1
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
3
|
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
|
4
|
Roest HP, Baarends WM, de Wit J, van Klaveren JW, Wassenaar E, Hoogerbrugge JW, van Cappellen WA, Hoeijmakers JHJ, Grootegoed JA. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol 2004; 24:5485-95. [PMID: 15169909 PMCID: PMC419895 DOI: 10.1128/mcb.24.12.5485-5495.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 01/24/2004] [Accepted: 03/28/2004] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae RAD6 protein is required for a surprising diversity of cellular processes, including sporulation and replicational damage bypass of DNA lesions. In mammals, two RAD6-related genes, HR6A and HR6B, encode highly homologous proteins. Here, we describe the phenotype of cells and mice deficient for the mHR6A gene. Just like mHR6B knockout mouse embryonic fibroblasts, mHR6A-deficient cells appear to have normal DNA damage resistance properties, but mHR6A knockout male and female mice display a small decrease in body weight. The necessity for at least one functional mHR6A (X-chromosomal) or mHR6B (autosomal) allele in all somatic cell types is supported by the fact that neither animals lacking both proteins nor females with only one intact mHR6A allele are viable. In striking contrast to mHR6B knockout males, which show a severe spermatogenic defect, mHR6A knockout males are normally fertile. However, mHR6A knockout females fail to produce offspring despite a normal ovarian histology and ovulation. The absence of mHR6A in oocytes prevents development beyond the embryonic two-cell stage but does not result in an aberrant methylation pattern of histone H3 at this early stage of mouse embryonic development. These observations support redundant but dose-dependent roles for HR6A and HR6B in somatic cell types and germ line cells in mammals.
Collapse
Affiliation(s)
- Henk P Roest
- MGC-Department of Cell Biology and Genetics, Centre for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Risuleo G, Cristofanilli M, Scarsella G. Acute ischemia/hypoxia in rat hippocampal neurons activates nuclear ubiquitin and alters both chromatin and DNA. Mol Cell Biochem 2003; 250:73-80. [PMID: 12962145 DOI: 10.1023/a:1024950317684] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated early alterations in rat neurons after experimental ischemic stress. Transient ischemia was generated by bilateral occlusion of the carotids after hypoxia. Data show a relevant increase of the nuclear level of ubiquitin 2 h post-stress as evaluated by immuno-cytolocalization. Ubiquitin returns to normal levels after 6 h. The increase in ischemic/hypoxic rats was localized preferentially in nuclei of hippocampal neurons, although some augmentation was also shown essentially in dendrites. The activation of ubiquitin system is related to a defective homeostasis and might trigger different degenerative processes. With respect to this, we observed chromatin alterations by densitometric analysis. The shown extensive DNA degeneration is consistent with the occurrence of necrotic phenomena at an early stage. However the parallel internucleosomal specific DNA fragmentation, strongly suggests that apoptotic events also occur. In any case both necrosis and apoptosis are likely to occur at same time, although apoptosis is less extensive, and the two phenomena take place in different neural cells.
Collapse
Affiliation(s)
- Gianfranco Risuleo
- Dipartimento di Genetica e Biologia Molecolare, Università degli Studi di Roma 'La Sapienza', Rome, Italy
| | | | | |
Collapse
|
6
|
Turner SD, Ricci AR, Petropoulos H, Genereaux J, Skerjanc IS, Brandl CJ. The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription. Mol Cell Biol 2002; 22:4011-9. [PMID: 12024015 PMCID: PMC133851 DOI: 10.1128/mcb.22.12.4011-4019.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 02/26/2002] [Accepted: 02/28/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Saccharomyces cerevisiae ARG1 gene is under the control of both positive and negative elements. Activation of the gene in minimal medium is induced by Gcn4. Repression occurs in the presence of arginine and requires the ArgR/Mcm1 complex that binds to two upstream arginine control (ARC) elements. With the recent finding that the E2 ubiquitin conjugase Rad6 modifies histone H2B, we examined the role of Rad6 in the regulation of ARG1 transcription. We find that Rad6 is required for repression of ARG1 in rich medium, with expression increased approximately 10-fold in a rad6 null background. Chromatin immunoprecipitation analysis indicates increased binding of TATA-binding protein in the absence of Rad6. The active-site cysteine of Rad6 is required for repression, implicating ubiquitination in the process. The effects of Rad6 at ARG1 involve two components. In one of these, histone H2B is the likely target for ubiquitination by Rad6, since a strain expressing histone H2B with the principal ubiquitination site converted from lysine to arginine shows a fivefold relief of repression. The second component requires Ubr1 and thus likely the pathway of N-end rule degradation. Through the analysis of promoter constructs with ARC deleted and an arg80 rad6 double mutant, we show that Rad6 repression is mediated through the ArgR/Mcm1 complex. In addition, analysis of an ada2 rad6 deletion strain indicated that the SAGA acetyltransferase complex and Rad6 act in the same pathway to repress ARG1 in rich medium.
Collapse
Affiliation(s)
- Suzanne D Turner
- Department of Biochemistry, University of Western Ontario, London, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
7
|
Ulrich HD. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. EUKARYOTIC CELL 2002; 1:1-10. [PMID: 12455966 PMCID: PMC118055 DOI: 10.1128/ec.1.1.1-10.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Helle D Ulrich
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
| |
Collapse
|
8
|
Ulrich HD, Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J 2000; 19:3388-97. [PMID: 10880451 PMCID: PMC313941 DOI: 10.1093/emboj/19.13.3388] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2000] [Revised: 05/04/2000] [Accepted: 05/09/2000] [Indexed: 02/07/2023] Open
Abstract
Two ubiquitin-conjugating enzymes, RAD6 and the heteromeric UBC13-MMS2 complex, have been implicated in post-replicative DNA damage repair in yeast. Here we provide a mechanistic basis for cooperation between the two enzymes. We show that two chromatin-associated RING finger proteins, RAD18 and RAD5, play a central role in mediating physical contacts between the members of the RAD6 pathway. RAD5 recruits the UBC13-MMS2 complex to DNA by means of its RING finger domain. Moreover, RAD5 association with RAD18 brings UBC13-MMS2 into contact with the RAD6-RAD18 complex. Interaction between the two RING finger proteins thus promotes the formation of a heteromeric complex in which the two distinct ubiquitin-conjugating activities of RAD6 and UBC13-MMS2 can be closely coordinated. Surprisingly, UBC13 and MMS2 are largely cytosolic proteins, but DNA damage triggers their redistribution to the nucleus. These findings suggest a mechanism by which the activity of this DNA repair pathway could be regulated.
Collapse
Affiliation(s)
- H D Ulrich
- Department of Molecular Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
9
|
Singh J, Goel V, Klar AJ. A novel function of the DNA repair gene rhp6 in mating-type silencing by chromatin remodeling in fission yeast. Mol Cell Biol 1998; 18:5511-22. [PMID: 9710635 PMCID: PMC109136 DOI: 10.1128/mcb.18.9.5511] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have indicated that the DNA replication machinery is coupled to silencing of mating-type loci in the budding yeast Saccharomyces cerevisiae, and a similar silencing mechanism may operate in the distantly related yeast Schizosaccharomyces pombe. Regarding gene regulation, an important function of DNA replication may be in coupling of faithful chromatin assembly to reestablishment of the parental states of gene expression in daughter cells. We have been interested in isolating mutants that are defective in this hypothesized coupling. An S. pombe mutant fortuitously isolated from a screen for temperature-sensitive growth and silencing phenotype exhibited a novel defect in silencing that was dependent on the switching competence of the mating-type loci, a property that differentiates this mutant from other silencing mutants of S. pombe as well as of S. cerevisiae. This unique mutant phenotype defined a locus which we named sng1 (for silencing not governed). Chromatin analysis revealed a switching-dependent unfolding of the donor loci mat2P and mat3M in the sng1(-) mutant, as indicated by increased accessibility to the in vivo-expressed Escherichia coli dam methylase. Unexpectedly, cloning and sequencing identified the gene as the previously isolated DNA repair gene rhp6. RAD6, an rhp6 homolog in S. cerevisiae, is required for postreplication DNA repair and ubiquitination of histones H2A and H2B. This study implicates the Rad6/rhp6 protein in gene regulation and, more importantly, suggests that a transient window of opportunity exists to ensure the remodeling of chromatin structure during chromosome replication and recombination. We propose that the effects of the sng1(-)/rhp6(-) mutation on silencing are indirect consequences of changes in chromatin structure.
Collapse
Affiliation(s)
- J Singh
- Institute of Microbial Technology, Sector 39 A, Chandigarh 160 036, Punjab, India.
| | | | | |
Collapse
|
10
|
Qian Z, Huang H, Hong JY, Burck CL, Johnston SD, Berman J, Carol A, Liebman SW. Yeast Ty1 retrotransposition is stimulated by a synergistic interaction between mutations in chromatin assembly factor I and histone regulatory proteins. Mol Cell Biol 1998; 18:4783-92. [PMID: 9671488 PMCID: PMC109064 DOI: 10.1128/mcb.18.8.4783] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A screen for host mutations which increase the rate of transposition of Ty1 and Ty2 into a chromosomal target was used to identify factors influencing retroelement transposition. The fortuitous presence of a mutation in the CAC3 gene in the strain in which this screen was undertaken enabled us to discover that double mutaions of cac3 and hir3, but neither of the two single mutations, caused a dramatic increase in the rate of retrotransposition. We further showed that this effect was not due to an increase in the overall level of Ty1 mRNA. Two subtle cac3 phenotypes, slight methyl methanesulfonate (MMS) sensitivity and reduction of telomeric silencing, were significantly enhanced in the cac3 hir3 double mutant. In addition, the growth rate of the double mutant was reduced. HIR3 belongs to a class of HIR genes that regulate the transcription of histones, while Cac3p, together with Cac1p and Cac2p, forms chromatin assembly factor I. Other combinations of mutations in cac and hir genes (cac3 hir1, cac3 hir2, and cac2 hir3) also increase Ty transposition and MMS sensitivity and reduce the growth rate. A model explaining the synergistic interaction between cac and hir mutations in terms of alterations in chromatin structure is proposed.
Collapse
Affiliation(s)
- Z Qian
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang H, Kahana A, Gottschling DE, Prakash L, Liebman SW. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6693-9. [PMID: 9343433 PMCID: PMC232523 DOI: 10.1128/mcb.17.11.6693] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.
Collapse
Affiliation(s)
- H Huang
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
12
|
Bailly V, Prakash S, Prakash L. Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol Cell Biol 1997; 17:4536-43. [PMID: 9234711 PMCID: PMC232307 DOI: 10.1128/mcb.17.8.4536] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme required for postreplicational repair of UV-damaged DNA and for damage-induced mutagenesis. In addition, Rad6 functions in the N end rule pathway of protein degradation. Rad6 mediates its DNA repair role via its association with Rad18, whose DNA binding activity may target the Rad6-Rad18 complex to damaged sites in DNA. In its role in N end-dependent protein degradation, Rad6 interacts with the UBR1-encoded ubiquitin protein ligase (E3) enzyme. Previous studies have indicated the involvement of N-terminal and C-terminal regions of Rad6 in interactions with Ubr1. Here, we identify the regions of Rad6 and Rad18 that are involved in the dimerization of these two proteins. We show that a region of 40 amino acids towards the C terminus of Rad18 (residues 371 to 410) is sufficient for interaction with Rad6. This region of Rad18 contains a number of nonpolar residues that have been conserved in helix-loop-helix motifs of other proteins. Our studies indicate the requirement for residues 141 to 149 at the C terminus, and suggest the involvement of residues 10 to 22 at the N terminus of Rad6, in the interaction with Rad18. Each of these regions of Rad6 is indicated to form an amphipathic helix.
Collapse
Affiliation(s)
- V Bailly
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1061, USA
| | | | | |
Collapse
|
13
|
Ectopic recombination between Ty elements in Saccharomyces cerevisiae is not induced by DNA damage. Mol Cell Biol 1992. [PMID: 1328855 DOI: 10.1128/mcb.12.10.4441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitotic recombination is increased when cells are treated with a variety of physical and chemical agents that cause damage to their DNA. We show here, using Saccharomyces cerevisiae strains that carry marked Ty elements, that recombination between members of this family of retrotransposons is not increased by UV irradiation or by treatment with the radiomimetic drug methyl methanesulfonate. Both ectopic recombination and mutation events were elevated by these agents for non-Ty sequences in the same strain. We discuss possible mechanisms that can prevent the induction of recombination between Ty elements.
Collapse
|
14
|
Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol Cell Biol 1992. [PMID: 1317008 DOI: 10.1128/mcb.12.6.2813] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-level expression of a transpositionally competent Ty1 element fused to the inducible GAL1 promoter on a 2 microns plasmid (pGTy1) overcomes transpositional dormancy in Saccharomyces cerevisiae. To investigate the mechanisms controlling the rate of Ty1 retrotransposition, we quantitated transposition and Ty1 gene products in cells induced and uninduced for expression of pGTy1. The increase in Ty1 transposition was 45- to 125-fold greater than the increase in Ty1 RNA effected by pGTy1 induction. Translational efficiency of Ty1 RNA was not altered in transposition-induced cells, since p190TYA1-TYB1 protein synthesis increased in proportion to steady-state Ty1 RNA levels. Therefore, expression of a pGTy1 element increases the efficiency of Ty1 transposition at a posttranslational level. Galactose induction of pGTy1 enhanced TYA1 protein processing and allowed detection of processed TYB1 proteins, which are normally present at very low levels in uninduced cells. When the ability of genomic Ty1 elements to complement defined mutations in HIS3-marked pGTy1 elements was examined, mutations in the protease domain or certain mutations in the integrase domain failed to be complemented, but mutations in the reverse transcriptase domain were partially complemented by genomic Ty1 elements. Therefore, the activity of Ty1 elements in yeast cells may be limited by the availability of Ty1 protease and possibly integrase. These results suggest that Ty1 transposition is regulated at the level of protein processing and that this regulation is overcome by expression of a pGTy1 element.
Collapse
|
15
|
Curcio MJ, Garfinkel DJ. Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol Cell Biol 1992; 12:2813-25. [PMID: 1317008 PMCID: PMC364476 DOI: 10.1128/mcb.12.6.2813-2825.1992] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-level expression of a transpositionally competent Ty1 element fused to the inducible GAL1 promoter on a 2 microns plasmid (pGTy1) overcomes transpositional dormancy in Saccharomyces cerevisiae. To investigate the mechanisms controlling the rate of Ty1 retrotransposition, we quantitated transposition and Ty1 gene products in cells induced and uninduced for expression of pGTy1. The increase in Ty1 transposition was 45- to 125-fold greater than the increase in Ty1 RNA effected by pGTy1 induction. Translational efficiency of Ty1 RNA was not altered in transposition-induced cells, since p190TYA1-TYB1 protein synthesis increased in proportion to steady-state Ty1 RNA levels. Therefore, expression of a pGTy1 element increases the efficiency of Ty1 transposition at a posttranslational level. Galactose induction of pGTy1 enhanced TYA1 protein processing and allowed detection of processed TYB1 proteins, which are normally present at very low levels in uninduced cells. When the ability of genomic Ty1 elements to complement defined mutations in HIS3-marked pGTy1 elements was examined, mutations in the protease domain or certain mutations in the integrase domain failed to be complemented, but mutations in the reverse transcriptase domain were partially complemented by genomic Ty1 elements. Therefore, the activity of Ty1 elements in yeast cells may be limited by the availability of Ty1 protease and possibly integrase. These results suggest that Ty1 transposition is regulated at the level of protein processing and that this regulation is overcome by expression of a pGTy1 element.
Collapse
Affiliation(s)
- M J Curcio
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | |
Collapse
|
16
|
Wilke CM, Maimer E, Adams J. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 1992; 86:155-73. [PMID: 1334907 DOI: 10.1007/bf00133718] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25-35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for approximately 100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to approximately 0.0, and the populations had became dominated by a small number of clones containing > 0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.
Collapse
Affiliation(s)
- C M Wilke
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
17
|
Koken MH, Reynolds P, Jaspers-Dekker I, Prakash L, Prakash S, Bootsma D, Hoeijmakers JH. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci U S A 1991; 88:8865-9. [PMID: 1717990 PMCID: PMC52611 DOI: 10.1073/pnas.88.20.8865] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme (E2) that is required for DNA repair, damage-induced mutagenesis, and sporulation. We have cloned the two human RAD6 homologs, designated HHR6A and HHR6B. The two 152-amino acid human proteins share 95% sequence identity with each other and approximately 70% and approximately 85% overall identity with the homologs from yeasts (S. cerevisiae and Schizosaccharomyces pombe) and Drosophila melanogaster, respectively. Neither of the human RAD6 homologs possess the acidic C-terminal sequence present in the S. cerevisiae RAD6 protein. Genetic complementation experiments reveal that HHR6A as well as HHR6B can carry out the DNA repair and mutagenesis functions of RAD6 in S. cerevisiae rad6 delta mutants.
Collapse
Affiliation(s)
- M H Koken
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Dohmen RJ, Madura K, Bartel B, Varshavsky A. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sci U S A 1991; 88:7351-5. [PMID: 1651502 PMCID: PMC52293 DOI: 10.1073/pnas.88.16.7351] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its amino-terminal residue. Distinct versions of the N-end rule operate in all organisms examined, from mammals to bacteria. We show that UBC2(RAD6), one of at least seven ubiquitin-conjugating enzymes in the yeast Saccharomyces cerevisiae, is essential for multiubiquitination and degradation of the N-end rule substrates. We also show that UBC2 is physically associated with UBR1, the recognition component of the N-end rule pathway. These results indicate that some of the UBC2 functions, which include DNA repair, induced mutagenesis, sporulation, and regulation of retrotransposition, are mediated by protein degradation via the N-end rule pathway.
Collapse
Affiliation(s)
- R J Dohmen
- Department of Biology, Massachusettes Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
19
|
The yeast rad18 mutator specifically increases G.C----T.A transversions without reducing correction of G-A or C-T mismatches to G.C pairs. Mol Cell Biol 1991. [PMID: 1986222 DOI: 10.1128/mcb.11.1.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.
Collapse
|
20
|
Curcio MJ, Garfinkel DJ. Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 1991; 88:936-40. [PMID: 1846969 PMCID: PMC50929 DOI: 10.1073/pnas.88.3.936] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The yeast retrotransposon Ty1 has been tagged with a reporter gene that allows selection of RNA-mediated transposition events and is applicable to the study of retroelements in other organisms. The reporter gene is a yeast HIS3 gene interrupted by an artificial intron (AI) in the antisense orientation. The HIS3AI sequences were inserted into a Ty1 element such that the intron is on the sense strand of the Ty1 element; therefore, splicing and retrotransposition of marked Ty1 transcripts can give rise to His+ cells. Fusion of the Ty1-H3mHIS3AI element to the inducible GAL1 promoter resulted in a high frequency of histidine prototrophs upon galactose induction. Moreover, spontaneous His+ revertants derived from strains containing genomic TymHIS3AI elements are a result of retrotransposition. By using this assay, we estimated the Ty1 transposition rate to be between 3 x 10(-7) and 1 x 10(-5) transpositions per Ty1 element per generation. Variations in the transposition rate of individual Ty1 elements are correlated with the relative abundance of their transcripts.
Collapse
Affiliation(s)
- M J Curcio
- Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201
| | | |
Collapse
|
21
|
The yeast rad18 mutator specifically increases G.C----T.A transversions without reducing correction of G-A or C-T mismatches to G.C pairs. Mol Cell Biol 1991; 11:218-25. [PMID: 1986222 PMCID: PMC359612 DOI: 10.1128/mcb.11.1.218-225.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.
Collapse
|
22
|
Kunz BA, Kohalmi L, Kang XL, Magnusson KA. Specificity of the mutator effect caused by disruption of the RAD1 excision repair gene of Saccharomyces cerevisiae. J Bacteriol 1990; 172:3009-14. [PMID: 2160935 PMCID: PMC209101 DOI: 10.1128/jb.172.6.3009-3014.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disruption of RAD1, a gene controlling excision repair in the yeast Saccharomyces cerevisiae, increased the frequency of spontaneous forward mutation in a plasmid-borne copy of the SUP4-o gene. To characterize this effect in detail, a collection of 249 SUP4-o mutations arising spontaneously in the rad1 strain was analyzed by DNA sequencing. The resulting mutational spectrum was compared with that derived from an examination of 322 spontaneous SUP4-o mutations selected in an isogenic wild-type (RAD1) strain. This comparison revealed that the rad1 mutator phenotype was associated with increases in the frequencies of single-base-pair substitution, single-base-pair deletion, and insertion of the yeast retrotransposon Ty. In the rad1 strain, the relative fractions of these events and their distributions within SUP4-o exhibited features similar to those for spontaneous mutagenesis in the isogenic RAD1 background. The increase in the frequency of Ty insertion argues that Ty transposition can be activated by unrepaired spontaneous DNA damage, which normally would be removed by excision repair. We discuss the possibilities that either translesion synthesis, a reduced fidelity of DNA replication, or a deficiency in mismatch correction might be responsible for the majority of single-base-pair events in the rad1 strain.
Collapse
Affiliation(s)
- B A Kunz
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|