University, Kastamonu, 37150, Turkey
| | - Yeliz Yilmaz
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Funda Karaer
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Ministry of Education, Turkey
| | - Kuyas Bugra
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Life Sciences Center, Bogazici University, Bebek, Istanbul, 34342, Turkey
| |
Collapse
|
4
|
Nam DE, Park SJ, Omole S, Um E, Hakami RM, Hahn YS. Activated Gab1 drives hepatocyte proliferation and anti-apoptosis in liver fibrosis via potential involvement of the HGF/c-Met signaling axis. PLoS One 2024; 19:e0306345. [PMID: 38935609 PMCID: PMC11210754 DOI: 10.1371/journal.pone.0306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Chronic liver diseases are caused by hepatic viral infection, chemicals, and metabolic stress. The protein Grb2-associated binder 1 (Gab1) binds to various growth factor receptors, and triggers cell differentiation/survival signaling pathways. To identify signaling molecules involved in the progression of liver diseases, we performed reverse-phase protein microarray (RPMA)-based screening of hepatocytes isolated from humanized mice after acute HCV infection. Acute viral infection in humanized liver mice significantly decreased the level of hepatocyte p-Gab1. Moreover, hepatoma cells upon HCV infection decreased Gab1 mRNA at later times of infection (D3 to D5) and p-Gab1 level was inversely related to the production of TGF-β. In contrast, the level of p-Gab1 was increased in CCL4-induced fibrotic liver. Hepatoma cells showed elevation of p-Gab1, along with an increase in STAT3 and ERK activation, upon treatment with HGF (ligand of HGF receptor/c-Met) and CCL4. In Gab1 knockdown hepatoma cells, cell proliferative signaling activity was reduced but the level of activated caspase-3 was increased. These findings suggest that hepatocyte Gab1 expression may play a role in promoting liver fibrosis progression by triggering ERK activation and inhibiting apoptosis. It implies that the Gab1-mediated signaling pathway would be a promising therapeutic target to treat chronic liver diseases.
Collapse
Affiliation(s)
- Da-eun Nam
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samson Omole
- School of Systems Biology, and Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Eugene Um
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ramin M. Hakami
- School of Systems Biology, and Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
5
|
Scheiter A, Lu LC, Gao LH, Feng GS. Complex Roles of PTPN11/SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:15-33. [PMID: 39959686 PMCID: PMC11824402 DOI: 10.1146/annurev-cancerbio-062722-013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The non-receptor tyrosine phosphatase SHP2 has been at the center of cell signaling research for three decades. SHP2 is required to fully activate the RTK-RAS-ERK cascade, although the underlying mechanisms are not completely understood. PTPN11, coding for SHP2, is the first identified proto-oncogene that encodes a tyrosine phosphatase, with dominantly activating mutations detected in leukemias and solid tumors. However, SHP2 has been shown to have pro- and anti-oncogenic effects, and the most recent data reveal opposite activities of SHP2 in tumor cells and microenvironment cells. Allosteric SHP2 inhibitors show promising anti-tumor effects and overcome resistance to inhibitors of RAS-ERK signaling in animal models. Many clinical trials with orally bioactive SHP2 inhibitors, alone or combined with other regimens, are ongoing for a variety of cancers worldwide, with therapeutic outcomes yet unknown. This review discusses the multi-faceted SHP2 functions in oncogenesis, preclinical studies and clinical trials with SHP2 inhibitors in oncological treatment.
Collapse
Affiliation(s)
- Alexander Scheiter
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Li-Chun Lu
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Lilian H. Gao
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
| | - Gen-Sheng Feng
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
6
|
Hsu MF, LeBleu G, Flores L, Parkhurst A, Nagy LE, Haj FG. Hepatic protein tyrosine phosphatase Shp2 disruption mitigates the adverse effects of ethanol in the liver by modulating oxidative stress and ERK signaling. Life Sci 2024; 340:122451. [PMID: 38253311 DOI: 10.1016/j.lfs.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| | - Grace LeBleu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Lizbeth Flores
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Amy Parkhurst
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
7
|
Kaneko K, Liang Y, Liu Q, Zhang S, Scheiter A, Song D, Feng GS. Identification of CD133 + intercellsomes in intercellular communication to offset intracellular signal deficit. eLife 2023; 12:RP86824. [PMID: 37846866 PMCID: PMC10581692 DOI: 10.7554/elife.86824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
CD133 (prominin 1) is widely viewed as a cancer stem cell marker in association with drug resistance and cancer recurrence. Herein, we report that with impaired RTK-Shp2-Ras-Erk signaling, heterogenous hepatocytes form clusters that manage to divide during mouse liver regeneration. These hepatocytes are characterized by upregulated CD133 while negative for other progenitor cell markers. Pharmaceutical inhibition of proliferative signaling also induced CD133 expression in various cancer cell types from multiple animal species, suggesting an inherent and common mechanism of stress response. Super-resolution and electron microscopy localize CD133 on intracellular vesicles that apparently migrate between cells, which we name 'intercellsome.' Isolated CD133+ intercellsomes are enriched with mRNAs rather than miRNAs. Single-cell RNA sequencing reveals lower intracellular diversity (entropy) of mitogenic mRNAs in Shp2-deficient cells, which may be remedied by intercellular mRNA exchanges between CD133+ cells. CD133-deficient cells are more sensitive to proliferative signal inhibition in livers and intestinal organoids. These data suggest a mechanism of intercellular communication to compensate for intracellular signal deficit in various cell types.
Collapse
Affiliation(s)
- Kota Kaneko
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Yan Liang
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Qing Liu
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Shuo Zhang
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Alexander Scheiter
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
- Institute of Pathology, University of RegensburgRegensburgGermany
| | - Dan Song
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Gen-Sheng Feng
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| |
Collapse
|
8
|
Pérez-Baena MJ, Cordero-Pérez FJ, Pérez-Losada J, Holgado-Madruga M. The Role of GAB1 in Cancer. Cancers (Basel) 2023; 15:4179. [PMID: 37627207 PMCID: PMC10453317 DOI: 10.3390/cancers15164179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleckstrin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event recruits SH2 domain-containing proteins like SHP2, PI3K's p85 subunit, CRK, and others, thereby activating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin, limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer. GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend a worse prognosis in multiple cancer types. This review focuses on GAB1's influence on cellular transformation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis-each of these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies, making it a promising target for future anticancer strategies.
Collapse
Affiliation(s)
- Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
- Virtual Institute for Good Health and Well Being (GLADE), European Campus of City Universities (EC2U), 86073 Poitiers, France
| |
Collapse
|
9
|
Liu JJ, Xin B, Du L, Chen L, Long Y, Feng GS. Pharmaceutical SH2 domain-containing protein tyrosine phosphatase 2 inhibition suppresses primary and metastasized liver tumors by provoking hepatic innate immunity. Hepatology 2023; 77:1512-1526. [PMID: 35503714 PMCID: PMC9948275 DOI: 10.1002/hep.32555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS SH2 domain-containing protein tyrosine phosphatase 2 (Shp2) is the first identified pro-oncogenic tyrosine phosphatase that acts downstream of receptor tyrosine kinases (RTKs) to promote Ras-extracellular signal-regulated kinase signaling. However, this phosphatase was also shown to be antitumorigenic in HCC. This study is aimed at deciphering paradoxical Shp2 functions and mechanisms in hepatocarcinogenesis and at exploring its value as a pharmaceutical target in HCC therapy. APPROACHES AND RESULTS We took both genetic and pharmaceutical approaches to examine the effects of Shp2 inhibition on primary liver cancers driven by various oncogenes and on metastasized liver tumors. We show here that the catalytic activity of Shp2 was essential for relay of oncogenic signals from RTKs in HCC and that chemical inhibition of Shp2 robustly suppressed HCC driven by RTKs. However, in contrast to a tumor-promoting hepatic niche generated by genetically deleting Shp2 in hepatocytes, treatment with a specific Shp2 inhibitor had a tumor-suppressing effect on metastasized liver tumor progression. Mechanistically, the Shp2 inhibitor enhanced antitumor innate immunity by down-regulating inflammatory cytokines, suppressing the chemokine (C-C motif) receptor 5 signaling axis, but up-regulating interferon-β secretion. CONCLUSIONS These results unveil complex mechanisms for the tumor-suppressing effect of pharmaceutical Shp2 inhibition in the liver immune environment. We provide a proof of principle for clinical trials with specific Shp2 inhibitors in patients with primary and metastasized liver cancer.
Collapse
Affiliation(s)
- Jacey J. Liu
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | - Bing Xin
- Department of Pathology and Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Li Du
- Department of Pathology and Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Lydia Chen
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | - Yanyan Long
- Department of Pathology and Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
- Department of Pathology and Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
11
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
12
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
13
|
Djptpn11 is indispensable for planarian regeneration by affecting early wound response genes expression and the Wnt pathway. Biochimie 2022; 201:184-195. [PMID: 35868605 DOI: 10.1016/j.biochi.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022]
Abstract
Planarian is an ideal model system of studying regeneration. Stem cell system and positional control genes (PCGs) are two important factors for perfect regeneration of planarians and they combine to promote their regeneration. Even so, how wounds regulate proliferation and neoblast fate is still important areas to address. Ptpn11 (Protein tyrosine phosphatase non-receptor type 11), one of PTP (Protein tyrosine phosphatase) family members, plays an important role in cellular processes including cell survival, proliferation, differentiation and apoptosis. Nevertheless, the role of ptpn11 in the planarian regeneration has not been fully studied. In this study, we identify the Djptpn11 gene to observe its function in planarian regeneration. The results reveal that the regeneration is severely inhibited and cause the disorder homeostasis in planarians. Furthermore, the stem cells proliferation and differentiation decreases while the apoptosis increases following Djptpn11 RNAi. At the same time, Djptpn11 affects the expression levels of early wound response genes (Djegr2, Dj1-jun, Djrunt1, Djwnt1 and Djnotum). Djwnt1 and Djnotum are two key Wnt signaling pathway genes and Djptpn11 affects the expression levels of Djwnt1 and Djnotum in the early and late stages of planarian regeneration. In general, Djptpn11 is indispensable for the homeostasis and regeneration of planarian by affecting the stem cells, early wound response genes and the Wnt pathway.
Collapse
|
14
|
Watkins RD, Buckarma EH, Tomlinson JL, McCabe CE, Yonkus JA, Werneburg NW, Bayer RL, Starlinger PP, Robertson KD, Wang C, Gores GJ, Smoot RL. SHP2 inhibition enhances Yes-associated protein mediated liver regeneration in murine partial hepatectomy models. JCI Insight 2022; 7:159930. [PMID: 35763355 PMCID: PMC9462473 DOI: 10.1172/jci.insight.159930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Disrupted liver regeneration following hepatectomy represents an “undruggable” clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional coactivator that is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent mechanism of YAP activation mediated by downregulation of protein tyrosine phosphatase nonreceptor type 11 (PTPN11, also known as SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocyte-specific Yap/Taz deletion, and this demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of nonalcoholic steatohepatitis was associated with improved survival and decreased markers of injury after hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling. Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.
Collapse
Affiliation(s)
- Ryan D Watkins
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | - EeeLN H Buckarma
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | | | - Chantal E McCabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, United States of America
| | - Jennifer A Yonkus
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | | | - Keith D Robertson
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, United States of America
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, United States of America
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States of America
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, United States of America
| |
Collapse
|
15
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
16
|
Wu W, Liu S, Wu H, Chen M, Gao L, Zhao B, Liu B, Pang Q. DjPtpn11 is an essential modulator of planarian (Dugesia japonica) regeneration. Int J Biol Macromol 2022; 209:1054-1064. [PMID: 35452697 DOI: 10.1016/j.ijbiomac.2022.04.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Freshwater planarian Dugesia japonica is an excellent model organism for investigating stem cell behavior during regeneration. Despite studies showing that numerous genetic factors are involved in regeneration, much more research is required to fully understand the molecular mechanisms that orchestrate regeneration. In this study, we identified an evolutionarily conserved gene DjPtpn11(DjShp2). DjPtpn11 transcripts are expressed in neoblasts and some differentiated cells, with a high expression at the newly formed blastema. Its silencing by RNA interference (RNAi) affected anterior regeneration and inhibited the regeneration of posterior regions, including cholinergic and serotonergic neuron regeneration. In adult planarians, DjPtpn11 knockdown did not affect neoblast survival and proliferation but might prevent the stem cell migration and differentiation through ERK signaling. DjPtpn11 was demonstrated to be necessary for the anterior blastema cell differentiation partially via regulating ERK-DjMkpA activity. DjPtpn11 also influenced posterior specification via DjIslet, suggesting that DjPtpn11 may be involved in regulating the Wnt signaling pathway during the development of posterior blastema. Together, these data identified that DjPtpn11 is an essential modulator for the regeneration of planarians, and it may influence the appropriate differentiation of blastema cells.
Collapse
Affiliation(s)
- Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Shuo Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Hao Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Meishan Chen
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Shenzhen University of Health Science Center, Shenzhen 518060, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
17
|
Chen WS, Liang Y, Zong M, Liu JJ, Kaneko K, Hanley KL, Zhang K, Feng GS. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment. Cell Rep 2021; 37:109974. [PMID: 34758313 DOI: 10.1016/j.celrep.2021.109974] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/16/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms of Myc-driven liver tumorigenesis are inadequately understood. Herein we show that Myc-driven hepatocellular carcinoma (HCC) is dramatically aggravated in mice with hepatocyte-specific Ptpn11/Shp2 deletion. However, Myc-induced tumors develop selectively from the rare Shp2-positive hepatocytes in Shp2-deficent liver, and Myc-driven oncogenesis depends on an intact Ras-Erk signaling promoted by Shp2 to sustain Myc stability. Despite a stringent requirement of Shp2 cell autonomously, Shp2 deletion induces an immunosuppressive environment, resulting in defective clearance of tumor-initiating cells and aggressive tumor progression. The basal Wnt/β-catenin signaling is upregulated in Shp2-deficient liver, which is further augmented by Myc transfection. Ablating Ctnnb1 suppresses Myc-induced HCC in Shp2-deficient livers, revealing an essential role of β-catenin. Consistently, Myc overexpression and CTNNB1 mutations are frequently co-detected in HCC patients with poor prognosis. These data elucidate complex mechanisms of liver tumorigenesis driven by cell-intrinsic oncogenic signaling in cooperation with a tumor-promoting microenvironment generated by disrupting the specific oncogenic pathway.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Gene Expression Regulation, Neoplastic
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Single-Cell Analysis/methods
- Transcriptome
- Tumor Microenvironment
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Wendy S Chen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yan Liang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Min Zong
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacey J Liu
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kota Kaneko
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kaisa L Hanley
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
19
|
Mizutani N, Hikita H, Saito Y, Myojin Y, Sato K, Urabe M, Kurahashi T, Shiode Y, Sakane S, Murai K, Nozaki Y, Kodama T, Sakamori R, Yoshida Y, Tatsumi T, Takehara T. Gab1 in livers with persistent hepatocyte apoptosis has an antiapoptotic effect and reduces chronic liver injury, fibrosis, and tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G958-G968. [PMID: 33787344 DOI: 10.1152/ajpgi.00370.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.NEW & NOTEWORTHY Grb2-associated binder 1 (Gab1) is known to contribute to liver regeneration after acute liver injury. However, in chronic liver diseases, Gab1 plays a greater role in suppressing hepatocyte apoptosis than in liver regeneration, resulting in suppression of hepatocyte proliferation, liver fibrosis, and liver carcinogenesis.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makiko Urabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Kurahashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuto Shiode
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasutoshi Nozaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
20
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 536] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Li Y, Liu WS, Yi J, Kong SB, Ding JC, Zhao YN, Tian YP, Feng GS, Li CJ, Liu W, Wang HB, Lu ZX. The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis. Asian J Androl 2020; 22:79-87. [PMID: 31210146 PMCID: PMC6958991 DOI: 10.4103/aja.aja_49_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11–13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Wen-Sheng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Jia Yi
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Shuang-Bo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yi-Nan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Ying-Pu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Wen Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| | - Hai-Bin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Zhong-Xian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| |
Collapse
|
22
|
Yue X, Han T, Hao W, Wang M, Fu Y. SHP2 knockdown ameliorates liver insulin resistance by activating IRS-2 phosphorylation through the AKT and ERK1/2 signaling pathways. FEBS Open Bio 2020; 10:2578-2587. [PMID: 33012117 PMCID: PMC7714075 DOI: 10.1002/2211-5463.12992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023] Open
Abstract
Diabetes is a chronic metabolic disease characterized by insulin resistance (IR). SHP2 has previously been identified as a potential target to reduce IR in diabetes. Here, we examined the effects of SHP2 on glucose consumption (GC), IR level and the expression of insulin receptor substrate (IRS), AKT and extracellular signal-regulated kinase (ERK)1/2 proteins in a cellular and animal model of diabetes. IR was induced in hepatocellular carcinoma (HCC) cells, and SHP2 was up-regulated or down-regulated in cells. Diabetic rats were treated with SHP2 inhibitor. GC of cells, and the weight, total cholesterol, triglycerides, fasting blood glucose, fasting insulin, homeostasis model assessment-IR index and insulin sensitivity (ISI) of the rats were analyzed. The levels of SHP2 and the activation of IRS-2, AKT and ERK1/2 in cells and rats were measured by quantitative real-time PCR (qRT-PCR) or western blot. GC was reduced, but expression of SHP2 was enhanced in IR HCC cells. Phosphorylation of IRS-2 and AKT in IR HCC cells and diabetic rats was decreased, whereas phosphorylation of ERK1/2 was enhanced. In both the cell and animal models, SHP2 knockdown enhanced GC, ameliorated IR, activated IRS-2 and AKT, and inhibited ERK1/2 phosphorylation, in contrast with the effects of SHP2 overexpression. SHP2 knockdown may enhance GC and ameliorate IR through phosphorylation of IRS-2 via regulating AKT and ERK1/2 in liver.
Collapse
Affiliation(s)
- Xinxin Yue
- Department of Clinic CollegeHe UniversityShenyangChina
| | - Tao Han
- Department of OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wei Hao
- Department of Clinic CollegeHe UniversityShenyangChina
| | - Min Wang
- Department of Clinic CollegeHe UniversityShenyangChina
| | - Yang Fu
- Department of Burn and Plastic SurgeryGeneral Hospital of Northern Theater CommandShenyangChina
| |
Collapse
|
23
|
|
24
|
Moreira GCM, Salvian M, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Ledur MC, Garrick D, Mourão GB, Coutinho LL. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genomics 2019; 20:669. [PMID: 31438838 PMCID: PMC6704653 DOI: 10.1186/s12864-019-6040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Poultry breeding programs have been focused on improvement of growth and carcass traits, however, this has resulted in correlated changes in internal organ weights and increased incidence of metabolic disorders. These disorders can affect feed efficiency or even cause death. We used a high density SNP array (600 K, Affymetrix) to estimate genomic heritability, perform genome-wide association analysis, and identify genomic regions and positional candidate genes (PCGs) associated with internal organ traits in an F2 chicken population. We integrated knowledge of haplotype blocks, selection signature regions and sequencing data to refine the list of PCGs. RESULTS Estimated genomic heritability for internal organ traits in chickens ranged from low (LUNGWT, 0.06) to high (GIZZWT, 0.45). A total of 20 unique 1 Mb windows identified on GGA1, 2, 4, 7, 12, 15, 18, 19, 21, 27 and 28 were significantly associated with intestine length, and weights or percentages of liver, gizzard or lungs. Within these windows, 14 PCGs were identified based on their biological functions: TNFSF11, GTF2F2, SPERT, KCTD4, HTR2A, RB1, PCDH7, LCORL, LDB2, NR4A2, GPD2, PTPN11, ITGB4 and SLC6A4. From those genes, two were located within haplotype blocks and three overlapped with selection signature regions. A total of 13,748 annotated sequence SNPs were in the 14 PCGs, including 156 SNPs in coding regions (124 synonymous, 26 non-synonymous, and 6 splice variants). Seven deleterious SNPs were identified in TNFSF11, NR4A2 or ITGB4 genes. CONCLUSIONS The results from this study provide novel insights to understand the genetic architecture of internal organ traits in chickens. The QTL detection performed using a high density SNP array covered the whole genome allowing the discovery of novel QTL associated with organ traits. We identified PCGs within the QTL involved in biological processes that may regulate internal organ growth and development. Potential functional genetic variations were identified generating crucial information that, after validation, might be used in poultry breeding programs to reduce the occurrence of metabolic disorders.
Collapse
Affiliation(s)
| | - Mayara Salvian
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Clarissa Boschiero
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa USA
| | - Thaís Fernanda Godoy
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Gerson Barreto Mourão
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luiz L. Coutinho
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
25
|
Dai C, Wang X, Wu Y, Xu Y, Zhuo S, Qi M, Ji W, Zhan L. Polarity Protein AF6 Controls Hepatic Glucose Homeostasis and Insulin Sensitivity by Modulating IRS1/AKT Insulin Pathway in an SHP2-Dependent Manner. Diabetes 2019; 68:1577-1590. [PMID: 31127058 DOI: 10.2337/db18-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major contributing factor in the development of metabolic disease. Although numerous functions of the polarity protein AF6 (afadin and MLLT4) have been identified, a direct effect on insulin sensitivity has not been previously described. We show that AF6 is elevated in the liver tissues of dietary and genetic mouse models of diabetes. We generated liver-specific AF6 knockout mice and show that these animals exhibit enhanced insulin sensitivity and liver glycogen storage, whereas overexpression of AF6 in wild-type mice by adenovirus-expressing AF6 led to the opposite phenotype. Similar observations were obtained from in vitro studies. In addition, we discovered that AF6 directly regulates IRS1/AKT kinase-mediated insulin signaling through its interaction with Src homology 2 domain-containing phosphatase 2 (SHP2) and its regulation of SHP2's tyrosine phosphatase activity. Finally, we show that knockdown of hepatic AF6 ameliorates hyperglycemia and insulin resistance in high-fat diet-fed or db/db diabetic mice. These results demonstrate a novel function for hepatic AF6 in the regulation of insulin sensitivity, providing important insights about the metabolic role of AF6.
Collapse
Affiliation(s)
- Cheng Dai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyan Qi
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
27
|
Feng GS. Tumor immunology and immunotherapy: a journey I started from Hangzhou. J Zhejiang Univ Sci B 2019; 20:373-380. [PMID: 31090263 PMCID: PMC6568228 DOI: 10.1631/jzus.b1900204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022]
Abstract
This short article is dedicated to the 90th Anniversary of the School of Life Sciences at Zhejiang University, China. Immunotherapy of cancer is currently a hot topic in the biomedical field, and a re-search focus of my laboratory is on developing new and effective combinatorial immunotherapeutic strategies for liver cancer. Of note, my interest in immunotherapy of cancer stems from the training as an undergraduate student at Hangzhou University, China, almost 40 years ago.
Collapse
|
28
|
Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, Wimmers K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front Genet 2019; 10:117. [PMID: 30838035 PMCID: PMC6389832 DOI: 10.3389/fgene.2019.00117] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Liver is a metabolically complex organ that influences nutrient partitioning and potentially modulates the efficiency of converting energy acquired from macronutrients ingestion into a muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study was to sequence the hepatic tissue transcriptome of closely related but differently feed efficient pigs (n = 16) and identify relevant biological processes that underpin the differences in liver phenotype between FE groups. Liver weight did not significantly differ between the FE groups, however, blood parameters showed that total protein, glucose, cholesterol and percentage of lymphocytes were significantly greater in high-FE pigs. Ontology analysis revealed carbohydrate, lipid and protein metabolism to be significantly enriched with differentially expressed genes. In particular, high-FE pigs exhibited gene expression patterns suggesting improved absorption of carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the observed greater levels of serum glucose, which can be then delivered to cells and utilized for growth and maintenance. Gene ontology analysis also suggested that livers of more efficient pigs may be characterized by higher protein turnover and increased epithelial cell differentiation, whereby an enhanced quantity of invariant natural killer T-cells and viability of natural killer cells could induce a quicker and more effective hepatic response to inflammatory stimuli. Our findings suggest that this prompt hepatic response to inflammation in high-FE group may contribute to the more efficient utilization of nutrients for growth in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ursula M McCormack
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
29
|
Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, Kaneko K, Xu R, Karin M, Feng GS. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018; 69:79-88. [PMID: 29505847 PMCID: PMC6008184 DOI: 10.1016/j.jhep.2018.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. METHODS We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CAH1047R (MET/PIK), into WT and Shp2hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. RESULTS Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. CONCLUSIONS Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. LAY SUMMARY Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the pro- and anti-tumor effects of Shp2 in mouse models. This data can be used to guide new therapies.
Collapse
Affiliation(s)
- Jacey J. Liu
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanjie Li
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA,Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wendy S. Chen
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kota Kaneko
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Kang HJ, Chung DH, Sung CO, Yoo SH, Yu E, Kim N, Lee SH, Song JY, Kim CJ, Choi J. SHP2 is induced by the HBx-NF-κB pathway and contributes to fibrosis during human early hepatocellular carcinoma development. Oncotarget 2018; 8:27263-27276. [PMID: 28460481 PMCID: PMC5432333 DOI: 10.18632/oncotarget.15930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The non-receptor tyrosine phosphatase SHP2 has scaffolding functions in signal transduction cascades downstream of growth receptors. A recent study suggested that SHP2 acts as a tumor suppressor during hepatocellular carcinoma (HCC) development. Herein we examined whether SHP2 links the HBx-NF-κB pathway to EGFR signaling during HCC development. The overexpression of HBx or NF-κB led to increased SHP2 expression via NF-κB binding to the Shp2 promoter. EGF treatment induced ERK activation as well as the rapid assembly of SHP2, EGFR, and Gab1. Upon LPS stimulation, NF-κB-SHP2-ERK activation and phosphorylated STAT3 levels exhibited a negative correlation in vitro. By contrast, in patients with HBV-associated HCC, NF-κB-SHP2-ERK and IL-6-JAK-STAT3 pathway activity levels were concomitantly higher in adjacent non-neoplastic tissues than in HCC tissues. The immunohistochemical analysis of 162 tissues of patients with HCC revealed that SHP2 levels were significantly higher in non-neoplastic background tissues than in corresponding HCC tissues and considerably increased in background liver tissues with advanced fibrosis (P < 0.001). SHP2 expression increased gradually from normal liver to chronic hepatitis, cirrhosis, and background liver with a dysplastic nodule, but was decreased or lost in dysplastic nodules and HCC. This is the first report to describe the existence of the HBx-NF-κB-SHP2 pathway, linking HBV infection to the EGFR-RAS-RAF-MAPK pathway in the liver. SHP2 depletion from the negative crosstalk between NF-κB and STAT3 accelerates HCC development.
Collapse
Affiliation(s)
- Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dal-Hee Chung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su Hyun Yoo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Sy-Hye Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Ji-Young Song
- Asan Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Hu Z, Li J, Gao Q, Wei S, Yang B. SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo. Onco Targets Ther 2017; 10:3881-3891. [PMID: 28814887 PMCID: PMC5546810 DOI: 10.2147/ott.s138833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose SHP2 has roles in a variety of signal transduction pathways and in many important cellular processes, including proliferation, differentiation, movement regulation, and apoptosis. In addition, SHP2 expression is closely associated with multiple types of malignancies. In this study, we examined the role of SHP2 in epithelial ovarian cancer. Patients and methods SHP2 expression in cancer and normal ovarian tissue specimens was evaluated by immunohistochemical staining and Western blot analyses. The correlation between the SHP2 expression level and clinicopathological features was analyzed. The role of SHP2 in epithelial ovarian cancer was evaluated by assessing SHP2 expression patterns in vitro and in vivo, and activation of the PI3K/AKT pathway was examined. Results SHP2 is expressed at higher levels in ovarian cancer tissues than in normal ovarian tissues and in an ovarian cancer cell line than in a normal ovarian cell line. On the basis of these findings, SHP2 is overexpressed in ovarian cancer both in vitro and in vivo. In addition, SHP2 overexpression is associated with tumor stage and differentiation, enhanced cell proliferation and invasion, and tumorigenesis and metastasis. Conclusion SHP2 overexpression enhances ovarian tumor proliferation and invasion by activating the PI3K-AKT axis, indicating that SHP2 potentially plays a direct role in the pathogenesis of ovarian epithelial cell cancer. These novel findings provide key insights that are applicable to basic cancer research and to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- ZhongQian Hu
- Department of Ultrasound, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qi Gao
- Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuping Wei
- Department of Ultrasound, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Bin Yang
- Department of Ultrasound, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Feng Y, Xiao F, Yang N, Zhu N, Fu Y, Zhang HB, Yang GS. Overexpression of Sox3 is associated with promoted tumor progression and poor prognosis in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7873-7881. [PMID: 31966635 PMCID: PMC6965222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor lacking sensitive biomarkers for prognosis. Sox3, a member of the Sex determining region Y box gene superfamily, has been demonstrated to be an oncogene in many cancers. However, the expression and clinical importance of Sox3 in HCC remains elusive. In this study, fifty pairs of HCC tissues with adjacent non-tumor samples were collected for detecting Sox3 expression by qPCR and immunoblotting analyses. A total of 104 HCC tissues were included for immunohistochemistry assay and analyzed by immunostaining scores. The correlation of Sox3 expression with clinicopathological factors and prognosis of HCC patients were calculated. Sox3 expression in HCC tissues was significantly higher than that in the non-tumor counterparts at the mRNA and protein levels. High staining scores of Sox3 was detected in 75.96% of HCC tissues. Statistical analyses demonstrated that highly expressed Sox3 was significantly correlated with low tumor capsule formation, advanced tumor stage and poor tumor differentiation. Moreover, patients with high Sox3 expression showed worse recurrence-free survival and overall survival than those with low Sox3 expression, and multivariate analyses further indicated that status of Sox3 expression is an independent prognostic factor in HCC patients. Therefore, our results suggested that overexpression of Sox3 in HCC tissues is correlated with increased tumor development and poor prognosis in HCC.
Collapse
Affiliation(s)
- Yun Feng
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Feng Xiao
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Ning Yang
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Nan Zhu
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Yong Fu
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Hai-Bin Zhang
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| | - Guang-Shun Yang
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University Shanghai, P. R. China
| |
Collapse
|
33
|
Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo. PLoS One 2017; 12:e0177334. [PMID: 28481957 PMCID: PMC5421800 DOI: 10.1371/journal.pone.0177334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
Shp2 played an important role in cigarette-smoke-mediated inflammation, surfactant homeostasis and asthmatic airway remodeling. However, whether shp2 plays a key role in epithelium-associated allergic reaction is still unknown. In this study, LPS and OVA were observed to induce the production of IL-25 in bronchial epithelial cells in vitro via the activation of MAPK p38 and JNK. Furthermore, blockage of Shp2 by its specific inhibitor PHPS1 or by siRNA-mediated depletion was found to reduce the production of IL-25 in epithelial cells as well as the up-regulated LPS-triggered activation of JNK but not p38. To confirm the role of intra-bronchial epithelial Shp2 in OVA-induced allergic reaction, we generated CC10-rtTA/(tetO)7-Cre/Shp2f/f mice, where Shp2 was conditionally knocked out in bronchial epithelial cells. Surprisingly, specific deletion of Shp2 in bronchial epithelial cells showed a mild but insignificant effect on the expressions of epithelium-derived cytokines as well as TH2 and TH17 polarization following allergen-induced murine airway inflammation. Collectively, our data suggested that deletion of Shp2 impaired IL-25 production in bronchial epithelial cells in vitro, but might yet have minor influence on OVA-induced allergic reaction in vivo.
Collapse
|
34
|
Xiang D, Cheng Z, Liu H, Wang X, Han T, Sun W, Li X, Yang W, Chen C, Xia M, Liu N, Yin S, Jin G, Lee T, Dong L, Hu H, Wang H, Ding J. Shp2 promotes liver cancer stem cell expansion by augmenting β-catenin signaling and predicts chemotherapeutic response of patients. Hepatology 2017; 65:1566-1580. [PMID: 28059452 DOI: 10.1002/hep.28919] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/16/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Src-homology 2 domain-containing phosphatase 2 (Shp2) has been reported to play an important role in the maintenance and self-renewal of embryonic and adult stem cells, but its role in cancer stem cells (CSCs) remains obscure. Herein, we observed high expression of Shp2 in both chemoresistant hepatocellular carcinomas (HCCs) and recurrent HCCs from patients. A remarkable increase of Shp2 was detected in sorted epithelial cell adhesion molecule-positive or cluster of differentiation 133-positive liver CSCs and in CSC-enriched hepatoma spheroids from patients. Up-regulated Shp2 facilitated liver CSC expansion by promoting the dedifferentiation of hepatoma cells and enhancing the self-renewal of liver CSCs. Mechanistically, Shp2 dephosphorylated cell division cycle 73 in the cytosol of hepatoma cells, and the dephosphorylated cell division cycle 73 bound β-catenin and facilitated the nuclear translocation of β-catenin, which promoted the dedifferentiation of hepatoma cells. Shp2 increased β-catenin accumulation by inhibiting glycogen synthase kinase 3β-mediated β-catenin degradation in liver CSCs, thereby enhancing the self-renewal of liver CSCs. Blockage of β-catenin abolished the discrepancy in liver CSC proportion and the self-renewal capacity between Shp2-depleted hepatoma cells and control cells, which further confirmed that β-catenin is required in Shp2-promoted liver CSC expansion. More importantly, HCC patients with low Shp2 levels benefited from transcatheter arterial chemoembolization or sorafenib treatment, but patients with high Shp2 expression did not, indicating the significance of Shp2 in personalized HCC therapy. CONCLUSION Shp2 could promote HCC cell dedifferentiation and liver CSC expansion by amplifying β-catenin signaling and may be useful in predicting patient response to chemotherapeutics. (Hepatology 2017;65:1566-1580).
Collapse
Affiliation(s)
- Daimin Xiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY
| | - Zhuo Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xue Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Tao Han
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China.,Department of Oncology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Wen Sun
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Xiaofeng Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Cheng Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Mingyang Xia
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Na Liu
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Shengyong Yin
- Department of General Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Terence Lee
- Department of Pathology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Heping Hu
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
35
|
Do DC, Agrawal A, Luo X, Gao P. Gab1, a therapeutic target for allergic asthma? ACTA ACUST UNITED AC 2017; 2. [PMID: 30148256 DOI: 10.21037/jxym.2017.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Arshi Agrawal
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA.,Maulana Azad Medical College, New Delhi, India
| | - Xiaoyan Luo
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
36
|
Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int J Mol Sci 2017; 18:ijms18010134. [PMID: 28085101 PMCID: PMC5297767 DOI: 10.3390/ijms18010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Shp2 (Src-homology 2 domain-containing phosphatase 2) was originally reported as an oncogene in kinds of solid tumors and hematologic malignancies. However, recent studies indicated that Shp2 may act as tumor suppressors in several tumor types. We investigated the function of Shp2 in esophageal squamous cell cancer (ESCC). The expression level of Shp2 was analyzed in tumor tissues in comparison with adjacent normal tissues of ESCC patients by immunohistochemistry and Western blot. Shp2 was knocked down by Short hairpin RNA to evaluate its function in ESCC cell lines. The relationship between Shp2 and p-Stat3 (signal transducer and activator of transcription 3) in human ESCC tissues was statistically examined. A significant low expression of Shp2 was found in ESCC tissues. Low expression of Shp2 was related to poorer overall survival in patients from The Cancer Genome Atlas (TCGA) dataset. Knockdown of Shp2 increased the growth of ESCC cell lines both in vivo and vitro. Activation of Stat3 (p-Stat3) was induced by Shp2 depletion. Expression of p-Stat3 was negatively correlated with Shp2 expression in ESCC tissues. Furthermore, knockdown of Shp2 attenuated cisplatin-sensitivity of ESCC cells. Shp2 might suppress the proliferation of ESCC by dephosphorylation of p-Stat3 and represents a novel research field for targeted therapy.
Collapse
|
37
|
Abstract
The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation-arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.
Collapse
|
38
|
A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma. Oncotarget 2016; 7:5664-76. [PMID: 26673822 PMCID: PMC4868712 DOI: 10.18632/oncotarget.6561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Background: Evidence suggests that Src homologous protein phosphotyrosyl phosphatase 2 (SHP2) mutations promote cancer development in several solid tumours. In this study, we focused on the in vivo and in vitro effects of an SHP2 mutation on the breast cancer phenotype to determine whether this mutation is correlated with a malignant phenotype. Methods: Mutant PTPN11 cDNA (D61G) was transduced into MDA-MB231 and MCF-7 cells. The effects of the D61G mutation on tumourigenesis and malignant behaviours, such as cell adhesion, proliferation, migration and invasion, were examined. Potential underlying molecular mechanisms, i.e., activation of the Gab1-Ras-Erk axis, were also examined. Results:In vitro experiments revealed that tumour adhesion, proliferation, migration and invasion were significantly increased in the SHP2 D61G mutant groups. Consistently, in vivo experiments also showed that the tumour sizes and weights were increased significantly in the SHP2 D61G-MB231 group (p < 0.001) in association with tumour metastasis. Mechanistically, the PTPN11 mutation resulted in activation of the Ras-ErK pathway. The binding between Gab1 and mutant SHP2 was significantly increased. Conclusion: Mutant SHP2 significantly promotes tumour migration and invasion at least partially through activation of the Gab1-Ras-Erk axis. This finding could have direct implications for breast cancer therapy.
Collapse
|
39
|
Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, Hernandez C, Wei X, Varki NM, Alderson N, Chu C, Li S, Fan J, Loomba R, Qiu SJ, Feng GS. Dual Shp2 and Pten Deficiencies Promote Non-alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells. Cell Rep 2016; 17:2979-2993. [PMID: 27974211 PMCID: PMC5330282 DOI: 10.1016/j.celrep.2016.11.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
The complexity of liver tumorigenesis is underscored by the recently observed anti-oncogenic effects of oncoproteins, although the mechanisms are unclear. Shp2/Ptpn11 is a proto-oncogene in hematopoietic cells and antagonizes the effect of tumor suppressor Pten in leukemogenesis. In contrast, we show here cooperative functions of Shp2 and Pten in suppressing hepatocarcinogenesis. Ablating both Shp2 and Pten in hepatocytes induced early-onset non-alcoholic steatohepatitis (NASH) and promoted genesis of liver tumor-initiating cells likely due to augmented cJun expression/activation and elevated ROS and inflammation in the hepatic microenvironment. Inhibiting cJun partially suppressed NASH-driven liver tumorigenesis without improving NASH. SHP2 and PTEN deficiencies were detected in liver cancer patients with poor prognosis. These data depict a mechanism of hepato-oncogenesis and suggest a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Kaisa L Hanley
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen He Zhu
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirsten N Malo
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carolyn Hernandez
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xufu Wei
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 40016, China
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nazilla Alderson
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catherine Chu
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuangwei Li
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Yasui T, Masaki T, Arita Y, Ishibashi T, Inagaki T, Okazawa M, Oka T, Shioyama W, Yamauchi-Takihara K, Komuro I, Sakata Y, Nakaoka Y. Molecular Characterization of Striated Muscle-Specific Gab1 Isoform as a Critical Signal Transducer for Neuregulin-1/ErbB Signaling in Cardiomyocytes. PLoS One 2016; 11:e0166710. [PMID: 27861634 PMCID: PMC5115770 DOI: 10.1371/journal.pone.0166710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Grb2-associated binder (Gab) docking proteins regulate signals downstream of a variety of growth factors and receptor tyrosine kinases. Neuregulin-1 (NRG-1), a member of epidermal growth factor family, plays a critical role for cardiomyocyte proliferation and prevention of heart failure via ErbB receptors. We previously reported that Gab1 and Gab2 in the myocardium are essential for maintenance of myocardial function in the postnatal heart via transmission of NRG-1/ErbB-signaling through analysis of Gab1/Gab2 cardiomyocyte-specific double knockout mice. In that study, we also found that there is an unknown high-molecular weight (high-MW) Gab1 isoform (120 kDa) expressed exclusively in the heart, in addition to the ubiquitously expressed low-MW (100 kDa) Gab1. However, the high-MW Gab1 has been molecularly ill-defined to date. Here, we identified the high-MW Gab1 as a striated muscle-specific isoform. The high-MW Gab1 has an extra exon encoding 27 amino acid residues between the already-known 3rd and 4th exons of the ubiquitously expressed low-MW Gab1. Expression analysis by RT-PCR and immunostaining with the antibody specific for the high-MW Gab1 demonstrate that the high-MW Gab1 isoform is exclusively expressed in striated muscle including heart and skeletal muscle. The ratio of high-MW Gab1/ total Gab1 mRNAs increased along with heart development. The high-MW Gab1 isoform in heart underwent tyrosine-phosphorylation exclusively after intravenous administration of NRG-1, among several growth factors. Adenovirus-mediated overexpression of the high-MW Gab1 induces more sustained activation of AKT after stimulation with NRG-1 in cardiomyocytes compared with that of β-galactosidase. On the contrary, siRNA-mediated knockdown of the high-MW Gab1 significantly attenuated AKT activation after stimulation with NRG-1 in cardiomyocytes. Taken together, these findings suggest that the striated muscle-specific high-MW isoform of Gab1 has a crucial role for NRG-1/ErbB signaling in cardiomyocytes.
Collapse
Affiliation(s)
- Taku Yasui
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoh Arita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Toru Oka
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Wataru Shioyama
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Keiko Yamauchi-Takihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
41
|
Zhang Y, Xu Y, Liu S, Guo X, Cen D, Xu J, Li H, Li K, Zeng C, Lu L, Zhou Y, Shen H, Cheng H, Zhang X, Ke Y. Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma. Cell Res 2016; 26:1226-1241. [PMID: 27811945 DOI: 10.1038/cr.2016.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shuwan Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Dong Cen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Heyuan Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kaijun Li
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Chunlai Zeng
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Linrong Lu
- The Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
42
|
Chen S, Kang Y, Sun Y, Zhong Y, Li Y, Deng L, Tao J, Li Y, Tian Y, Zhao Y, Cheng J, Liu W, Feng GS, Lu Z. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease. J Mol Cell Biol 2016; 8:492-504. [PMID: 27282405 DOI: 10.1093/jmcb/mjw028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/31/2016] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yujia Kang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanhong Zhong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanli Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin Tao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenjie Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
43
|
Furuta K, Yoshida Y, Ogura S, Kurahashi T, Kizu T, Maeda S, Egawa M, Chatani N, Nishida K, Nakaoka Y, Kiso S, Kamada Y, Takehara T. Gab1 adaptor protein acts as a gatekeeper to balance hepatocyte death and proliferation during acetaminophen-induced liver injury in mice. Hepatology 2016; 63:1340-55. [PMID: 26680679 DOI: 10.1002/hep.28410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure. In APAP-induced acute liver failure, hepatocyte death and subsequent liver regeneration determines the prognosis of patients, making it necessary to identify suitable therapeutic targets based on detailed molecular mechanisms. Grb2-associated binder 1 (Gab1) adaptor protein plays a crucial role in transmitting signals from growth factor and cytokine receptors to downstream effectors. In this study, we hypothesized that Gab1 is involved in APAP-induced acute liver failure. Hepatocyte-specific Gab1 conditional knockout (Gab1CKO) and control mice were treated with 250 mg/kg of APAP. After APAP treatment, Gab1CKO mice had significantly higher mortality and elevated serum alanine aminotransferase levels compared to control mice. Gab1CKO mice had increased hepatocyte death and increased serum levels of high mobility group box 1, a marker of hepatocyte necrosis. In addition, Gab1CKO mice had reduced hepatocyte proliferation. The enhanced hepatotoxicity in Gab1CKO mice was associated with increased activation of stress-related c-Jun N-terminal kinase (JNK) and reduced activation of extracellular signal-regulated kinase and AKT. Furthermore, Gab1CKO mice showed enhanced mitochondrial translocation of JNK accompanied by an increase in the release of mitochondrial enzymes into the cytosol, which is indicative of increased mitochondrial dysfunction and subsequent nuclear DNA fragmentation. Finally, in vitro experiments showed that Gab1-deficient hepatocytes were more susceptible to APAP-induced mitochondrial dysfunction and cell death, suggesting that hepatocyte Gab1 is a direct target of APAP-induced hepatotoxicity. CONCLUSION Our current data demonstrate that hepatocyte Gab1 plays a critical role in controlling the balance between hepatocyte death and compensatory hepatocyte proliferation during APAP-induced liver injury.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Ogura
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Kurahashi
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Kizu
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Maeda
- Department of Pharmacy, Osaka University Hospital, Suita, Osaka, Japan
| | - Mayumi Egawa
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Norihiro Chatani
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Nishida
- Laboratory of Immune Regulation, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yoshikazu Nakaoka
- Department of Cardiovascular Medicine, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science Technology Agency, Kawaguchi, Saitama, Japan
| | - Shinichi Kiso
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan.,Departments of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
44
|
Chen C, Cao M, Zhu S, Wang C, Liang F, Yan L, Luo D. Discovery of a Novel Inhibitor of the Protein Tyrosine Phosphatase Shp2. Sci Rep 2015; 5:17626. [PMID: 26626996 PMCID: PMC4667271 DOI: 10.1038/srep17626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Shp2 is a ubiquitously expressed protein tyrosine phosphatase (PTP) related to adult acute myelogenous leukemia and human solid tumors. In this report, we describe identification of a potent Shp2 inhibitor, Fumosorinone (Fumos) from entomogenous fungi, which shows selective inhibition of Shp2 over other tested PTPs. Using a surface plasmon resonance analysis, we further confirmed the physical interaction between Shp2 and Fumos. Fumos inhibits Shp2-dependent activation of the Ras/ERK signal pathway downstream of EGFR, and interrupts EGF-induced Gab1-Shp2 association. As expected, Fumos shows little effects on the Shp2-independent ERK1/2 activation induced by PMA or oncogenic Ras. Furthermore, Fumos down-regulates Src activation, inhibits phosphorylation of Paxillin and prevents tumor cell invasion. These results suggest that Fumos can inhibit Shp2-dependent cell signaling in human cells and has a potential for treatment of Shp2-associated diseases.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Mengmeng Cao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Siyu Zhu
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Cuicui Wang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Fan Liang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Leilei Yan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
45
|
Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol 2015; 2:11-21. [PMID: 28174704 PMCID: PMC4980741 DOI: 10.1016/j.jcmgh.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.
Collapse
Key Words
- CagA, cytotoxin-associated gene A
- ERK, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- GI, gastrointestinal
- HCC, hepatocellular carcinoma
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- JMML, juvenile myelomonocytic leukemia
- KO, knockout
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor-κB
- PI3K, phosphatidyl-inositol 3-kinase
- PTP, protein tyrosine phosphatase
- PTPN11
- RAS, rat sarcoma viral oncogene
- epithelium
- gastrointestinal cancer
- inflammation
Collapse
Affiliation(s)
| | - Nathalie Rivard
- Correspondence Address correspondence to: Nathalie Rivard, PhD, 3201, Jean Mignault, Sherbrooke, Quebec, Canada, J1E4K8.3201Jean Mignault, SherbrookeQuebecCanada, J1E4K8
| |
Collapse
|
46
|
Geng X, Chang C, Zang X, Sun J, Li P, Guo J, Xu C. Integrative proteomic and microRNA analysis of the priming phase during rat liver regeneration. Gene 2015; 575:224-32. [PMID: 26341052 DOI: 10.1016/j.gene.2015.08.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/22/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022]
Abstract
The partial hepatectomy (PH) model provides an effective medium for study of liver regeneration (LR). Considering that LR is regulated by microRNAs (miRNAs), investigation of the regulatory role of miRNAs is critical for revealing how regenerative processes are initiated and controlled. Using high-throughput sequencing technology, we examined miRNA expression profiles of the regenerating rat liver after PH, and found that 23 miRNAs were related to rat LR. Among them, several miRNAs were significantly altered at 2h and 6h after PH, corresponding to the priming phase of LR. Furthermore, we examined the protein profiles in the regenerating rat liver at 2h and 6h after PH by iTRAQ coupled with LC-MS/MS, and found that 278 proteins were significantly changed. Subsequently, an integrative proteomic and microRNA analysis by Ingenuity Pathway Analysis 9.0 (IPA) software showed that miR-125a, miR-143, miR-150, miR-181c, miR-182, miR-183, miR-199a, miR-429 regulated the priming phase of rat LR by modulating the expression of proteins involved in networks critical for cell apoptosis, cell survival, cell cycle, inflammatory response, metabolism, etc. Thus, our studies provide novel evidence for a functional molecular network populated by the down-regulated targets of the up-regulated miRNAs in the priming phase of rat LR.
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Jingyan Sun
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Jianli Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang 453007, China; Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.
| |
Collapse
|
47
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
48
|
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, Shen WF, Wang RY, Chen C, Wang X, Cheng Z, Li HY, Wu MC, Cong WM, Feng GS, Ding J, Wang HY. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015; 63:651-60. [PMID: 25865556 DOI: 10.1016/j.jhep.2015.03.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/04/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS We have previously reported that Shp2, a tyrosine phosphatase previously known as a pro-leukemogenic molecule, suppresses the initiation of hepatocellular carcinoma (HCC). However, the role of Shp2 in HCC progression remains obscure. METHODS Shp2 expression was determined in human HCC using real-time PCR, immunoblotting and immunohistochemistry. Clinical significance of Shp2 expression was analyzed in 301 HCC tissues with clinico-pathological characteristics and follow-up information. Short hairpin RNA was utilized to investigate the function of Shp2 in hepatoma cell behavior. Role of Shp2 in HCC progression was monitored through nude mice xenograft assay. Kinase activity assay and co-immunoprecipitation were used for mechanism analysis. RESULTS Elevated expression of Shp2 was detected in 65.9% (394/598) of human HCCs, and its levels were even higher in metastasized foci. Overexpression of Shp2 correlated well with the malignant clinico-pathological characteristics of HCC and predicted the poor prognosis of patients. Interference of Shp2 expression suppressed the proliferation of hepatoma cells in vitro and inhibited the growth of HCC xenografts in vivo. Down-regulation of Shp2 attenuated the adhesion and migration of hepatoma cells and diminished metastasized HCC formation in mice. Our data demonstrated that Shp2 promotes HCC growth and metastasis by coordinately activating Ras/Raf/Erk pathway and PI3-K/Akt/mTOR cascade. Moreover, down-regulation of Shp2 enhanced the sensitivity of hepatoma cells upon sorafenib treatment, and patients with low Shp2 expression exhibited superior prognosis to sorafenib. CONCLUSIONS Shp2 promotes the progression of HCC and may serve as a prognostic biomarker for patients.
Collapse
Affiliation(s)
- Tao Han
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Dai-Min Xiang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huan-Lin Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Wen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Feng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Ruo-Yu Wang
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Cheng Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xue Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Cheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Heng-Yu Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Meng-Chao Wu
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Wen-Ming Cong
- The Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
49
|
Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene 2015; 35:1271-82. [DOI: 10.1038/onc.2015.184] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022]
|
50
|
Kizu T, Yoshida Y, Furuta K, Ogura S, Egawa M, Chatani N, Hamano M, Takemura T, Ezaki H, Kamada Y, Nishida K, Nakaoka Y, Kiso S, Takehara T. Loss of Gab1 adaptor protein in hepatocytes aggravates experimental liver fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G613-24. [PMID: 25617348 DOI: 10.1152/ajpgi.00289.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/18/2015] [Indexed: 01/31/2023]
Abstract
Grb2-associated binder 1 (Gab1) adaptor protein amplifies signals downstream of a broad range of growth factors/receptor tyrosine kinases. Although these signals are implicated in liver fibrogenesis, the role of Gab1 remains unclear. To elucidate the role of Gab1, liver fibrosis was examined in hepatocyte-specific Gab1-conditional knockout (Gab1CKO) mice upon bile duct ligation (BDL). Gab1CKO mice developed exacerbated liver fibrosis with activation of hepatic myofibroblasts after BDL compared with control mice. The antifibrotic role of hepatocyte Gab1 was further confirmed by another well-established mouse model of liver fibrosis using chronic injections of carbon tetrachloride. After BDL, Gab1CKO mice also displayed exacerbated liver injury, decreased hepatocyte proliferation, and enhanced liver inflammation. Furthermore, cDNA microarray analysis was used to investigate the potential molecular mechanisms of the Gab1-mediated signal in liver fibrosis, and the fibrosis-promoting factor chemokine (C-C motif) ligand 5 (Ccl5) was identified as upregulated in the livers of Gab1CKO mice following BDL. Interestingly, in vitro studies using primary hepatocytes isolated from control and Gab1CKO mice revealed that the loss of Gab1 resulted in increased hepatocyte CCL5 synthesis upon lipopolysaccharide stimulation. Finally, pharmacological antagonism of CCL5 reduced BDL-induced liver fibrosis in Gab1CKO mice. In conclusion, our results demonstrate that hepatocyte Gab1 is required for liver fibrosis and that hepatocyte CCL5 could be an important contributor to this process. Thus, we present a novel antifibrotic function of hepatocyte Gab1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Takashi Kizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Ogura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mayumi Egawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norihiro Chatani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mina Hamano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayo Takemura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisao Ezaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keigo Nishida
- Laboratory for Homeostatic Network, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Yoshikazu Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinichi Kiso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan;
| |
Collapse
|