1
|
Marintchev A. Exploring the interaction dynamics of eukaryotic translation initiation factor 2. Biochem Soc Trans 2025:BST20253022. [PMID: 40411218 DOI: 10.1042/bst20253022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025]
Abstract
Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Pharmacology, Physiology, & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
2
|
Hayat D, Ogran A, Ashkenazi S, Plotnikov A, Oren R, Zerbib M, Ben-Shmuel A, Dikstein R. Inhibitors of eIF1A-ribosome interaction unveil uORF-dependent regulation of translation initiation and antitumor and antiviral effects. EMBO J 2025:10.1038/s44318-025-00449-6. [PMID: 40355559 DOI: 10.1038/s44318-025-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
During translation initiation, eIF1A binds the ribosome through its N- and C-terminal tails, but the functional importance of this temporal interaction in mammalian cells is lacking. Using a high-throughput drug screen targeting eIF1A-RPS10 interaction, we identified inhibitors (1Ais) for eIF1A, RPS10, or both. Applying 1Ais in biochemical assays along specific and global translation experiments, we confirmed known functions of eIF1A and uncovered new roles for both eIF1A and RPS10. Specifically, the eIF1A N-terminal tail (NTT) binding inhibitors revealed the requirement of eIF1A for translation re-initiation. Moreover, a cytosine at position +5 relative to the start codon AUG, located near eIF1A-NTT in the 48S structure, enhances sensitivity to 1Ais, suggesting that the initiating ribosome recognizes a broader AUG context than the conventional Kozak. Additionally, eIF1A-specific 1Ais predominately affect cancer-related pathways. In xenograft models of ovarian cancer, these 1Ais reduced tumor growth without apparent toxicity. Furthermore, inhibition of RPS10, but not eIF1A, modulates a context-dependent regulatory translation initiation at CUG codon of SARS-CoV-2 and impedes infection. Our study underscores 1Ais as effective means to study the role of eIF1A and RPS10 in translation and suggests their targeted inhibition as potential therapies for cancer and viral infections.
Collapse
Affiliation(s)
- Daniel Hayat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Gupta N, Bag I, Visweswaraiah J, Hinnebusch A, Thakur A. Distinct uS11/Rps14 interactions with the translation preinitiation complex differentially alter the accuracy of start codon recognition. Nucleic Acids Res 2025; 53:gkaf163. [PMID: 40156863 PMCID: PMC11952957 DOI: 10.1093/nar/gkaf163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 04/01/2025] Open
Abstract
The eukaryotic 43S pre-initiation complex (PIC), containing methionyl initiator transfer RNA (Met-tRNAiMet) in a ternary complex (TC) with eIF2-GTP, scans the messenger RNA (mRNA) leader for an AUG start codon in favorable "Kozak" context. Recognition of AUG triggers the rearrangement of the PIC from an open scanning conformation to a closed arrested state with more tightly bound Met-tRNAiMet. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interaction between 40S protein uS11/Rps14 with ribosomal RNA (rRNA) and mRNA between open and closed states; however, its importance in start codon recognition was unknown. uS11/Rps14-L137 substitutions disrupting rRNA contacts favored in the open complex increase initiation at suboptimal sites, and L137E stabilizes TC binding to PICs reconstituted in vitro with a UUG start codon, all indicating inappropriate rearrangement to the closed state at suboptimal initiation sites. Conversely, uS11/Rps14-R135 and -R136 substitutions perturbing interactions with rRNA exclusively in the closed state confer the opposite phenotypes of initiation hyperaccuracy, and for R135E, accelerated TC dissociation from reconstituted PICs. Thus, distinct interactions of uS11/Rps14 with rRNA stabilize first the open and then the closed conformation of the PIC to influence the accuracy of initiation in vivo.
Collapse
Affiliation(s)
- Nidhi Gupta
- Regional Centre for Biotechnology, 3 milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Indira Bag
- Translational Health Science and Technology Insitute, 3 milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Jyothsna Visweswaraiah
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States
- Seismic Therapeutic, 250 Arsenal St, Watertown, MA 02472, United States
| | - Alan Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States
| | - Anil Thakur
- Regional Centre for Biotechnology, 3 milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| |
Collapse
|
4
|
Helmling C, Chan A, Cunningham C. Engineered initiator tRNAs can effectively start translation at non-AUG start codons and diversify N-terminal amino acids for mRNA Display. Nucleic Acids Res 2025; 53:gkaf003. [PMID: 39831308 PMCID: PMC11744186 DOI: 10.1093/nar/gkaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG. Here, we investigate the ability of the Escherichia coli ribosome to initiate translation for 31 initiator tRNA (tRNAini) anticodon mutants at their respective cognate start codon using a NanoBiT translation assay. We show that the ability of those anticodon mutant tRNAsini to initiate translation is highly variable and is, in part, inhibited by tRNA misfolding induced by the anticodon mutations. We demonstrate based on two distinct misfolding patterns that translation efficiency can be effectively restored by introducing additional mutations that restore the active tRNA fold. We then used 10 of the engineered tRNAsini in a mutational analysis experiment for three reported macrocyclic peptides binding to Ubiquitin Specific Protease 7 (USP7). The observed enrichment of peptides correlates strongly with dissociation constants measured by surface plasmon resonance, and provides insights into the structure-activity relationship of the N-terminal amino acid without the requirement for peptide synthesis.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Codon, Initiator/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Peptide Chain Initiation, Translational
- Anticodon/genetics
- Mutation
- Protein Biosynthesis
- Amino Acids/genetics
Collapse
Affiliation(s)
- Christina Helmling
- Department of Peptide Therapeutics, Genentech, South San Francisco, CA 94080, USA
| | - Alix I Chan
- Department of Peptide Therapeutics, Genentech, South San Francisco, CA 94080, USA
| | | |
Collapse
|
5
|
Andreev DE, Shatsky IN. A Portrait of Three Mammalian Bicistronic mRNA Transcripts, Derived from the Genes ASNSD1, SLC35A4, and MIEF1. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:32-43. [PMID: 40058972 DOI: 10.1134/s0006297924603630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 05/13/2025]
Abstract
Recent advances in functional genomics have allowed identification of thousands of translated short open reading frames (sORFs) in the 5' leaders of mammalian mRNA transcripts. While most sORFs are unlikely to encode functional proteins, a small number have been shown to have evolved as protein-coding genes. As a result, dozens of these sORFs have already been annotated as protein-coding ORFs. mRNAs that contain both a protein-coding sORF and an annotated coding sequence (CDS) are referred to as bicistronic transcripts. In this study, we focus on three genes - ASNSD1, SLC35A4, and MIEF1 - which give rise to bicistronic mRNAs. We discuss recent findings regarding functional investigation of the corresponding polypeptide products, as well as how their translation is regulated, and how this unusual genetic arrangement may have evolved.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
6
|
Zhong Z, Li Y, Sun Q, Chen D. Tiny but mighty: Diverse functions of uORFs that regulate gene expression. Comput Struct Biotechnol J 2024; 23:3771-3779. [PMID: 39525088 PMCID: PMC11550727 DOI: 10.1016/j.csbj.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Upstream open reading frames (uORFs) are critical cis-acting regulators of downstream gene expression. Specifically, uORFs regulate translation by disrupting translation initiation or mediating mRNA decay. We herein summarize the effects of several uORFs that regulate gene expression in microbes to illustrate the detailed mechanisms mediating uORF functions. Microbes are ideal for uORF studies because of their prompt responses to stimuli. Recent studies revealed uORFs are ubiquitous in higher eukaryotes. Moreover, they influence various physiological processes in mammalian cells by regulating gene expression, mostly at the translational level. Research conducted using rapidly evolving methods for ribosome profiling combined with protein analyses and computational annotations showed that uORFs in mammalian cells control gene expression similar to microbial uORFs, but they also have unique tumorigenesis-related roles because of their protein-encoding capacities. We briefly introduce cutting-edge research findings regarding uORFs in mammalian cells.
Collapse
Affiliation(s)
- Zhenfei Zhong
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
7
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
8
|
Gayen A, Alone P. eIF2β zinc-binding domain interacts with the eIF2γ subunit through the guanine nucleotide binding interface to promote Met-tRNAiMet binding. Biosci Rep 2024; 44:BSR20240438. [PMID: 38873976 PMCID: PMC11230868 DOI: 10.1042/bsr20240438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2β subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2β-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2βS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2βS264Y mutation has eIF2β-γ interaction defect. Consistently, the eIF2βT238A intragenic suppressor mutation restored the eIF2β-γ and Met-tRNAiMet binding. The eIF2β-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2βT238A mutation, suggesting the eIF2β-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2βF217A/Q221A double mutation in the HTH domain. The eIF2βT238A suppressor mutation could not rescue the eIF2β binding defect of the eIF2γV281K mutation; however, combining the eIF2βS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2β with the eIF2γ subunit via its α1-helix, the eIF2β-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2β-γ interacts via two distinct binding sites.
Collapse
Affiliation(s)
- Aranyadip Gayen
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| | - Pankaj V. Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda 752050, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Weiss B, Dikstein R. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations. Cell Rep 2024; 43:114126. [PMID: 38630588 DOI: 10.1016/j.celrep.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Wang J, Zhang G, Qian W, Li K. Decoding the Heterogeneity and Specialized Function of Translation Machinery Through Ribosome Profiling in Yeast Mutants of Initiation Factors. Adv Biol (Weinh) 2024; 8:e2300494. [PMID: 37997253 DOI: 10.1002/adbi.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/24/2023] [Indexed: 11/25/2023]
Abstract
The nuanced heterogeneity and specialized functions of translation machinery are increasingly recognized as crucial for precise translational regulation. Here, high-throughput ribosomal profiling (ribo-seq) is used to analyze the specialized roles of eukaryotic initiation factors (eIFs) in the budding yeast. By examining changes in ribosomal distribution across the genome resulting from knockouts of eIF4A, eIF4B, eIF4G1, CAF20, or EAP1, or knockdowns of eIF1, eIF1A, eIF4E, or PAB1, two distinct initiation-factor groups, the "looping" and "scanning" groups are discerned, based on similarities in the ribosomal landscapes their perturbation induced. The study delves into the cis-regulatory sequence features of genes influenced predominantly by each group, revealing that genes more dependent on the looping-group factors generally have shorter transcripts and poly(A) tails. In contrast, genes more dependent on the scanning-group factors often possess upstream open reading frames and exhibit a higher GC content in their 5' untranslated regions. From the ribosomal RNA fragments identified in the ribo-seq data, ribosomal heterogeneity associated with perturbation of specific initiation factors is further identified, suggesting their potential roles in regulating ribosomal components. Collectively, the study illuminates the complexity of translational regulation driven by heterogeneity and specialized functions of translation machinery, presenting potential approaches for targeted gene translation manipulation.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Geyu Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Zhang J, Pi SB, Zhang N, Guo J, Zheng W, Leng L, Lin G, Fan HY. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation. Nat Commun 2022; 13:6621. [PMID: 36333315 PMCID: PMC9636173 DOI: 10.1038/s41467-022-34427-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.
Collapse
Affiliation(s)
- Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
- College of Life Science, Hunan Normal University, 410006, Changsha, China
| | - Shuai-Bo Pi
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Nan Zhang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Lizhi Leng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China.
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China.
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Martín-Marcos P, Gil-Hernández Á, Tamame M. Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation. Curr Genet 2022; 68:619-644. [PMID: 35994100 DOI: 10.1007/s00294-022-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An extensive mutational analysis of RPL33A, encoding the yeast ribosomal protein L33A (eL33) allowed us to identify several novel rpl33a mutants with different translational phenotypes. Most of the rpl33a mutants are defective in the processing of 35S and 27S pre-rRNA precursors and the production of mature rRNAs, exhibiting reductions in the amounts of ribosomal subunits and altered polysome profiles. Some of the rpl33a mutants exhibit a Gcd- phenotype of constitutive derepression of GCN4 translation and strong slow growth phenotypes at several temperatures. Interestingly, some of the later mutants also show a detectable increase in the UUG/AUG translation initiation ratio that can be suppressed by eIF1 overexpression, suggesting a requirement for eL33 and a correct 60S/40S subunit ratio for the proper recognition of the AUG start codon. In addition to producing differential reductions in the rates of pre-rRNA maturation and perhaps in r-protein assembly, most of the point rpl33a mutations alter specific molecular interactions of eL33 with the rRNAs and other r-proteins in the 60S structure. Thus, rpl33a mutations cause distinctive effects on the abundance and/or functionality of 60S subunits, leading to more or less pronounced defects in the rates and fidelity of mRNA translation.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| | - Álvaro Gil-Hernández
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
13
|
Sehrawat U, Haimov O, Weiss B, Tamarkin-Ben Harush A, Ashkenazi S, Plotnikov A, Noiman T, Leshkowitz D, Stelzer G, Dikstein R. Inhibitors of eIF4G1-eIF1 uncover its regulatory role of ER/UPR stress-response genes independent of eIF2α-phosphorylation. Proc Natl Acad Sci U S A 2022; 119:e2120339119. [PMID: 35857873 PMCID: PMC9335335 DOI: 10.1073/pnas.2120339119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 01/22/2023] Open
Abstract
During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ana Tamarkin-Ben Harush
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tzahi Noiman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Ivanov IP, Saba JA, Fan CM, Wang J, Firth AE, Cao C, Green R, Dever TE. Evolutionarily conserved inhibitory uORFs sensitize Hox mRNA translation to start codon selection stringency. Proc Natl Acad Sci U S A 2022; 119:e2117226119. [PMID: 35217614 PMCID: PMC8892498 DOI: 10.1073/pnas.2117226119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - James A Saba
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Ji Wang
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Chune Cao
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Rachel Green
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892;
| |
Collapse
|
16
|
Dong J, Hinnebusch AG. uS5/Rps2 residues at the 40S ribosome entry channel enhance initiation at suboptimal start codons in vivo. Genetics 2022; 220:iyab176. [PMID: 34791232 PMCID: PMC8733449 DOI: 10.1093/genetics/iyab176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 11/12/2022] Open
Abstract
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.
Collapse
Affiliation(s)
- Jinsheng Dong
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 2021; 49:11491-11511. [PMID: 34648019 PMCID: PMC8599844 DOI: 10.1093/nar/gkab908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
Collapse
Affiliation(s)
- Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Molecular Reproduction, Development and Genetics (MRDG), Biological Sciences Building, Indian Institute of Science, Bangalore 560012, India
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Villamayor
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
| | | | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
19
|
Thakur A, Gaikwad S, Vijjamarri AK, Hinnebusch AG. eIF2α interactions with mRNA control accurate start codon selection by the translation preinitiation complex. Nucleic Acids Res 2020; 48:10280-10296. [PMID: 32955564 DOI: 10.1093/nar/gkaa761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
In translation initiation, AUG recognition triggers rearrangement of the 48S preinitiation complex (PIC) from an open conformation to a closed state with more tightly-bound Met-tRNAi. Cryo-EM structures have revealed interactions unique to the closed complex between arginines R55/R57 of eIF2α with mRNA, including the -3 nucleotide of the 'Kozak' context. We found that R55/R57 substitutions reduced recognition of a UUG start codon at HIS4 in Sui- cells (Ssu- phenotype); and in vitro, R55G-R57E accelerated dissociation of the eIF2·GTP·Met-tRNAi ternary complex (TC) from reconstituted PICs with a UUG start codon, indicating destabilization of the closed complex. R55/R57 substitutions also decreased usage of poor-context AUGs in SUI1 and GCN4 mRNAs in vivo. In contrast, eIF2α-R53 interacts with the rRNA backbone only in the open complex, and the R53E substitution enhanced initiation at a UUG codon (Sui- phenotype) and poor-context AUGs, while reducing the rate of TC loading (Gcd- phenotype) in vivo. Consistently, R53E slowed TC binding to the PIC while decreasing TC dissociation at UUG codons in vitro, indicating destabilization of the open complex. Thus, distinct interactions of eIF2α with rRNA or mRNA stabilize first the open, and then closed, conformation of the PIC to influence the accuracy of initiation in vivo.
Collapse
Affiliation(s)
- Anil Thakur
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.,Regional Centre for Biotechnology, 3rd milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Anil K Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res 2020; 30:974-984. [PMID: 32669370 PMCID: PMC7397870 DOI: 10.1101/gr.257352.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic translation initiation involves preinitiation ribosomal complex 5′-to-3′ directional probing of mRNA for codons suitable for starting protein synthesis. The recognition of codons as starts depends on the codon identity and on its immediate nucleotide context known as Kozak context. When the context is weak (i.e., nonoptimal), leaky scanning takes place during which a fraction of ribosomes continues the mRNA probing. We explored the relationship between the context of AUG codons annotated as starts of protein-coding sequences and the next AUG codon occurrence. We found that AUG codons downstream from weak starts occur in the same frame more frequently than downstream from strong starts. We suggest that evolutionary selection on in-frame AUGs downstream from weak start codons is driven by the advantage of the reduction of wasteful out-of-frame product synthesis and also by the advantage of producing multiple proteoforms from certain mRNAs. We confirmed translation initiation downstream from weak start codons using ribosome profiling data. We also tested translation of alternative start codons in 10 specific human genes using reporter constructs. In all tested cases, initiation at downstream start codons was more productive than at the annotated ones. In most cases, optimization of Kozak context did not completely abolish downstream initiation, and in the specific example of CMPK1 mRNA, the optimized start remained unproductive. Collectively, our work reveals previously uncharacterized forces shaping the evolution of protein-coding genes and points to the plurality of translation initiation and the existence of sequence features influencing start codon selection, other than Kozak context.
Collapse
|
21
|
Zhou F, Zhang H, Kulkarni SD, Lorsch JR, Hinnebusch AG. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide. RNA (NEW YORK, N.Y.) 2020; 26:419-438. [PMID: 31915290 PMCID: PMC7075259 DOI: 10.1261/rna.073536.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.
Collapse
Affiliation(s)
- Fujun Zhou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shardul D Kulkarni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Lomakin IB, De S, Wang J, Borkar AN, Steitz TA. Crystal structure of the C-terminal domain of DENR. Comput Struct Biotechnol J 2020; 18:696-704. [PMID: 32257053 PMCID: PMC7114459 DOI: 10.1016/j.csbj.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023] Open
Abstract
The density regulated protein (DENR) forms a stable heterodimer with malignant T-cell-amplified sequence 1 (MCT-1). DENR-MCT-1 heterodimer then participates in regulation of non-canonical translation initiation and ribosomal recycling. The N-terminal domain of DENR interacts with MCT-1 and carries a classical tetrahedral zinc ion-binding site, which is crucial for the dimerization. DENR-MCT-1 binds the small (40S) ribosomal subunit through interactions between MCT-1 and helix h24 of the 18S rRNA, and through interactions between the C-terminal domain of DENR and helix h44 of the 18S rRNA. This later interaction occurs in the vicinity of the P site that is also the binding site for canonical translation initiation factor eIF1, which plays the key role in initiation codon selection and scanning. Sequence homology modeling and a low-resolution crystal structure of the DENR-MCT-1 complex with the human 40S subunit suggests that the C-terminal domain of DENR and eIF1 adopt a similar fold. Here we present the crystal structure of the C-terminal domain of DENR determined at 1.74 Å resolution, which confirms its resemblance to eIF1 and advances our understanding of the mechanism by which DENR-MCT-1 regulates non-canonical translation initiation and ribosomal recycling.
Collapse
Affiliation(s)
- Ivan B. Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
23
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
24
|
Thakur A, Marler L, Hinnebusch AG. A network of eIF2β interactions with eIF1 and Met-tRNAi promotes accurate start codon selection by the translation preinitiation complex. Nucleic Acids Res 2019; 47:2574-2593. [PMID: 30576497 PMCID: PMC6411837 DOI: 10.1093/nar/gky1274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/15/2018] [Indexed: 11/14/2022] Open
Abstract
In translation initiation, a 43S preinitiation complex (PIC) containing eIF1 and a ternary complex (TC) of GTP-bound eIF2 and Met-RNAi scans the mRNA for the start codon. AUG recognition triggers eIF1 release and rearrangement from an open PIC conformation to a closed state with more tightly-bound Met-tRNAi (PIN state). Cryo-EM models reveal eIF2β contacts with eIF1 and Met-tRNAi exclusive to the open complex that should destabilize the closed state. eIF2β or eIF1 substitutions disrupting these contacts increase initiation at UUG codons, and compound substitutions also derepress translation of GCN4, indicating slower TC recruitment. The latter substitutions slow TC loading while stabilizing TC binding at UUG codons in reconstituted PICs, indicating a destabilized open complex and shift to the closed/PIN state. An eIF1 substitution that should strengthen the eIF2β:eIF1 interface has the opposite genetic and biochemical phenotypes. eIF2β is also predicted to restrict Met-tRNAi movement into the closed/PIN state, and substitutions that should diminish this clash increase UUG initiation in vivo and stabilize Met-tRNAi binding at UUG codons in vitro with little effect on TC loading. Thus, eIF2β anchors eIF1 and TC to the open complex, enhancing PIC assembly and scanning, while impeding rearrangement to the closed conformation at non-AUG codons.
Collapse
Affiliation(s)
- Anil Thakur
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Laura Marler
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Firczuk H, Teahan J, Mendes P, McCarthy JEG. Multisite rate control analysis identifies ribosomal scanning as the sole high-capacity/low-flux-control step in mRNA translation. FEBS J 2019; 287:925-940. [PMID: 31520451 PMCID: PMC7054134 DOI: 10.1111/febs.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7GpppG‐capped 5′end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper‐responsive regulatory promoter (PCuR3) that is used here together with the tet07 regulatory system in a novel dual‐site in vivo rate control analysis strategy. Combining this two‐site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model‐based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low‐flux‐control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5′ cap‐binding complex, is a high‐flux‐control step.
Collapse
Affiliation(s)
- Helena Firczuk
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - James Teahan
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - Pedro Mendes
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | - John E G McCarthy
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
26
|
Hernández G, Osnaya VG, Pérez-Martínez X. Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem Sci 2019; 44:1009-1021. [PMID: 31353284 DOI: 10.1016/j.tibs.2019.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 01/30/2023]
Abstract
Selection of the translation initiation site (TIS) is a crucial step during translation. In the 1980s Marylin Kozak performed key studies on vertebrate mRNAs to characterize the optimal TIS consensus sequence, the Kozak motif. Within this motif, conservation of nucleotides in crucial positions, namely a purine at -3 and a G at +4 (where the A of the AUG is numbered +1), is essential for TIS recognition. Ever since its characterization the Kozak motif has been regarded as the optimal sequence to initiate translation in all eukaryotes. We revisit here published in silico data on TIS consensus sequences, as well as experimental studies from diverse eukaryotic lineages, and propose that, while the -3A/G position is universally conserved, the remaining variability of the consensus sequences enables their classification as optimal, strong, and moderate TIS sequences.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico.
| | - Vincent G Osnaya
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico
| | - Xochitl Pérez-Martínez
- Department of Molecular Genetics, Cell Physiology Institute (Instituto de Fisiología Celular), Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico
| |
Collapse
|
27
|
Antony A C, Ram AK, Dutta K, Alone PV. Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection. FEBS Lett 2019; 593:852-867. [PMID: 30900251 DOI: 10.1002/1873-3468.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/09/2022]
Abstract
The 40S ribosome plays a critical role in start codon selection. To gain insights into the role of its 18S rRNA in start codon selection, a suppressor screen was performed that suppressed the preferential UUG start codon recognition (Suppressor of initiation codon: Sui- phenotype) associated with the eIF5G31R mutant. The C1209U mutation in helix h32 of 18S rRNA was found to suppress the Sui- and Gcn- (failure to derepress GCN4 expression) phenotype of the eIF5G31R mutant. The C1209U mutation suppressed Sui- and Gcd- (constitutive derepression of GCN4 expression) phenotype of eIF2βS264Y , eIF1K60E , and eIF1A-ΔC mutation. We propose that the C1209U mutation in 40S ribosomal may perturb the premature head rotation in 'Closed/PIN ' state and enhance the stringency of translation start site selection.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kalloly Dutta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
28
|
Merrick WC, Pavitt GD. Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033092. [PMID: 29735639 DOI: 10.1101/cshperspect.a033092] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes our current understanding of the major pathway for the initiation phase of protein synthesis in eukaryotic cells, with a focus on recent advances. We describe the major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism, which is a highly coordinated and stepwise regulated process that requires the combined action of at least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, and mRNAs. We limit our review to studies involving either mammalian or budding yeast cells and factors, as these represent the two best-studied experimental systems, and only include a reference to other organisms where particular insight has been gained. We close with a brief description of what we feel are some of the major unknowns in eukaryotic initiation.
Collapse
Affiliation(s)
- William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
29
|
Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 2018; 7:e39273. [PMID: 30475211 PMCID: PMC6298780 DOI: 10.7554/elife.39273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Collapse
Affiliation(s)
- Jose Luis Llácer
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Instituto de Biomedicina de Valencia (IBV-CSIC)ValenciaSpain
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Adesh K Saini
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Jagpreet Singh Nanda
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Sukhvir Kaur
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | | | - Rakesh Kumar
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and DevelopmentEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
30
|
Lin KY, Nag N, Pestova TV, Marintchev A. Human eIF5 and eIF1A Compete for Binding to eIF5B. Biochemistry 2018; 57:5910-5920. [PMID: 30211544 DOI: 10.1021/acs.biochem.8b00839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation is a multistep process requiring a number of eukaryotic translation initiation factors (eIFs). Two GTPases play key roles in the process. eIF2 brings the initiator Met-tRNAi to the preinitiation complex (PIC). Upon start codon selection and GTP hydrolysis promoted by the GTPase-activating protein (GAP) eIF5, eIF2-GDP is displaced from Met-tRNAi by eIF5B-GTP and is released in complex with eIF5. eIF5B promotes ribosomal subunit joining, with the help of eIF1A. Upon subunit joining, eIF5B hydrolyzes GTP and is released together with eIF1A. We found that human eIF5 interacts with eIF5B and may help recruit eIF5B to the PIC. An eIF5B-binding motif was identified at the C-terminus of eIF5, similar to that found in eIF1A. Indeed, eIF5 competes with eIF1A for binding and has an ∼100-fold higher affinity for eIF5B. Because eIF5 is the GAP of eIF2, the newly discovered interaction offers a possible mechanism for coordination between the two steps in translation initiation controlled by GTPases: start codon selection and ribosomal subunit joining. Our results indicate that in humans, eIF5B displacing eIF2 from Met-tRNAi upon subunit joining may be coupled to eIF1A displacing eIF5 from eIF5B, allowing the eIF5:eIF2-GDP complex to leave the ribosome.
Collapse
Affiliation(s)
- Kai Ying Lin
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Nabanita Nag
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Tatyana V Pestova
- Department of Cell Biology , State University of New York, Downstate Medical Center , Brooklyn , New York 11203 , United States
| | - Assen Marintchev
- Department of Physiology & Biophysics , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
31
|
Young DJ, Makeeva DS, Zhang F, Anisimova AS, Stolboushkina EA, Ghobakhlou F, Shatsky IN, Dmitriev SE, Hinnebusch AG, Guydosh NR. Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo. Mol Cell 2018; 71:761-774.e5. [PMID: 30146315 PMCID: PMC6225905 DOI: 10.1016/j.molcel.2018.07.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 02/05/2023]
Abstract
The recycling of ribosomal subunits after translation termination is critical for efficient gene expression. Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR) function as 40S recycling factors in vitro, but it is unknown whether they perform this function in vivo. Ribosome profiling of tma deletion strains revealed 80S ribosomes queued behind the stop codon, consistent with a block in 40S recycling. We found that unrecycled ribosomes could reinitiate translation at AUG codons in the 3' UTR, as evidenced by peaks in the footprint data and 3' UTR reporter analysis. In vitro translation experiments using reporter mRNAs containing upstream open reading frames (uORFs) further established that reinitiation increased in the absence of these proteins. In some cases, 40S ribosomes appeared to rejoin with 60S subunits and undergo an 80S reinitiation process in 3' UTRs. These results support a crucial role for Tma64, Tma20, and Tma22 in recycling 40S ribosomal subunits at stop codons and translation reinitiation.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Desislava S Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Fan Zhang
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Fardin Ghobakhlou
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
eIF1 Loop 2 interactions with Met-tRNA i control the accuracy of start codon selection by the scanning preinitiation complex. Proc Natl Acad Sci U S A 2018; 115:E4159-E4168. [PMID: 29666249 DOI: 10.1073/pnas.1800938115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNAi) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "POUT" state to a closed conformation with TC more tightly bound in a "PIN" state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the PIN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNAi D loop in the PIN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNAi We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNAi accommodation in the PIN state without influencing the POUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNAi clash to an electrostatic attraction that stabilizes PIN and enhances selection of poor start codons in vivo.
Collapse
|
33
|
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Gene expression universally relies on protein synthesis, where ribosomes recognize and decode the messenger RNA template by cycling through translation initiation, elongation, and termination phases. All aspects of translation have been studied for decades using the tools of biochemistry and molecular biology available at the time. Here, we focus on the mechanism of translation initiation in eukaryotes, which is remarkably more complex than prokaryotic initiation and is the target of multiple types of regulatory intervention. The "consensus" model, featuring cap-dependent ribosome entry and scanning of mRNA leader sequences, represents the predominantly utilized initiation pathway across eukaryotes, although several variations of the model and alternative initiation mechanisms are also known. Recent advances in structural biology techniques have enabled remarkable molecular-level insights into the functional states of eukaryotic ribosomes, including a range of ribosomal complexes with different combinations of translation initiation factors that are thought to represent bona fide intermediates of the initiation process. Similarly, high-throughput sequencing-based ribosome profiling or "footprinting" approaches have allowed much progress in understanding the elongation phase of translation, and variants of them are beginning to reveal the remaining mysteries of initiation, as well as aspects of translation termination and ribosomal recycling. A current view on the eukaryotic initiation mechanism is presented here with an emphasis on how recent structural and footprinting results underpin axioms of the consensus model. Along the way, we further outline some contested mechanistic issues and major open questions still to be addressed. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
34
|
Loughran G, Firth AE, Atkins JF, Ivanov IP. Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS One 2018; 13:e0192648. [PMID: 29470543 PMCID: PMC5823381 DOI: 10.1371/journal.pone.0192648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023] Open
Abstract
The efficiency of start codon selection during ribosomal scanning in eukaryotic translation initiation is influenced by the context or flanking nucleotides surrounding the AUG codon. The levels of eukaryotic translation initiation factors 1 (eIF1) and 5 (eIF5) play critical roles in controlling the stringency of translation start site selection. The basic leucine zipper and W2 domain-containing proteins 1 and 2 (BZW1 and BZW2), also known as eIF5-mimic proteins, are paralogous human proteins containing C-terminal HEAT domains that resemble the HEAT domain of eIF5. We show that translation of mRNAs encoding BZW1 and BZW2 homologs in fungi, plants and metazoans is initiated by AUG codons in conserved unfavorable initiation contexts. This conservation is reminiscent of the conserved unfavorable initiation context that enables autoregulation of EIF1. We show that overexpression of BZW1 and BZW2 proteins enhances the stringency of start site selection, and that their poor initiation codons confer autoregulation on BZW1 and BZW2 mRNA translation. We also show that overexpression of these two proteins significantly diminishes the effect of overexpressing eIF5 on stringency of start codon selection, suggesting they antagonize this function of eIF5. These results reveal a surprising role for BZW1 and BZW2 in maintaining homeostatic stringency of start codon selection, and taking into account recent biochemical, genetic and structural insights into eukaryotic initiation, suggest a model for BZW1 and BZW2 function.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E. Firth
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Ivaylo P. Ivanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tang L, Morris J, Wan J, Moore C, Fujita Y, Gillaspie S, Aube E, Nanda J, Marques M, Jangal M, Anderson A, Cox C, Hiraishi H, Dong L, Saito H, Singh CR, Witcher M, Topisirovic I, Qian SB, Asano K. Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Res 2017; 45:11941-11953. [PMID: 28981728 PMCID: PMC5714202 DOI: 10.1093/nar/gkx808] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
In the human genome, translation initiation from non-AUG codons plays an important role in various gene regulation programs. However, mechanisms regulating the non-AUG initiation rate remain poorly understood. Here, we show that the non-AUG initiation rate is nearly consistent under a fixed nucleotide context in various human and insect cells. Yet, it ranges from <1% to nearly 100% compared to AUG translation, depending on surrounding sequences, including Kozak, and possibly additional nucleotide contexts. Mechanistically, this range of non-AUG initiation is controlled in part, by the eIF5-mimic protein (5MP). 5MP represses non-AUG translation by competing with eIF5 for the Met-tRNAi-binding factor eIF2. Consistently, eIF5 increases, whereas 5MP decreases translation of NAT1/EIF4G2/DAP5, whose sole start codon is GUG. By modulating eIF5 and 5MP1 expression in combination with ribosome profiling we identified a handful of previously unknown non-AUG initiation sites, some of which serve as the exclusive start codons. If the initiation rate for these codons is low, then an AUG-initiated downstream ORF prevents the generation of shorter, AUG-initiated isoforms. We propose that the homeostasis of the non-AUG translatome is maintained through balanced expression of eIF5 and 5MP.
Collapse
Affiliation(s)
- Leiming Tang
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jacob Morris
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chelsea Moore
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yoshihiko Fujita
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Maud Marques
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maika Jangal
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Abbey Anderson
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Christian Cox
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Hiroyuki Hiraishi
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Witcher
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
36
|
Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, Kulkarni SD, Sen ND, Tamame M, Zeschnigk M, Lorsch JR, Hinnebusch AG. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. eLife 2017; 6:31250. [PMID: 29206102 PMCID: PMC5756025 DOI: 10.7554/elife.31250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States.,Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Charm Karunasiri
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Michael Zeschnigk
- Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.,Eye Cancer Research Group, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
37
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
38
|
Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. mBio 2017; 8:mBio.00844-17. [PMID: 28655822 PMCID: PMC5487733 DOI: 10.1128/mbio.00844-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs) in its >700-nucleotide (nt) 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs) in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression. There is a deepening and widening appreciation of the diverse roles of translation in controlling gene expression. A central fungal transcription factor, the best-studied example of which is Saccharomyces cerevisiae GCN4, is crucial for the response to amino acid limitation. Two upstream open reading frames (uORFs) in the GCN4 mRNA are critical for controlling GCN4 synthesis. We observed that two uORFs in the corresponding Neurospora crassa cpc-1 mRNA appear functionally analogous to the GCN4 uORFs. We also discovered that, surprisingly, unlike GCN4, the CPC1 coding sequence extends far upstream from the presumed AUG start codon with no other in-frame AUG codons. Similar extensions were seen in homologs from many filamentous fungi. We observed that multiple non-AUG near-cognate codons (NCCs) in this extended reading frame, some conserved, initiated translation to produce longer forms of CPC1, underscoring the significance of noncanonical initiation in controlling gene expression.
Collapse
|
39
|
Hinnebusch AG. Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation. Trends Biochem Sci 2017; 42:589-611. [PMID: 28442192 DOI: 10.1016/j.tibs.2017.03.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
Initiation of translation on eukaryotic mRNAs generally follows the scanning mechanism, wherein a preinitiation complex (PIC) assembled on the small (40S) ribosomal subunit and containing initiator methionyl tRNAi (Met-tRNAi) scans the mRNA leader for an AUG codon. In a current model, the scanning PIC adopts an open conformation and rearranges to a closed state, with fully accommodated Met-tRNAi, upon AUG recognition. Evidence from recent high-resolution structures of PICs assembled with different ligands supports this model and illuminates the molecular functions of eukaryotic initiation factors eIF1, eIF1A, and eIF2 in restricting to AUG codons the transition to the closed conformation. They also reveal that the eIF3 complex interacts with multiple functional sites in the PIC, rationalizing its participation in numerous steps of initiation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
41
|
Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons. Proc Natl Acad Sci U S A 2017; 114:E2126-E2135. [PMID: 28223523 DOI: 10.1073/pnas.1620569114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site ("POUT") to a closed, arrested conformation with TC tightly bound in the "PIN" state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high. Two such substitutions-R116D and R117D-also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG-anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC-mRNA contacts at the entry channel, augmenting the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.
Collapse
|
42
|
Visweswaraiah J, Hinnebusch AG. Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo. eLife 2017; 6. [PMID: 28169832 PMCID: PMC5323038 DOI: 10.7554/elife.22572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic pre-initiation complex (PIC) bearing the eIF2·GTP·Met-tRNAiMet ternary complex (TC) scans the mRNA for an AUG codon in favorable context. AUG recognition evokes rearrangement of the PIC from an open, scanning to a closed, arrested conformation. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interface between 40S protein Rps5/uS7 and eIF2α between open and closed states; however, its importance was unknown. uS7 substitutions disrupting eIF2α contacts favored in the open complex increase initiation at suboptimal sites, and uS7-S223D stabilizes TC binding to PICs reconstituted with a UUG start codon, indicating inappropriate rearrangement to the closed state. Conversely, uS7-D215 substitutions, perturbing uS7-eIF2α interaction in the closed state, confer the opposite phenotypes of hyperaccuracy and (for D215L) accelerated TC dissociation from reconstituted PICs. Thus, remodeling of the uS7/eIF2α interface appears to stabilize first the open, and then the closed state of the PIC to promote accurate AUG selection in vivo. DOI:http://dx.doi.org/10.7554/eLife.22572.001
Collapse
Affiliation(s)
- Jyothsna Visweswaraiah
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
43
|
Jaafar ZA, Oguro A, Nakamura Y, Kieft JS. Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling. eLife 2016; 5. [PMID: 28009256 PMCID: PMC5238962 DOI: 10.7554/elife.21198] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Internal ribosome entry sites (IRESs) are important RNA-based translation initiation signals, critical for infection by many pathogenic viruses. The hepatitis C virus (HCV) IRES is the prototype for the type 3 IRESs and is also invaluable for exploring principles of eukaryotic translation initiation, in general. Current mechanistic models for the type 3 IRESs are useful but they also present paradoxes, including how they can function both with and without eukaryotic initiation factor (eIF) 2. We discovered that eIF1A is necessary for efficient activity where it stabilizes tRNA binding and inspects the codon-anticodon interaction, especially important in the IRES' eIF2-independent mode. These data support a model in which the IRES binds preassembled translation preinitiation complexes and remodels them to generate eukaryotic initiation complexes with bacterial-like features. This model explains previous data, reconciles eIF2-dependent and -independent pathways, and illustrates how RNA structure-based control can respond to changing cellular conditions.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Akihiro Oguro
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
44
|
Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D, Marintcheva B, Marintchev A. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res 2016; 44:7441-56. [PMID: 27325746 PMCID: PMC5009744 DOI: 10.1093/nar/gkw552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.
Collapse
Affiliation(s)
- Nabanita Nag
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Kai Ying Lin
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | | | - Jielin Yu
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Devika Nadkarni
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Boriana Marintcheva
- Bridgewater State University, Department of Biological Sciences, Bridgewater, MA 02325, USA
| | - Assen Marintchev
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| |
Collapse
|
45
|
Tzani I, Ivanov IP, Andreev DE, Dmitriev RI, Dean KA, Baranov PV, Atkins JF, Loughran G. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol 2016; 6:rsob.150203. [PMID: 27249819 PMCID: PMC4892431 DOI: 10.1098/rsob.150203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.
Collapse
Affiliation(s)
- Ioanna Tzani
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitri E Andreev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Kellie A Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Abstract
The daily production of up to 1011 erythrocytes is tightly controlled to maintain the number of erythrocytes in peripheral blood between narrow boundaries. Availability of growth factors and nutrients, particularly iron, control the proliferation and survival of precursor cells partly through control of mRNA translation. General translation initiation mechanisms can selectively control translation of transcripts that carry specific structures in the UTRs. This selective mRNA translation is an important layer of gene expression regulation in erythropoiesis. Ribosome profiling is a recently developed high throughput sequencing technique for global mapping of translation initiation sites across the transcriptome. Here we describe what is known about control of mRNA translation in erythropoiesis and how ribosome profiling will help to further our knowledge. Ribosome footprinting will give insight in transcript-specific translation at codon resolution, which is of great value to understand many cellular processes during erythropoiesis. It will be of particular interest to understand responses to iron availability and reactive oxygen species (ROS), which affects translation initiation of transcripts harbouring upstream ORFs (uORF) and potential alternative downstream ORFs (aORF).
Collapse
|
47
|
Zhou JW, Li Y, Yue LX, Luo CL, Chen Y, Zhang JY. Autoantibody response to Sui1 and its tissue-specific expression in hepatocellular carcinoma. Tumour Biol 2015; 37:2547-53. [DOI: 10.1007/s13277-015-4074-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/13/2015] [Indexed: 01/09/2023] Open
|
48
|
Llácer JL, Hussain T, Marler L, Aitken CE, Thakur A, Lorsch JR, Hinnebusch AG, Ramakrishnan V. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Mol Cell 2015. [PMID: 26212456 PMCID: PMC4534855 DOI: 10.1016/j.molcel.2015.06.033] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5′ end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2β as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition. Structures of eukaryotic translation initiation complexes in open and closed states In the open complex the 40S head moves upward to open the mRNA entry channel latch Transition to closed state locks initiator tRNA in the P site base-paired with AUG The structures show how eIF3 contacts eIF2 and eIF1 on the 40S subunit interface
Collapse
Affiliation(s)
- Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Laura Marler
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin Echeverría Aitken
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anil Thakur
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
49
|
Visweswaraiah J, Pittman Y, Dever TE, Hinnebusch AG. The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. eLife 2015; 4:e07939. [PMID: 26134896 PMCID: PMC4513230 DOI: 10.7554/elife.07939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic 43S pre-initiation complex bearing tRNAi(Met) scans the mRNA leader for an AUG start codon in favorable context. Structural analyses revealed that the β-hairpin of 40S protein Rps5/uS7 protrudes into the 40S mRNA exit-channel, contacting the eIF2∙GTP∙Met-tRNAi ternary complex (TC) and mRNA context nucleotides; but its importance in AUG selection was unknown. We identified substitutions in β-strand-1 and C-terminal residues of yeast Rps5 that reduced bulk initiation, conferred 'leaky-scanning' of AUGs; and lowered initiation fidelity by exacerbating the effect of poor context of the eIF1 AUG codon to reduce eIF1 abundance. Consistently, the β-strand-1 substitution greatly destabilized the 'PIN' conformation of TC binding to reconstituted 43S·mRNA complexes in vitro. Other substitutions in β-hairpin loop residues increased initiation fidelity and destabilized PIN at UUG, but not AUG start codons. We conclude that the Rps5 β-hairpin is as crucial as soluble initiation factors for efficient and accurate start codon recognition.
Collapse
Affiliation(s)
- Jyothsna Visweswaraiah
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yvette Pittman
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Thomas E Dever
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
50
|
Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Tamarkin-Ben-Harush A, Viollet B, Dikstein R. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab 2015; 21:479-92. [PMID: 25738462 DOI: 10.1016/j.cmet.2015.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 02/09/2015] [Indexed: 11/30/2022]
Abstract
Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.
Collapse
Affiliation(s)
- Hadar Sinvani
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuri Svitkin
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ana Tamarkin-Ben-Harush
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benoit Viollet
- University Paris Descartes, Institut Cochin, 75014 Paris, France
| | - Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|